Spaces:
Runtime error
Runtime error
import os | |
import sys | |
from collections import namedtuple | |
from pathlib import Path | |
import re | |
import torch | |
import torch.hub | |
from torchvision import transforms | |
from torchvision.transforms.functional import InterpolationMode | |
from modules import devices, paths, shared, modelloader, errors | |
from ldm_patched.modules import model_management | |
from ldm_patched.modules.model_patcher import ModelPatcher | |
blip_image_eval_size = 384 | |
clip_model_name = 'ViT-L/14' | |
Category = namedtuple("Category", ["name", "topn", "items"]) | |
re_topn = re.compile(r"\.top(\d+)$") | |
def category_types(): | |
return [f.stem for f in Path(shared.interrogator.content_dir).glob('*.txt')] | |
def download_default_clip_interrogate_categories(content_dir): | |
print("Downloading CLIP categories...") | |
tmpdir = f"{content_dir}_tmp" | |
category_types = ["artists", "flavors", "mediums", "movements"] | |
try: | |
os.makedirs(tmpdir, exist_ok=True) | |
for category_type in category_types: | |
torch.hub.download_url_to_file(f"https://raw.githubusercontent.com/pharmapsychotic/clip-interrogator/main/clip_interrogator/data/{category_type}.txt", os.path.join(tmpdir, f"{category_type}.txt")) | |
os.rename(tmpdir, content_dir) | |
except Exception as e: | |
errors.display(e, "downloading default CLIP interrogate categories") | |
finally: | |
if os.path.exists(tmpdir): | |
os.removedirs(tmpdir) | |
class InterrogateModels: | |
blip_model = None | |
clip_model = None | |
clip_preprocess = None | |
dtype = None | |
running_on_cpu = None | |
def __init__(self, content_dir): | |
self.loaded_categories = None | |
self.skip_categories = [] | |
self.content_dir = content_dir | |
self.load_device = model_management.text_encoder_device() | |
self.offload_device = model_management.text_encoder_offload_device() | |
self.dtype = torch.float32 | |
if model_management.should_use_fp16(device=self.load_device): | |
self.dtype = torch.float16 | |
self.blip_patcher = None | |
self.clip_patcher = None | |
def categories(self): | |
if not os.path.exists(self.content_dir): | |
download_default_clip_interrogate_categories(self.content_dir) | |
if self.loaded_categories is not None and self.skip_categories == shared.opts.interrogate_clip_skip_categories: | |
return self.loaded_categories | |
self.loaded_categories = [] | |
if os.path.exists(self.content_dir): | |
self.skip_categories = shared.opts.interrogate_clip_skip_categories | |
category_types = [] | |
for filename in Path(self.content_dir).glob('*.txt'): | |
category_types.append(filename.stem) | |
if filename.stem in self.skip_categories: | |
continue | |
m = re_topn.search(filename.stem) | |
topn = 1 if m is None else int(m.group(1)) | |
with open(filename, "r", encoding="utf8") as file: | |
lines = [x.strip() for x in file.readlines()] | |
self.loaded_categories.append(Category(name=filename.stem, topn=topn, items=lines)) | |
return self.loaded_categories | |
def create_fake_fairscale(self): | |
class FakeFairscale: | |
def checkpoint_wrapper(self): | |
pass | |
sys.modules["fairscale.nn.checkpoint.checkpoint_activations"] = FakeFairscale | |
def load_blip_model(self): | |
self.create_fake_fairscale() | |
import models.blip | |
files = modelloader.load_models( | |
model_path=os.path.join(paths.models_path, "BLIP"), | |
model_url='https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth', | |
ext_filter=[".pth"], | |
download_name='model_base_caption_capfilt_large.pth', | |
) | |
blip_model = models.blip.blip_decoder(pretrained=files[0], image_size=blip_image_eval_size, vit='base', med_config=os.path.join(paths.paths["BLIP"], "configs", "med_config.json")) | |
blip_model.eval() | |
return blip_model | |
def load_clip_model(self): | |
import clip | |
import clip.model | |
clip.model.LayerNorm = torch.nn.LayerNorm | |
model, preprocess = clip.load(clip_model_name, device="cpu", download_root=shared.cmd_opts.clip_models_path) | |
model.eval() | |
return model, preprocess | |
def load(self): | |
if self.blip_model is None: | |
self.blip_model = self.load_blip_model() | |
self.blip_model = self.blip_model.to(device=self.offload_device, dtype=self.dtype) | |
self.blip_patcher = ModelPatcher(self.blip_model, load_device=self.load_device, offload_device=self.offload_device) | |
if self.clip_model is None: | |
self.clip_model, self.clip_preprocess = self.load_clip_model() | |
self.clip_model = self.clip_model.to(device=self.offload_device, dtype=self.dtype) | |
self.clip_patcher = ModelPatcher(self.clip_model, load_device=self.load_device, offload_device=self.offload_device) | |
model_management.load_models_gpu([self.blip_patcher, self.clip_patcher]) | |
return | |
def send_clip_to_ram(self): | |
pass | |
def send_blip_to_ram(self): | |
pass | |
def unload(self): | |
pass | |
def rank(self, image_features, text_array, top_count=1): | |
import clip | |
devices.torch_gc() | |
if shared.opts.interrogate_clip_dict_limit != 0: | |
text_array = text_array[0:int(shared.opts.interrogate_clip_dict_limit)] | |
top_count = min(top_count, len(text_array)) | |
text_tokens = clip.tokenize(list(text_array), truncate=True).to(self.load_device) | |
text_features = self.clip_model.encode_text(text_tokens).type(self.dtype) | |
text_features /= text_features.norm(dim=-1, keepdim=True) | |
similarity = torch.zeros((1, len(text_array))).to(self.load_device) | |
for i in range(image_features.shape[0]): | |
similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1) | |
similarity /= image_features.shape[0] | |
top_probs, top_labels = similarity.cpu().topk(top_count, dim=-1) | |
return [(text_array[top_labels[0][i].numpy()], (top_probs[0][i].numpy()*100)) for i in range(top_count)] | |
def generate_caption(self, pil_image): | |
gpu_image = transforms.Compose([ | |
transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC), | |
transforms.ToTensor(), | |
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) | |
])(pil_image).unsqueeze(0).type(self.dtype).to(self.load_device) | |
with torch.no_grad(): | |
caption = self.blip_model.generate(gpu_image, sample=False, num_beams=shared.opts.interrogate_clip_num_beams, min_length=shared.opts.interrogate_clip_min_length, max_length=shared.opts.interrogate_clip_max_length) | |
return caption[0] | |
def interrogate(self, pil_image): | |
res = "" | |
shared.state.begin(job="interrogate") | |
try: | |
self.load() | |
caption = self.generate_caption(pil_image) | |
self.send_blip_to_ram() | |
devices.torch_gc() | |
res = caption | |
clip_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(self.load_device) | |
with torch.no_grad(), devices.autocast(): | |
image_features = self.clip_model.encode_image(clip_image).type(self.dtype) | |
image_features /= image_features.norm(dim=-1, keepdim=True) | |
for cat in self.categories(): | |
matches = self.rank(image_features, cat.items, top_count=cat.topn) | |
for match, score in matches: | |
if shared.opts.interrogate_return_ranks: | |
res += f", ({match}:{score/100:.3f})" | |
else: | |
res += f", {match}" | |
except Exception: | |
errors.report("Error interrogating", exc_info=True) | |
res += "<error>" | |
self.unload() | |
shared.state.end() | |
return res | |