fluxdev's picture
Upload folder using huggingface_hub
b1bd80d verified
import torch
import ldm_patched.modules.ops as ops
from ldm_patched.modules.model_patcher import ModelPatcher
from ldm_patched.modules import model_management
from transformers import modeling_utils
class DiffusersModelPatcher:
def __init__(self, pipeline_class, dtype=torch.float16, *args, **kwargs):
load_device = model_management.get_torch_device()
offload_device = torch.device("cpu")
if not model_management.should_use_fp16(device=load_device):
dtype = torch.float32
self.dtype = dtype
with ops.use_patched_ops(ops.manual_cast):
with modeling_utils.no_init_weights():
self.pipeline = pipeline_class.from_pretrained(*args, **kwargs)
if hasattr(self.pipeline, 'unet'):
if hasattr(self.pipeline.unet, 'set_attn_processor'):
from diffusers.models.attention_processor import AttnProcessor2_0
self.pipeline.unet.set_attn_processor(AttnProcessor2_0())
print('Attention optimization applied to DiffusersModelPatcher')
self.pipeline = self.pipeline.to(device=offload_device)
if self.dtype == torch.float16:
self.pipeline = self.pipeline.half()
self.pipeline.eval()
self.patcher = ModelPatcher(
model=self.pipeline,
load_device=load_device,
offload_device=offload_device)
def prepare_memory_before_sampling(self, batchsize, latent_width, latent_height):
area = 2 * batchsize * latent_width * latent_height
inference_memory = (((area * 0.6) / 0.9) + 1024) * (1024 * 1024)
model_management.load_models_gpu(
models=[self.patcher],
memory_required=inference_memory
)
def move_tensor_to_current_device(self, x):
return x.to(device=self.patcher.current_device, dtype=self.dtype)