Spaces:
Runtime error
Runtime error
import torch | |
from ldm_patched.modules.conds import CONDRegular, CONDCrossAttn | |
from ldm_patched.modules.samplers import sampling_function | |
from ldm_patched.modules import model_management | |
from ldm_patched.modules.ops import cleanup_cache | |
def cond_from_a1111_to_patched_ldm(cond): | |
if isinstance(cond, torch.Tensor): | |
result = dict( | |
cross_attn=cond, | |
model_conds=dict( | |
c_crossattn=CONDCrossAttn(cond), | |
) | |
) | |
return [result, ] | |
cross_attn = cond['crossattn'] | |
pooled_output = cond['vector'] | |
result = dict( | |
cross_attn=cross_attn, | |
pooled_output=pooled_output, | |
model_conds=dict( | |
c_crossattn=CONDCrossAttn(cross_attn), | |
y=CONDRegular(pooled_output) | |
) | |
) | |
return [result, ] | |
def cond_from_a1111_to_patched_ldm_weighted(cond, weights): | |
transposed = list(map(list, zip(*weights))) | |
results = [] | |
for cond_pre in transposed: | |
current_indices = [] | |
current_weight = 0 | |
for i, w in cond_pre: | |
current_indices.append(i) | |
current_weight = w | |
if hasattr(cond, 'advanced_indexing'): | |
feed = cond.advanced_indexing(current_indices) | |
else: | |
feed = cond[current_indices] | |
h = cond_from_a1111_to_patched_ldm(feed) | |
h[0]['strength'] = current_weight | |
results += h | |
return results | |
def forge_sample(self, denoiser_params, cond_scale, cond_composition): | |
model = self.inner_model.inner_model.forge_objects.unet.model | |
control = self.inner_model.inner_model.forge_objects.unet.controlnet_linked_list | |
extra_concat_condition = self.inner_model.inner_model.forge_objects.unet.extra_concat_condition | |
x = denoiser_params.x | |
timestep = denoiser_params.sigma | |
uncond = cond_from_a1111_to_patched_ldm(denoiser_params.text_uncond) | |
cond = cond_from_a1111_to_patched_ldm_weighted(denoiser_params.text_cond, cond_composition) | |
model_options = self.inner_model.inner_model.forge_objects.unet.model_options | |
seed = self.p.seeds[0] | |
if extra_concat_condition is not None: | |
image_cond_in = extra_concat_condition | |
else: | |
image_cond_in = denoiser_params.image_cond | |
if isinstance(image_cond_in, torch.Tensor): | |
if image_cond_in.shape[0] == x.shape[0] \ | |
and image_cond_in.shape[2] == x.shape[2] \ | |
and image_cond_in.shape[3] == x.shape[3]: | |
for i in range(len(uncond)): | |
uncond[i]['model_conds']['c_concat'] = CONDRegular(image_cond_in) | |
for i in range(len(cond)): | |
cond[i]['model_conds']['c_concat'] = CONDRegular(image_cond_in) | |
if control is not None: | |
for h in cond + uncond: | |
h['control'] = control | |
for modifier in model_options.get('conditioning_modifiers', []): | |
model, x, timestep, uncond, cond, cond_scale, model_options, seed = modifier(model, x, timestep, uncond, cond, cond_scale, model_options, seed) | |
denoised = sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options, seed) | |
return denoised | |
def sampling_prepare(unet, x): | |
B, C, H, W = x.shape | |
memory_estimation_function = unet.model_options.get('memory_peak_estimation_modifier', unet.memory_required) | |
unet_inference_memory = memory_estimation_function([B * 2, C, H, W]) | |
additional_inference_memory = unet.extra_preserved_memory_during_sampling | |
additional_model_patchers = unet.extra_model_patchers_during_sampling | |
if unet.controlnet_linked_list is not None: | |
additional_inference_memory += unet.controlnet_linked_list.inference_memory_requirements(unet.model_dtype()) | |
additional_model_patchers += unet.controlnet_linked_list.get_models() | |
model_management.load_models_gpu( | |
models=[unet] + additional_model_patchers, | |
memory_required=unet_inference_memory + additional_inference_memory) | |
real_model = unet.model | |
percent_to_timestep_function = lambda p: real_model.model_sampling.percent_to_sigma(p) | |
for cnet in unet.list_controlnets(): | |
cnet.pre_run(real_model, percent_to_timestep_function) | |
return | |
def sampling_cleanup(unet): | |
for cnet in unet.list_controlnets(): | |
cnet.cleanup() | |
cleanup_cache() | |
return | |