PhalAI / back.py
forbiddensoul90's picture
Update back.py
3d9d5c0 verified
import os
import logging
from typing import List, Dict, Any, Optional, Union
from dataclasses import dataclass
import torch
from sentence_transformers import SentenceTransformer
from langchain_community.vectorstores import FAISS
from langchain_core.embeddings import Embeddings
import google.generativeai as genai
from datetime import datetime
import json
@dataclass
class UserInfo:
"""User information for context"""
name: str
college: str
degree: str
year: int
career_goals: str
has_internship: bool
has_placement: bool
@dataclass
class ChatConfig:
"""Configuration for the chatbot"""
embedding_model_name: str = 'all-MiniLM-L6-v2'
device: str = 'cuda' if torch.cuda.is_available() else 'cpu'
max_history: int = 3
gemini_api_key: str = "AIzaSyCAlM-YPVKl1qTnUwInWz9X5sNCmISPOr4" # Replace with your API key
log_file: str = "chat_history.txt"
user_data_file: str = "user_data.json"
# In the UserManager class, modify these methods:
class UserManager:
"""Manages user information storage and retrieval"""
def __init__(self, user_data_file: str):
self.user_data_file = user_data_file
self.ensure_file_exists()
def ensure_file_exists(self):
"""Create user data file if it doesn't exist"""
if not os.path.exists(self.user_data_file):
os.makedirs(os.path.dirname(self.user_data_file), exist_ok=True)
with open(self.user_data_file, 'w', encoding='utf-8') as f:
json.dump({}, f)
def save_user_info(self, user_info: UserInfo):
"""Save user information to JSON file"""
try:
# First ensure the file exists with valid JSON
self.ensure_file_exists()
# Read existing data
try:
with open(self.user_data_file, 'r', encoding='utf-8') as f:
data = json.load(f)
except json.JSONDecodeError:
data = {}
# Update data
data[user_info.name] = {
"college": user_info.college,
"degree": user_info.degree,
"year": user_info.year,
"career_goals": user_info.career_goals,
"has_internship": user_info.has_internship,
"has_placement": user_info.has_placement,
"last_updated": datetime.now().isoformat()
}
# Write back to file
with open(self.user_data_file, 'w', encoding='utf-8') as f:
json.dump(data, f, indent=4)
return True
except Exception as e:
logging.error(f"Error saving user info: {str(e)}")
return False
class ChatLogger:
"""Logger for chat interactions"""
def __init__(self, log_file: str):
self.log_file = log_file
def log_interaction(self, question: str, answer: str, user_info: Optional[UserInfo] = None):
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
with open(self.log_file, 'a', encoding='utf-8') as f:
user_context = ""
if user_info:
user_context = f"\nUser: {user_info.name} | College: {user_info.college} | Degree: {user_info.degree} | Year: {user_info.year} | Career Goals: {user_info.career_goals}"
f.write(f"\n[{timestamp}]{user_context}\nQ: {question}\nA: {answer}\n{'-'*50}")
class ChatMemory:
"""Manages chat history"""
def __init__(self, max_history: int = 3):
self.max_history = max_history
self.history = []
def add_interaction(self, question: str, answer: str):
self.history.append({"question": question, "answer": answer})
if len(self.history) > self.max_history:
self.history.pop(0)
def get_history(self) -> List[Dict[str, str]]:
return self.history
def clear_history(self):
self.history = []
class QuestionGenerator:
def __init__(self, api_key: str):
genai.configure(api_key=api_key)
self.generation_config = {
"temperature": 0.1,
"top_p": 0.95,
"max_output_tokens": 8192,
}
self.model = genai.GenerativeModel(
model_name="gemini-1.5-flash",
generation_config=self.generation_config,
safety_settings={'HATE': 'BLOCK_NONE','HARASSMENT': 'BLOCK_NONE','SEXUAL' : 'BLOCK_NONE','DANGEROUS' : 'BLOCK_NONE'}
)
self.default_questions = [
"What are some other skills I should focus on to improve my chances?",
"What resources or platforms can help me in my career journey?",
"Are there any specific companies or organizations I should target for internships/placements?",
"What are some common interview questions asked for this career path?"
]
async def generate_questions(
self,
question: str,
answer: str,
user_info: Optional[UserInfo] = None
) -> List[str]:
"""Generate follow-up questions based on the conversation"""
try:
chat = self.model.start_chat(history=[])
prompt = f"""Generate 4 simple, practical follow-up questions, that a college student may ask, based on this conversation about career advice:
Question: {question}
Answer: {answer}
Focus the questions on:
1. Skills development (What skills are needed, how to improve)
2. Resources and platforms (Where to find internships, jobs, etc.)
3. Specific target companies/organizations
4. Common interview questions
Keep the language simple and student-friendly. Format each question on a new line.
NOTE: YOU MUST STRICTLY REPLY IN HINGLISH"""
response = chat.send_message(prompt).text
# Extract questions
questions = [q.strip() for q in response.split('\n') if q.strip()]
# Return default questions if we don't get exactly 4 valid questions
if len(questions) != 4:
return self.default_questions
return questions
except Exception as e:
logging.error(f"Error generating questions: {str(e)}")
return self.default_questions
class GeminiRAG:
def __init__(self, api_key: str):
genai.configure(api_key=api_key)
self.generation_config = {
"temperature": 0.1,
"top_p": 0.95,
"top_k": 64,
"max_output_tokens": 8192,
}
self.model = genai.GenerativeModel(
model_name="gemini-1.5-flash",
generation_config=self.generation_config,
safety_settings={'HATE': 'BLOCK_NONE','HARASSMENT': 'BLOCK_NONE','SEXUAL' : 'BLOCK_NONE','DANGEROUS' : 'BLOCK_NONE'}
)
def create_context(self, relevant_docs: List[Dict[str, Any]]) -> str:
"""Creates a context string from relevant documents"""
context_parts = []
for doc in relevant_docs:
context_parts.append(f"Section: {doc['metadata']['section']}\n{doc['content']}")
return "\n\n".join(context_parts)
async def get_answer(
self,
question: str,
context: str,
user_info: Optional[UserInfo] = None
) -> str:
try:
chat = self.model.start_chat(history=[])
# Simplified prompt to reduce chances of recitation
prompt = f"""As a career counselor, provide a helpful response based on:
Context: {context}
{f'''User Background:
- Student at {user_info.college}
- Studying {user_info.degree} (Year {user_info.year})
- Goals: {user_info.career_goals}
- {'Has internship experience' if user_info.has_internship else 'No internship yet'}
- {'Has placement' if user_info.has_placement else 'Seeking placement'}''' if user_info else ''}
Question: {question}
Provide practical advice with specific examples and actionable steps."""
try:
response = chat.send_message(prompt)
if response.text:
return response.text
else:
return "I apologize, but I couldn't generate a proper response. Please try rephrasing your question."
except Exception as chat_error:
logging.error(f"Chat error: {str(chat_error)}")
return "I encountered an error while processing your question. Please try again with a simpler question."
except Exception as e:
logging.error(f"Error generating answer: {str(e)}")
return "An error occurred. Please try again later."
class CustomEmbeddings(Embeddings):
"""Custom embeddings using SentenceTransformer"""
def __init__(self, model_name: str, device: str):
self.model = SentenceTransformer(model_name)
self.model.to(device)
def embed_documents(self, texts: List[str]) -> List[List[float]]:
with torch.no_grad():
embeddings = self.model.encode(texts, convert_to_tensor=True)
return embeddings.cpu().numpy().tolist()
def embed_query(self, text: str) -> List[float]:
with torch.no_grad():
embedding = self.model.encode([text], convert_to_tensor=True)
return embedding.cpu().numpy().tolist()[0]
class ProductDatabase:
"""Handles document storage and retrieval"""
def __init__(self, config: ChatConfig):
self.embeddings = CustomEmbeddings(
model_name=config.embedding_model_name,
device=config.device
)
self.vectorstore = None
def process_markdown(self, markdown_content: str):
"""Process markdown content and create vector store"""
try:
sections = markdown_content.split('\n## ')
documents = []
if sections[0].startswith('# '):
intro = sections[0].split('\n', 1)[1]
documents.append({
"content": intro,
"section": "Introduction"
})
for section in sections[1:]:
if section.strip():
title, content = section.split('\n', 1)
documents.append({
"content": content.strip(),
"section": title.strip()
})
texts = [doc["content"] for doc in documents]
metadatas = [{"section": doc["section"]} for doc in documents]
self.vectorstore = FAISS.from_texts(
texts=texts,
embedding=self.embeddings,
metadatas=metadatas
)
except Exception as e:
raise Exception(f"Error processing markdown content: {str(e)}")
def search(self, query: str, k: int = 3) -> List[Dict[str, Any]]:
"""Search for relevant documents"""
if not self.vectorstore:
raise ValueError("Database not initialized. Please process documents first.")
try:
docs = self.vectorstore.similarity_search(query, k=k)
return [{"content": doc.page_content, "metadata": doc.metadata} for doc in docs]
except Exception as e:
logging.error(f"Error during search: {str(e)}")
return []