from src.search.ga import GeneticSearch from src.hw_nats_fast_interface import HW_NATS_FastInterface from src.utils import DEVICES, DATASETS, union_of_dicts import streamlit as st import numpy as np import pandas as pd import matplotlib.pyplot as plt import plotly.graph_objects as go from collections import OrderedDict import json st.set_page_config(layout="wide") TIME_TO_SCORE_EACH_ARCHITECTURE=0.15 DAYS_7 = 604800 NEBULOS_COLOR = '#FF6961' TF_COLOR = '#A7C7E7' @st.cache_data(ttl=DAYS_7) def load_lookup_table(): """Load recap table of NebulOS metrics and cache it. """ df_nebuloss = pd.read_csv('data/df_nebuloss.csv').rename(columns = {'test_accuracy' : 'validation_accuracy'}) return df_nebuloss @st.cache_data(ttl=DAYS_7) def subset_dataframe(df_nebuloss, dataset): """Subset df_nebuloss based on the right dataset. """ return df_nebuloss[df_nebuloss['dataset'] == dataset] @st.cache_data(ttl=DAYS_7) def compute_quantiles(df_nebuloss_dataset): """Turn the values of df_nebuloss (of a certain dataset) into the corresponding quantiles, computed along the columns """ # compute quantiles quantiles = df_nebuloss_dataset.drop(columns = ['idx']).rank(pct = True) # re-attach the original indices quantiles['idx'] = df_nebuloss_dataset['idx'] return quantiles # Streamlit app def main(): # mapping the devices pseudo-symbols to actual names device_mapping_dict = { "edgegpu": "NVIDIA Jetson nano", "eyeriss": "Eyeriss", "fpga": "FPGA", } inverse_device_mapping_dict = { "NVIDIA Jetson nano": "edgegpu", "Eyeriss": "eyeriss", "FPGA": "fpga" } # load the lookup table of NebulOS metrics df_nebuloss = load_lookup_table() # add a title st.sidebar.title("🚀 NebulOS: Fair Green AI🌿") st.sidebar.write( """ Welcome to the live demo of NebulOS! This Streamlit app serves the scope of presenting the results obtained with our Hardware-Aware Training-Free Automated Architecture Design procedure. You can check out the source code for the search process at https://www.github.com/fracapuano/NebulOS. You can find an extended abstract of our solution at https://sites.google.com/view/nebulos. Drop us a line if you want to know more about the project (and forget to ⭐ our GitHub repo). Contact person: Francesco Capuano ({first}.{last}@asp-poli.it) """ ) # dropdown menu for dataset selection dataset = st.sidebar.selectbox("Select Dataset", DATASETS) # dropdown menu for device selection device = st.sidebar.selectbox("Select Device", list(inverse_device_mapping_dict.keys())) # mapping selected device to usable one device = inverse_device_mapping_dict[device] # slider for performance weight selection performance_weight = st.sidebar.slider( "Select trade-off between PERFORMANCE WEIGHT and HARDWARE WEIGHT.\nHigher values will give larger weight to validation accuracy, with less and less importance to the hardware performance.", min_value=0.0, max_value=1.0, value=0.5, step=0.05 ) # hardware weight (complementary to performance weight) hardware_weight = 1.0 - performance_weight # subset the dataframe for the current daset and device df_nebuloss_dataset = subset_dataframe(df_nebuloss, dataset) # best architecture index best_arch_idx = 9930 nebulos_chunks = [] for i in range(4): # the number of chunks is 4 in this case with open(f"data/nebuloss_{i+1}.json", "r") as f: nebulos_chunks.append(json.load(f)) searchspace_dict = union_of_dicts(nebulos_chunks) # Trigger the search and plot NebulOS Architecture searchspace_interface = HW_NATS_FastInterface(datapath=searchspace_dict, device=device, dataset=dataset) search = GeneticSearch( searchspace=searchspace_interface, fitness_weights=np.array([performance_weight, hardware_weight]) ) results = search.solve(return_trajectory=True) arch_idx = searchspace_interface.architecture_to_index["/".join(results[0].genotype)] # Create scatter plot scatter_trace1 = go.Scatter( x=df_nebuloss_dataset.loc[df_nebuloss['dataset'] == dataset, f'{device}_energy'], y=df_nebuloss_dataset.loc[df_nebuloss['dataset'] == dataset, 'validation_accuracy'], mode='markers', marker=dict(color='#D3D3D3', size=5), name='Architectures in the search space' ) # Scatter plot for best architecture scatter_trace2 = go.Scatter( x=df_nebuloss_dataset.loc[df_nebuloss_dataset['idx'] == best_arch_idx, f'{device}_energy'], y=df_nebuloss_dataset.loc[df_nebuloss_dataset['idx'] == best_arch_idx, 'validation_accuracy'], mode='markers', marker=dict(color=TF_COLOR, symbol='circle-dot', size=12), name='Best TF-Architecture' ) scatter_trace3 = go.Scatter( x=df_nebuloss_dataset.loc[df_nebuloss_dataset['idx'] == arch_idx, f'{device}_energy'], y=df_nebuloss_dataset.loc[df_nebuloss_dataset['idx'] == arch_idx, 'validation_accuracy'], mode='markers', marker=dict(color=NEBULOS_COLOR, symbol='circle-dot', size=12), name='NebulOS Architecture' ) scatter_layout = go.Layout( title=f'Validation Accuracy vs. {device_mapping_dict[device]} Energy Consumption', xaxis=dict(title=f'{device.upper()} Energy'), yaxis=dict(title='Validation Accuracy'), showlegend=True ) scatter_fig = go.Figure(data=[scatter_trace1, scatter_trace2, scatter_trace3], layout=scatter_layout) # Extracting quantile values metrics_considered = OrderedDict() # these are the metrics that we want to plot metrics_considered["flops"] = "FLOPS", metrics_considered["params"] = "Num. Params", metrics_considered["validation_accuracy"] = "Accuracy", metrics_considered[f"{device}_energy"] = f"{device_mapping_dict[device]} - Energy Consumption", metrics_considered[f"{device}_latency"] = f"{device_mapping_dict[device]} - Latency" # this retrieves the optimal row best_row_to_plot = df_nebuloss_dataset.loc[ df_nebuloss_dataset['idx'] == best_arch_idx, list(metrics_considered.keys()) ].values # this retrieves the row that has been found by the NAS search row_to_plot = df_nebuloss_dataset.loc[ df_nebuloss_dataset['idx'] == arch_idx, list(metrics_considered.keys()) ].values row_to_plot = row_to_plot/best_row_to_plot best_row_to_plot = best_row_to_plot/best_row_to_plot best_row_to_plot = best_row_to_plot.flatten().tolist() row_to_plot = row_to_plot.flatten().tolist() # Bar chart for NebulOS Architecture bar_trace1 = go.Bar( x=list(metrics_considered.keys()), y=row_to_plot, name='NebulOS Architecture', marker=dict(color=NEBULOS_COLOR) ) # Bar chart for Best TF-Architecture bar_trace2 = go.Bar( x=list(metrics_considered.keys()), y=best_row_to_plot, name='Best TF-Architecture Found', marker=dict(color=TF_COLOR) ) # Layout configuration bar_layout = go.Layout( title=f'Hardware-Agnostic Architecture (blue) vs. NebulOS (red)', yaxis=dict(title="(%)Hardware-Agnostic Architecture Value"), barmode='group' ) # Combining traces with the layout bar_fig = go.Figure(data=[bar_trace2, bar_trace1], layout=bar_layout) # Create two columns in Streamlit to show data near each other col1, col2 = st.columns(2) # Display scatter plot in the first column with col1: st.plotly_chart(scatter_fig) # Display bar chart in the second column with col2: st.plotly_chart(bar_fig) best_architecture = df_nebuloss_dataset.loc[ df_nebuloss_dataset['idx'] == best_arch_idx, list(metrics_considered.keys()) ] best_architecture_string = searchspace_interface[best_arch_idx]["architecture_string"] found_architecture = df_nebuloss_dataset.loc[ df_nebuloss_dataset['idx'] == arch_idx, list(metrics_considered.keys()) ] message = \ f"""
This search took ~{results[-1]*TIME_TO_SCORE_EACH_ARCHITECTURE} seconds (scoring {results[-1]} architectures using ~{TIME_TO_SCORE_EACH_ARCHITECTURE} seconds each)
The architecture found for {device_mapping_dict[device]} is: {searchspace_interface[arch_idx]["architecture_string"]}You can find the recap, in terms of the percentage of the Training-Free metric found in the table to your right 👉
""" # Sample data - replace these with your actual ratio values data = { "Metric": ["FLOPS", "Number of Parameters", "Validation Accuracy", "Energy Consumption", "Latency"], "NebulOS vs. Hardware Agnostic Network": ["{:.2g}%".format(val) for val in row_to_plot] } col1, _, col2 = st.columns([2,1,2]) recap_df = pd.DataFrame(data).sort_values(by="Metric").set_index("Metric") with col1: st.write(message, unsafe_allow_html=True) with col2: st.dataframe(recap_df) if __name__ == "__main__": main()