fradinho's picture
Update app.py
d4e9b55
raw
history blame
4.9 kB
import gradio as gr
from PIL import Image
from patchify import patchify, unpatchify
import numpy as np
from skimage.io import imshow, imsave
import tensorflow
import tensorflow as tf
from tensorflow.keras import backend as K
def jacard(y_true, y_pred):
y_true_c = K.flatten(y_true)
y_pred_c = K.flatten(y_pred)
intersection = K.sum(y_true_c * y_pred_c)
return (intersection + 1.0) / (K.sum(y_true_c) + K.sum(y_pred_c) - intersection + 1.0)
def bce_dice(y_true, y_pred):
bce = tf.keras.losses.BinaryCrossentropy()
return bce(y_true, y_pred) - K.log(jacard(y_true, y_pred))
size = 1024
pach_size = 256
def predict_2(image):
image = Image.fromarray(image).resize((size,size))
image = np.array(image)
stride = 1
steps = int(pach_size/stride)
patches_img = patchify(image, (pach_size, pach_size, 3), step=steps) #Step=256 for 256 patches means no overlap
patches_img = patches_img[:,:,0,:,:,:]
patched_prediction = []
for i in range(patches_img.shape[0]):
for j in range(patches_img.shape[1]):
single_patch_img = patches_img[i,j,:,:,:]
single_patch_img = single_patch_img/255
single_patch_img = np.expand_dims(single_patch_img, axis=0)
pred = model.predict(single_patch_img)
# Postprocess the mask
pred = np.argmax(pred, axis=3)
#print(pred.shape)
pred = pred[0, :,:]
patched_prediction.append(pred)
patched_prediction = np.reshape(patched_prediction, [patches_img.shape[0], patches_img.shape[1],
patches_img.shape[2], patches_img.shape[3]])
unpatched_prediction = unpatchify(patched_prediction, (image.shape[0], image.shape[1]))
unpatched_prediction = targets_classes_colors[unpatched_prediction]
return 'Predicted Masked Image', unpatched_prediction
targets_classes_colors = np.array([[ 0, 0, 0],
[128, 64, 128],
[130, 76, 0],
[ 0, 102, 0],
[112, 103, 87],
[ 28, 42, 168],
[ 48, 41, 30],
[ 0, 50, 89],
[107, 142, 35],
[ 70, 70, 70],
[102, 102, 156],
[254, 228, 12],
[254, 148, 12],
[190, 153, 153],
[153, 153, 153],
[255, 22, 96],
[102, 51, 0],
[ 9, 143, 150],
[119, 11, 32],
[ 51, 51, 0],
[190, 250, 190],
[112, 150, 146],
[ 2, 135, 115],
[255, 0, 0]])
class_weights = {0: 0.1,
1: 0.1,
2: 2.171655596616696,
3: 0.1,
4: 0.1,
5: 2.2101197049812593,
6: 11.601519937899578,
7: 7.99072122367673,
8: 0.1,
9: 0.1,
10: 2.5426918173402457,
11: 11.187574445057574,
12: 241.57620214903147,
13: 9.234779790464515,
14: 1077.2745952165694,
15: 7.396021659003857,
16: 855.6730643687165,
17: 6.410869993189135,
18: 42.0186736125025,
19: 2.5648760196752947,
20: 4.089194047656931,
21: 27.984593442818955,
22: 2.0509251319694712}
weight_list = list(class_weights.values())
def weighted_categorical_crossentropy(weights):
weights = weight_list
def wcce(y_true, y_pred):
Kweights = K.constant(weights)
if not tf.is_tensor(y_pred): y_pred = K.constant(y_pred)
y_true = K.cast(y_true, y_pred.dtype)
return bce_dice(y_true, y_pred) * K.sum(y_true * Kweights, axis=-1)
return wcce
# Load the model
model = tf.keras.models.load_model("model.h5", custom_objects={"jacard":jacard, "wcce":weighted_categorical_crossentropy})
# Create a user interface for the model
my_app = gr.Blocks()
with my_app:
gr.Markdown("Statellite Image Segmentation Application UI with Gradio")
with gr.Tabs():
with gr.TabItem("Select your image"):
with gr.Row():
with gr.Column():
img_source = gr.Image(label="Please select source Image")
source_image_loader = gr.Button("Load above Image")
with gr.Column():
output_label = gr.Label(label="Image Info")
img_output = gr.Image(label="Image Output")
source_image_loader.click(
predict_2,
[
img_source
],
[
output_label,
img_output
]
)
my_app.launch(debug=True, share=True)
my_app.close()