diff --git a/.gitattributes b/.gitattributes index 818d649bf21cdef29b21f885c8f770f9baa1714e..bc7381932296cac341b1bdfe5ab148438db15a8c 100644 --- a/.gitattributes +++ b/.gitattributes @@ -29,3 +29,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text *.zip filter=lfs diff=lfs merge=lfs -text *.zst filter=lfs diff=lfs merge=lfs -text *tfevents* filter=lfs diff=lfs merge=lfs -text +*.mp4 filter=lfs diff=lfs merge=lfs -text +*.png filter=lfs diff=lfs merge=lfs -text +*.jpg filter=lfs diff=lfs merge=lfs -text +*.whl filter=lfs diff=lfs merge=lfs -text +*.gif filter=lfs diff=lfs merge=lfs -text +*.wav filter=lfs diff=lfs merge=lfs -text diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..242dedd172ad41ee5a5e8542d7cf013108007736 --- /dev/null +++ b/.gitignore @@ -0,0 +1,43 @@ +# Python build +.eggs/ +gradio.egg-info +dist/ +*.pyc +__pycache__/ +*.py[cod] +*$py.class +build/ + +# JS build +gradio/templates/cdn +gradio/templates/frontend + +# Secrets +.env + +# Gradio run artifacts +*.db +*.sqlite3 +gradio/launches.json +flagged/ +gradio_cached_examples/ + +# Tests +.coverage +coverage.xml +test.txt + +# Demos +demo/tmp.zip +demo/files/*.avi +demo/files/*.mp4 + +# Etc +.idea/* +.DS_Store +*.bak +workspace.code-workspace +*.h5 + +# log files +.pnpm-debug.log \ No newline at end of file diff --git a/demos/blocks_component_shortcut/run.py b/demos/blocks_component_shortcut/run.py new file mode 100644 index 0000000000000000000000000000000000000000..6b408fdaf25de4e0241d33a60628f9f8c63bbe6a --- /dev/null +++ b/demos/blocks_component_shortcut/run.py @@ -0,0 +1,31 @@ +import gradio as gr + + +def greet(str): + return str + + +with gr.Blocks() as demo: + """ + You can make use of str shortcuts you use in Interface within Blocks as well. + + Interface shortcut example: + Interface(greet, "textarea", "textarea") + + You can use + 1. gr.component() + 2. gr.templates.Template() + 3. gr.Template() + All the templates are listed in gradio/templates.py + """ + with gr.Row(): + text1 = gr.component("textarea") + text2 = gr.TextArea() + text3 = gr.templates.TextArea() + text1.change(greet, text1, text2) + text2.change(greet, text2, text3) + text3.change(greet, text3, text1) + button = gr.component("button") + +if __name__ == "__main__": + demo.launch() diff --git a/demos/blocks_essay/run.py b/demos/blocks_essay/run.py new file mode 100644 index 0000000000000000000000000000000000000000..525af83bbcdf0bb9d5f7666076a0adf4d993a8fa --- /dev/null +++ b/demos/blocks_essay/run.py @@ -0,0 +1,22 @@ +import gradio as gr + + +def change_textbox(choice): + if choice == "short": + return gr.Textbox.update(lines=2, visible=True) + elif choice == "long": + return gr.Textbox.update(lines=8, visible=True) + else: + return gr.Textbox.update(visible=False) + + +with gr.Blocks() as demo: + radio = gr.Radio( + ["short", "long", "none"], label="What kind of essay would you like to write?" + ) + text = gr.Textbox(lines=2, interactive=True) + + radio.change(fn=change_textbox, inputs=radio, outputs=text) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/blocks_essay_update/run.py b/demos/blocks_essay_update/run.py new file mode 100644 index 0000000000000000000000000000000000000000..625da12f3cfad4f81ad363b331149ceccec0c270 --- /dev/null +++ b/demos/blocks_essay_update/run.py @@ -0,0 +1,19 @@ +import gradio as gr + +def change_textbox(choice): + if choice == "short": + return gr.update(lines=2, visible=True, value="Short story: ") + elif choice == "long": + return gr.update(lines=8, visible=True, value="Long story...") + else: + return gr.update(visible=False) + +with gr.Blocks() as demo: + radio = gr.Radio( + ["short", "long", "none"], label="Essay Length to Write?" + ) + text = gr.Textbox(lines=2, interactive=True) + radio.change(fn=change_textbox, inputs=radio, outputs=text) + +if __name__ == "__main__": + demo.launch() \ No newline at end of file diff --git a/demos/blocks_flag/requirements.txt b/demos/blocks_flag/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..296d654528b719e554528b956c4bf5a1516e812c --- /dev/null +++ b/demos/blocks_flag/requirements.txt @@ -0,0 +1 @@ +numpy \ No newline at end of file diff --git a/demos/blocks_flag/run.py b/demos/blocks_flag/run.py new file mode 100644 index 0000000000000000000000000000000000000000..2083d39edf84328acdb09450e518829a1e0d985b --- /dev/null +++ b/demos/blocks_flag/run.py @@ -0,0 +1,33 @@ +import numpy as np +import gradio as gr + +def sepia(input_img, strength): + sepia_filter = strength * np.array( + [[0.393, 0.769, 0.189], [0.349, 0.686, 0.168], [0.272, 0.534, 0.131]] + ) + (1-strength) * np.identity(3) + sepia_img = input_img.dot(sepia_filter.T) + sepia_img /= sepia_img.max() + return sepia_img + +callback = gr.CSVLogger() + +with gr.Blocks() as demo: + with gr.Row(): + with gr.Column(): + img_input = gr.Image() + strength = gr.Slider(0, 1, 0.5) + img_output = gr.Image() + with gr.Row(): + btn = gr.Button("Flag") + + # This needs to be called at some point prior to the first call to callback.flag() + callback.setup([img_input, strength, img_output], "flagged_data_points") + + img_input.change(sepia, [img_input, strength], img_output) + strength.change(sepia, [img_input, strength], img_output) + + # We can choose which components to flag -- in this case, we'll flag all of them + btn.click(lambda *args: callback.flag(args), [img_input, strength, img_output], None, _preprocess=False) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/blocks_flashcards/run.py b/demos/blocks_flashcards/run.py new file mode 100644 index 0000000000000000000000000000000000000000..a378f271962ce7fcfcfd10fa6c4879b571c1e65c --- /dev/null +++ b/demos/blocks_flashcards/run.py @@ -0,0 +1,92 @@ +import random + +import gradio as gr + +demo = gr.Blocks() + +with demo: + gr.Markdown( + "Load the flashcards in the table below, then use the Practice tab to practice." + ) + + with gr.Tabs(): + with gr.TabItem("Word Bank"): + flashcards_table = gr.Dataframe(headers=["front", "back"], type="array") + with gr.TabItem("Practice"): + with gr.Row(): + with gr.Column(): + front = gr.Textbox(label="Prompt") + with gr.Row(): + new_btn = gr.Button("New Card").style(full_width=True) + flip_btn = gr.Button("Flip Card").style(full_width=True) + with gr.Column(visible=False) as answer_col: + back = gr.Textbox(label="Answer") + selected_card = gr.Variable() + with gr.Row(): + correct_btn = gr.Button( + "Correct", + ).style(full_width=True) + incorrect_btn = gr.Button("Incorrect").style(full_width=True) + + with gr.TabItem("Results"): + results = gr.Variable(value={}) + correct_field = gr.Markdown("# Correct: 0") + incorrect_field = gr.Markdown("# Incorrect: 0") + gr.Markdown("Card Statistics: ") + results_table = gr.Dataframe(headers=["Card", "Correct", "Incorrect"]) + + def load_new_card(flashcards): + card = random.choice(flashcards) + return ( + card, + card[0], + gr.Column.update(visible=False), + ) + + new_btn.click( + load_new_card, + [flashcards_table], + [selected_card, front, answer_col], + ) + + def flip_card(card): + return card[1], gr.Column.update(visible=True) + + flip_btn.click(flip_card, [selected_card], [back, answer_col]) + + def mark_correct(card, results): + if card[0] not in results: + results[card[0]] = [0, 0] + results[card[0]][0] += 1 + correct_count = sum(result[0] for result in results.values()) + return ( + results, + f"# Correct: {correct_count}", + [[front, scores[0], scores[1]] for front, scores in results.items()], + ) + + def mark_incorrect(card, results): + if card[0] not in results: + results[card[0]] = [0, 0] + results[card[0]][1] += 1 + incorrect_count = sum(result[1] for result in results.values()) + return ( + results, + f"# Inorrect: {incorrect_count}", + [[front, scores[0], scores[1]] for front, scores in results.items()], + ) + + correct_btn.click( + mark_correct, + [selected_card, results], + [results, correct_field, results_table], + ) + + incorrect_btn.click( + mark_incorrect, + [selected_card, results], + [results, incorrect_field, results_table], + ) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/blocks_flipper/run.py b/demos/blocks_flipper/run.py new file mode 100644 index 0000000000000000000000000000000000000000..88859c6113e8887708bfc2762b87845166530363 --- /dev/null +++ b/demos/blocks_flipper/run.py @@ -0,0 +1,27 @@ +import numpy as np +import gradio as gr + +def flip_text(x): + return x[::-1] + +def flip_image(x): + return np.fliplr(x) + +with gr.Blocks() as demo: + gr.Markdown("Flip text or image files using this demo.") + with gr.Tabs(): + with gr.TabItem("Flip Text"): + text_input = gr.Textbox() + text_output = gr.Textbox() + text_button = gr.Button("Flip") + with gr.TabItem("Flip Image"): + with gr.Row(): + image_input = gr.Image() + image_output = gr.Image() + image_button = gr.Button("Flip") + + text_button.click(flip_text, inputs=text_input, outputs=text_output) + image_button.click(flip_image, inputs=image_input, outputs=image_output) + +if __name__ == "__main__": + demo.launch() \ No newline at end of file diff --git a/demos/blocks_flipper/screenshot.gif b/demos/blocks_flipper/screenshot.gif new file mode 100644 index 0000000000000000000000000000000000000000..84562331deddcbec95680423b5eb1c1129d482e3 --- /dev/null +++ b/demos/blocks_flipper/screenshot.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:21b814857d694e576b3e6db4cabe069f56e7386f7a1fabc6be81431c7176d700 +size 1108151 diff --git a/demos/blocks_form/run.py b/demos/blocks_form/run.py new file mode 100644 index 0000000000000000000000000000000000000000..8a3a9dde53a9a172836d5423bc987306631cbea5 --- /dev/null +++ b/demos/blocks_form/run.py @@ -0,0 +1,33 @@ +import gradio as gr + +with gr.Blocks() as demo: + error_box = gr.Textbox(label="Error", visible=False) + + name_box = gr.Textbox(label="Name") + age_box = gr.Number(label="Age") + symptoms_box = gr.CheckboxGroup(["Cough", "Fever", "Runny Nose"]) + submit_btn = gr.Button("Submit") + + with gr.Column(visible=False) as output_col: + diagnosis_box = gr.Textbox(label="Diagnosis") + patient_summary_box = gr.Textbox(label="Patient Summary") + + def submit(name, age, symptoms): + if len(name) == 0: + return {error_box: gr.update(value="Enter name", visible=True)} + if age < 0 or age > 200: + return {error_box: gr.update(value="Enter valid age", visible=True)} + return { + output_col: gr.update(visible=True), + diagnosis_box: "covid" if "Cough" in symptoms else "flu", + patient_summary_box: f"{name}, {age} y/o" + } + + submit_btn.click( + submit, + [name_box, age_box, symptoms_box], + [error_box, diagnosis_box, patient_summary_box, output_col], + ) + +if __name__ == "__main__": + demo.launch() \ No newline at end of file diff --git a/demos/blocks_gpt/run.py b/demos/blocks_gpt/run.py new file mode 100644 index 0000000000000000000000000000000000000000..8799cde02d2e4ea9fa2bf417a4c941c18235a942 --- /dev/null +++ b/demos/blocks_gpt/run.py @@ -0,0 +1,16 @@ +import gradio as gr + +api = gr.Interface.load("huggingface/EleutherAI/gpt-j-6B") + +def complete_with_gpt(text): + # Use the last 50 characters of the text as context + return text[:-50] + api(text[-50:]) + +with gr.Blocks() as demo: + textbox = gr.Textbox(placeholder="Type here and press enter...", lines=4) + btn = gr.Button("Generate") + + btn.click(complete_with_gpt, textbox, textbox) + +if __name__ == "__main__": + demo.launch() \ No newline at end of file diff --git a/demos/blocks_hello/run.py b/demos/blocks_hello/run.py new file mode 100644 index 0000000000000000000000000000000000000000..4d416ee4ee0594fbd7c2ab1035fe2a1dc399d903 --- /dev/null +++ b/demos/blocks_hello/run.py @@ -0,0 +1,17 @@ +import gradio as gr + +def welcome(name): + return f"Welcome to Gradio, {name}!" + +with gr.Blocks() as demo: + gr.Markdown( + """ + # Hello World! + Start typing below to see the output. + """) + inp = gr.Textbox(placeholder="What is your name?") + out = gr.Textbox() + inp.change(welcome, inp, out) + +if __name__ == "__main__": + demo.launch() \ No newline at end of file diff --git a/demos/blocks_inputs/__init__.py b/demos/blocks_inputs/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/demos/blocks_inputs/config.json b/demos/blocks_inputs/config.json new file mode 100644 index 0000000000000000000000000000000000000000..532160459961b23931646d99f34f23320015e763 --- /dev/null +++ b/demos/blocks_inputs/config.json @@ -0,0 +1,99 @@ +{ + "version": "3.0.6", + "mode": "blocks", + "dev_mode": true, + "components": [ + { + "id": 1, + "type": "textbox", + "props": { + "lines": 5, + "max_lines": 20, + "value": "", + "label": "Input", + "show_label": true, + "name": "textbox", + "visible": true, + "style": {} + } + }, + { + "id": 2, + "type": "textbox", + "props": { + "lines": 1, + "max_lines": 20, + "value": "", + "label": "Output-Interactive", + "show_label": true, + "name": "textbox", + "visible": true, + "style": {} + } + }, + { + "id": 3, + "type": "textbox", + "props": { + "lines": 1, + "max_lines": 20, + "value": "Hello friends\nhello friends\n\nHello friends\n\n", + "label": "Output", + "show_label": true, + "interactive": false, + "name": "textbox", + "visible": true, + "style": {} + } + }, + { + "id": 4, + "type": "button", + "props": { + "value": "Submit", + "variant": "secondary", + "name": "button", + "visible": true, + "style": {} + } + } + ], + "theme": "default", + "css": null, + "enable_queue": false, + "layout": { + "id": 0, + "children": [ + { + "id": 1 + }, + { + "id": 2 + }, + { + "id": 3 + }, + { + "id": 4 + } + ] + }, + "dependencies": [ + { + "targets": [ + 4 + ], + "trigger": "click", + "inputs": [ + 1 + ], + "outputs": [ + 2 + ], + "backend_fn": true, + "js": null, + "status_tracker": null, + "queue": null + } + ] +} \ No newline at end of file diff --git a/demos/blocks_inputs/lion.jpg b/demos/blocks_inputs/lion.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2cf5afb1f0bfe6dac09b7fd6bfeb68e5e80dbe33 --- /dev/null +++ b/demos/blocks_inputs/lion.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4c45ece00075f152cb2e6cfd5f1dfd7dc8e83042264685b4f470026240eff3ef +size 18489 diff --git a/demos/blocks_inputs/run.py b/demos/blocks_inputs/run.py new file mode 100644 index 0000000000000000000000000000000000000000..502b1ed9145c37c841f5d49b7eecc18877eb45ca --- /dev/null +++ b/demos/blocks_inputs/run.py @@ -0,0 +1,36 @@ +import gradio as gr +import os + +def combine(a, b): + return a + " " + b + +def mirror(x): + return x + +with gr.Blocks() as demo: + + txt = gr.Textbox(label="Input", lines=2) + txt_2 = gr.Textbox(label="Input 2") + txt_3 = gr.Textbox(value="", label="Output") + btn = gr.Button(value="Submit") + btn.click(combine, inputs=[txt, txt_2], outputs=[txt_3]) + + with gr.Row(): + im = gr.Image() + im_2 = gr.Image() + + btn = gr.Button(value="Mirror Image") + btn.click(mirror, inputs=[im], outputs=[im_2]) + + gr.Markdown("## Text Examples") + gr.Examples([["hi", "Adam"], ["hello", "Eve"]], [txt, txt_2], txt_3, combine, cache_examples=True) + gr.Markdown("## Image Examples") + gr.Examples( + examples=[os.path.join(os.path.dirname(__file__), "lion.jpg")], + inputs=im, + outputs=im_2, + fn=mirror, + cache_examples=True) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/blocks_interpretation/requirements.txt b/demos/blocks_interpretation/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..dd211e6e33eedca38484d19a8a782d0e3987f16a --- /dev/null +++ b/demos/blocks_interpretation/requirements.txt @@ -0,0 +1 @@ +shap \ No newline at end of file diff --git a/demos/blocks_interpretation/run.py b/demos/blocks_interpretation/run.py new file mode 100644 index 0000000000000000000000000000000000000000..edabcc888c3b0ee408598dfc0f6c34dab271d8f7 --- /dev/null +++ b/demos/blocks_interpretation/run.py @@ -0,0 +1,58 @@ +import gradio as gr +import shap +from transformers import pipeline +import matplotlib +import matplotlib.pyplot as plt +matplotlib.use('Agg') + + +sentiment_classifier = pipeline("text-classification", return_all_scores=True) + + +def classifier(text): + pred = sentiment_classifier(text) + return {p["label"]: p["score"] for p in pred[0]} + + +def interpretation_function(text): + explainer = shap.Explainer(sentiment_classifier) + shap_values = explainer([text]) + # Dimensions are (batch size, text size, number of classes) + # Since we care about positive sentiment, use index 1 + scores = list(zip(shap_values.data[0], shap_values.values[0, :, 1])) + + scores_desc = sorted(scores, key=lambda t: t[1])[::-1] + + # Filter out empty string added by shap + scores_desc = [t for t in scores_desc if t[0] != ""] + + fig_m = plt.figure() + plt.bar(x=[s[0] for s in scores_desc[:5]], + height=[s[1] for s in scores_desc[:5]]) + plt.title("Top words contributing to positive sentiment") + plt.ylabel("Shap Value") + plt.xlabel("Word") + return {"original": text, "interpretation": scores}, fig_m + + +with gr.Blocks() as demo: + with gr.Row(): + with gr.Column(): + input_text = gr.Textbox(label="Input Text") + with gr.Row(): + classify = gr.Button("Classify Sentiment") + interpret = gr.Button("Interpret") + with gr.Column(): + label = gr.Label(label="Predicted Sentiment") + with gr.Column(): + with gr.Tabs(): + with gr.TabItem("Display interpretation with built-in component"): + interpretation = gr.components.Interpretation(input_text) + with gr.TabItem("Display interpretation with plot"): + interpretation_plot = gr.Plot() + + classify.click(classifier, input_text, label) + interpret.click(interpretation_function, input_text, [interpretation, interpretation_plot]) + +if __name__ == "__main__": + demo.launch() \ No newline at end of file diff --git a/demos/blocks_joined/files/cheetah1.jpg b/demos/blocks_joined/files/cheetah1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..66d3b48fd19cd8cd8d8437b6f33183b3d3d42589 --- /dev/null +++ b/demos/blocks_joined/files/cheetah1.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:35550bfbba996e59c242af00f6a14a9c0d055dfbc52ad069a1a4e8c1c39ca095 +size 20552 diff --git a/demos/blocks_joined/run.py b/demos/blocks_joined/run.py new file mode 100644 index 0000000000000000000000000000000000000000..d560c3868967afbd77a771e83f92dd8722f59f60 --- /dev/null +++ b/demos/blocks_joined/run.py @@ -0,0 +1,58 @@ +from time import sleep +import gradio as gr +import os + +cheetah = os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg") + + +def img(text): + sleep(3) + return [ + cheetah, + cheetah, + cheetah, + cheetah, + cheetah, + cheetah, + cheetah, + cheetah, + cheetah, + ] + + +with gr.Blocks(css=".container { max-width: 800px; margin: auto; }") as demo: + gr.Markdown("
Let's do some kinematics! Choose the speed and angle to see the trajectory.
\n", + "name": "markdown", + "visible": true, + "style": {} + } + }, + { + "id": 2, + "type": "row", + "props": { + "type": "row", + "visible": true, + "style": {} + } + }, + { + "id": 3, + "type": "slider", + "props": { + "minimum": 1, + "maximum": 30, + "step": 0.1, + "value": 25, + "label": "Speed", + "show_label": true, + "name": "slider", + "visible": true, + "style": {} + } + }, + { + "id": 4, + "type": "slider", + "props": { + "minimum": 0, + "maximum": 90, + "step": 0.1, + "value": 45, + "label": "Angle", + "show_label": true, + "name": "slider", + "visible": true, + "style": {} + } + }, + { + "id": 5, + "type": "plot", + "props": { + "show_label": true, + "name": "plot", + "visible": true, + "style": {} + } + }, + { + "id": 6, + "type": "button", + "props": { + "value": "Run", + "variant": "secondary", + "name": "button", + "visible": true, + "style": {} + } + } + ], + "theme": "default", + "css": null, + "enable_queue": false, + "layout": { + "id": 0, + "children": [ + { + "id": 1 + }, + { + "id": 2, + "children": [ + { + "id": 3 + }, + { + "id": 4 + } + ] + }, + { + "id": 5 + }, + { + "id": 6 + } + ] + }, + "dependencies": [ + { + "targets": [ + 6 + ], + "trigger": "click", + "inputs": [ + 3, + 4 + ], + "outputs": [ + 5 + ], + "backend_fn": true, + "js": null, + "status_tracker": null, + "queue": null + } + ] +} \ No newline at end of file diff --git a/demos/blocks_kinematics/run.py b/demos/blocks_kinematics/run.py new file mode 100644 index 0000000000000000000000000000000000000000..b43b2476a77a236e1c6f0571428f2dc553348710 --- /dev/null +++ b/demos/blocks_kinematics/run.py @@ -0,0 +1,40 @@ +import matplotlib +matplotlib.use('Agg') +import matplotlib.pyplot as plt +import numpy as np + +import gradio as gr + + +def plot(v, a): + g = 9.81 + theta = a / 180 * 3.14 + tmax = ((2 * v) * np.sin(theta)) / g + timemat = tmax * np.linspace(0, 1, 40)[:, None] + + x = (v * timemat) * np.cos(theta) + y = ((v * timemat) * np.sin(theta)) - ((0.5 * g) * (timemat**2)) + + fig = plt.figure() + plt.scatter(x=x, y=y, marker=".") + plt.xlim(0, 100) + plt.ylim(0, 60) + return fig + + +demo = gr.Blocks() + +with demo: + gr.Markdown( + "Let's do some kinematics! Choose the speed and angle to see the trajectory." + ) + + with gr.Row(): + speed = gr.Slider(1, 30, 25, label="Speed") + angle = gr.Slider(0, 90, 45, label="Angle") + output = gr.Plot() + btn = gr.Button(value="Run") + btn.click(plot, [speed, angle], output) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/blocks_layout/run.py b/demos/blocks_layout/run.py new file mode 100644 index 0000000000000000000000000000000000000000..2759b2d4fe6bfcebec4c863b19e750ab5ac11688 --- /dev/null +++ b/demos/blocks_layout/run.py @@ -0,0 +1,31 @@ +import gradio as gr + + +demo = gr.Blocks() + +with demo: + with gr.Row(): + gr.Image(interactive=True) + gr.Image() + with gr.Row(): + gr.Textbox(label="Text") + gr.Number(label="Count") + gr.Radio(choices=["One", "Two"]) + with gr.Row(): + with gr.Row(): + with gr.Column(): + gr.Textbox(label="Text") + gr.Number(label="Count") + gr.Radio(choices=["One", "Two"]) + gr.Image() + with gr.Column(): + gr.Image(interactive=True) + gr.Image() + gr.Image() + gr.Textbox(label="Text") + gr.Number(label="Count") + gr.Radio(choices=["One", "Two"]) + + +if __name__ == "__main__": + demo.launch() diff --git a/demos/blocks_mask/lion.jpg b/demos/blocks_mask/lion.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2cf5afb1f0bfe6dac09b7fd6bfeb68e5e80dbe33 --- /dev/null +++ b/demos/blocks_mask/lion.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4c45ece00075f152cb2e6cfd5f1dfd7dc8e83042264685b4f470026240eff3ef +size 18489 diff --git a/demos/blocks_mask/run.py b/demos/blocks_mask/run.py new file mode 100644 index 0000000000000000000000000000000000000000..da8df5dd62164f81388dd7e763906f0850f18878 --- /dev/null +++ b/demos/blocks_mask/run.py @@ -0,0 +1,27 @@ +import gradio as gr +import os + + +def fn(mask): + return [mask["image"], mask["mask"]] + + +demo = gr.Blocks() + +with demo: + with gr.Row(): + with gr.Column(): + img = gr.Image( + tool="sketch", source="upload", label="Mask", value=os.path.join(os.path.dirname(__file__), "lion.jpg") + ) + with gr.Row(): + btn = gr.Button("Run") + with gr.Column(): + img2 = gr.Image() + img3 = gr.Image() + + btn.click(fn=fn, inputs=img, outputs=[img2, img3]) + + +if __name__ == "__main__": + demo.launch() diff --git a/demos/blocks_multiple_event_triggers/run.py b/demos/blocks_multiple_event_triggers/run.py new file mode 100644 index 0000000000000000000000000000000000000000..b6020c98bd14ebc56003c903e8c7cf5796671694 --- /dev/null +++ b/demos/blocks_multiple_event_triggers/run.py @@ -0,0 +1,35 @@ +import gradio as gr +import pypistats +from datetime import date +from dateutil.relativedelta import relativedelta +import pandas as pd + +pd.options.plotting.backend = "plotly" + + +def get_plot(lib, time): + data = pypistats.overall(lib, total=True, format="pandas") + data = data.groupby("category").get_group("with_mirrors").sort_values("date") + start_date = date.today() - relativedelta(months=int(time.split(" ")[0])) + data = data[(data['date'] > str(start_date))] + chart = data.plot(x="date", y="downloads") + return chart + + +with gr.Blocks() as demo: + gr.Markdown( + """ + ## Pypi Download Stats 📈 + See live download stats for all of Hugging Face's open-source libraries 🤗 + """) + with gr.Row(): + lib = gr.Dropdown(["transformers", "datasets", "huggingface-hub", "gradio", "accelerate"], label="Library") + time = gr.Dropdown(["3 months", "6 months", "9 months", "12 months"], label="Downloads over the last...") + + plt = gr.Plot() + # You can add multiple event triggers in 2 lines like this + for event in [lib.change, time.change]: + event(get_plot, [lib, time], [plt]) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/blocks_neural_instrument_coding/flute.wav b/demos/blocks_neural_instrument_coding/flute.wav new file mode 100644 index 0000000000000000000000000000000000000000..19224c46ec23f0516330a70fc60619bb70faa5e5 --- /dev/null +++ b/demos/blocks_neural_instrument_coding/flute.wav @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4100bf2ed1909efdb3c583c41dd78cd9347a4b2d5c8068ed3fd9d99ce24014b6 +size 222798 diff --git a/demos/blocks_neural_instrument_coding/new-sax-1.mp3 b/demos/blocks_neural_instrument_coding/new-sax-1.mp3 new file mode 100644 index 0000000000000000000000000000000000000000..a323caeee337eb3845622ff0681031cb5ad89be6 Binary files /dev/null and b/demos/blocks_neural_instrument_coding/new-sax-1.mp3 differ diff --git a/demos/blocks_neural_instrument_coding/new-sax-1.wav b/demos/blocks_neural_instrument_coding/new-sax-1.wav new file mode 100644 index 0000000000000000000000000000000000000000..3c85ed0edef3e15764aa0efb9c560eeece5d1e8a --- /dev/null +++ b/demos/blocks_neural_instrument_coding/new-sax-1.wav @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:55767e0cc8c40c40ff9372c57ec9847b9c768d3ccdb0e40a18d0e395fd067043 +size 153678 diff --git a/demos/blocks_neural_instrument_coding/new-sax.wav b/demos/blocks_neural_instrument_coding/new-sax.wav new file mode 100644 index 0000000000000000000000000000000000000000..b86071806af7438368e8a6d16cfe121d86b37482 --- /dev/null +++ b/demos/blocks_neural_instrument_coding/new-sax.wav @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8d4ad24dbfeee7f3808f9b08d1379043d26eeb559f69875e543210686afae586 +size 384044 diff --git a/demos/blocks_neural_instrument_coding/run.py b/demos/blocks_neural_instrument_coding/run.py new file mode 100644 index 0000000000000000000000000000000000000000..3d387de781ee72df120c52a8a2bdbf2dd218ee4b --- /dev/null +++ b/demos/blocks_neural_instrument_coding/run.py @@ -0,0 +1,143 @@ +# A Blocks implementation of https://erlj.notion.site/Neural-Instrument-Cloning-from-very-few-samples-2cf41d8b630842ee8c7eb55036a1bfd6 + +import datetime +import os +import random + +import gradio as gr +from gradio.components import Markdown as m + + +def get_time(): + now = datetime.datetime.now() + return now.strftime("%m/%d/%Y, %H:%M:%S") + + +def generate_recording(): + return random.choice(["new-sax-1.mp3", "new-sax-1.wav"]) + + +def reconstruct(audio): + return random.choice(["new-sax-1.mp3", "new-sax-1.wav"]) + + +io1 = gr.Interface( + lambda x, y, z: os.path.join(os.path.dirname(__file__),"sax.wav"), + [ + gr.Slider(label="pitch"), + gr.Slider(label="loudness"), + gr.Audio(label="base audio file (optional)"), + ], + gr.Audio(), +) + +io2 = gr.Interface( + lambda x, y, z: os.path.join(os.path.dirname(__file__),"flute.wav"), + [ + gr.Slider(label="pitch"), + gr.Slider(label="loudness"), + gr.Audio(label="base audio file (optional)"), + ], + gr.Audio(), +) + +io3 = gr.Interface( + lambda x, y, z: os.path.join(os.path.dirname(__file__),"trombone.wav"), + [ + gr.Slider(label="pitch"), + gr.Slider(label="loudness"), + gr.Audio(label="base audio file (optional)"), + ], + gr.Audio(), +) + +io4 = gr.Interface( + lambda x, y, z: os.path.join(os.path.dirname(__file__),"sax2.wav"), + [ + gr.Slider(label="pitch"), + gr.Slider(label="loudness"), + gr.Audio(label="base audio file (optional)"), + ], + gr.Audio(), +) + +demo = gr.Blocks(title="Neural Instrument Cloning") + +with demo.clear(): + m( + """ + ## Neural Instrument Cloning from Very Few Samples +With this model you can lorem ipsum
\nGradio Docs Readers:
") + +with gr.Blocks() as Gallery_demo: + cheetahs = [ + "https://upload.wikimedia.org/wikipedia/commons/0/09/TheCheethcat.jpg", + "https://nationalzoo.si.edu/sites/default/files/animals/cheetah-003.jpg", + "https://img.etimg.com/thumb/msid-50159822,width-650,imgsize-129520,,resizemode-4,quality-100/.jpg", + "https://nationalzoo.si.edu/sites/default/files/animals/cheetah-002.jpg", + "https://images.theconversation.com/files/375893/original/file-20201218-13-a8h8uq.jpg?ixlib=rb-1.1.0&rect=16%2C407%2C5515%2C2924&q=45&auto=format&w=496&fit=clip", + "https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQeSdQE5kHykTdB970YGSW3AsF6MHHZzY4QiQ&usqp=CAU", + "https://www.lifegate.com/app/uploads/ghepardo-primo-piano.jpg", + "https://i.natgeofe.com/n/60004bcc-cd85-4401-8bfa-6f96551557db/cheetah-extinction-3_3x4.jpg", + "https://qph.cf2.quoracdn.net/main-qimg-0bbf31c18a22178cb7a8dd53640a3d05-lq" + ] + gr.Gallery(value=cheetahs) + +with gr.Blocks() as Chatbot_demo: + gr.Chatbot(value=[["Hello World","Hey Gradio!"],["❤️","😍"],["🔥","🤗"]]) + +with gr.Blocks() as Model3D_demo: + gr.Model3D() + +import matplotlib.pyplot as plt +import numpy as np + +Fs = 8000 +f = 5 +sample = 8000 +x = np.arange(sample) +y = np.sin(2 * np.pi * f * x / Fs) +plt.plot(x, y) + +with gr.Blocks() as Plot_demo: + gr.Plot(value=plt) + +with gr.Blocks() as Markdown_demo: + gr.Markdown(value="This _example_ was **written** in [Markdown](https://en.wikipedia.org/wiki/Markdown)\n") \ No newline at end of file diff --git a/demos/dataframe_datatype/run.py b/demos/dataframe_datatype/run.py new file mode 100644 index 0000000000000000000000000000000000000000..eb9d49bd051a4ac5d4e48fe19c3122d3c3c76d1e --- /dev/null +++ b/demos/dataframe_datatype/run.py @@ -0,0 +1,21 @@ +import gradio as gr +import pandas as pd +import numpy as np + + +def make_dataframe(n_periods): + return pd.DataFrame({"date_1": pd.date_range("2021-01-01", periods=n_periods), + "date_2": pd.date_range("2022-02-15", periods=n_periods).strftime('%B %d, %Y, %r'), + "number": np.random.random(n_periods).astype(np.float64), + "number_2": np.random.randint(0, 100, n_periods).astype(np.int32), + "bool": [True] * n_periods, + "markdown": ["# Hello"] * n_periods}) + + +demo = gr.Interface(make_dataframe, + gr.Number(precision=0), + gr.Dataframe(datatype=["date", "date", "number", "number", "bool", "markdown"])) + + +if __name__ == "__main__": + demo.launch() \ No newline at end of file diff --git a/demos/diff_texts/run.py b/demos/diff_texts/run.py new file mode 100644 index 0000000000000000000000000000000000000000..0f1b764950060b5c944ca7b682197610cdcd916f --- /dev/null +++ b/demos/diff_texts/run.py @@ -0,0 +1,34 @@ +from difflib import Differ + +import gradio as gr + + +def diff_texts(text1, text2): + d = Differ() + return [ + (token[2:], token[0] if token[0] != " " else None) + for token in d.compare(text1, text2) + ] + + +demo = gr.Interface( + diff_texts, + [ + gr.Textbox( + label="Initial text", + lines=3, + value="The quick brown fox jumped over the lazy dogs.", + ), + gr.Textbox( + label="Text to compare", + lines=3, + value="The fast brown fox jumps over lazy dogs.", + ), + ], + gr.HighlightedText( + label="Diff", + combine_adjacent=True, + ).style(color_map={"+": "red", "-": "green"}), +) +if __name__ == "__main__": + demo.launch() diff --git a/demos/diff_texts/screenshot.png b/demos/diff_texts/screenshot.png new file mode 100644 index 0000000000000000000000000000000000000000..f9174839993b1679778398c1a77fd4e7072255a2 --- /dev/null +++ b/demos/diff_texts/screenshot.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a25e1d98b89d810d27011a69a7d9b15e592563693891bca4fc559fbec800f821 +size 30915 diff --git a/demos/digit_classifier/requirements.txt b/demos/digit_classifier/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..b3a60b6da25b54d3e1a3696814eed57ef4ef62b7 --- /dev/null +++ b/demos/digit_classifier/requirements.txt @@ -0,0 +1 @@ +tensorflow \ No newline at end of file diff --git a/demos/digit_classifier/run.py b/demos/digit_classifier/run.py new file mode 100644 index 0000000000000000000000000000000000000000..329dd4420f54d6d2302895de26d787c73faa9031 --- /dev/null +++ b/demos/digit_classifier/run.py @@ -0,0 +1,33 @@ +import os +from urllib.request import urlretrieve + +import tensorflow as tf + +import gradio +import gradio as gr + +urlretrieve( + "https://gr-models.s3-us-west-2.amazonaws.com/mnist-model.h5", "mnist-model.h5" +) +model = tf.keras.models.load_model("mnist-model.h5") + + +def recognize_digit(image): + image = image.reshape(1, -1) + prediction = model.predict(image).tolist()[0] + return {str(i): prediction[i] for i in range(10)} + + +im = gradio.Image(shape=(28, 28), image_mode="L", invert_colors=False, source="canvas") + +demo = gr.Interface( + recognize_digit, + im, + gradio.Label(num_top_classes=3), + live=True, + interpretation="default", + capture_session=True, +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/digit_classifier/screenshot.png b/demos/digit_classifier/screenshot.png new file mode 100644 index 0000000000000000000000000000000000000000..9734783806a665d1082e5c7f860533e82989c7c8 --- /dev/null +++ b/demos/digit_classifier/screenshot.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:78f82ce272eaca967b7c28330640100dec0898c5aea7519b30ebecc317ae8f5e +size 40841 diff --git a/demos/english_translator/run.py b/demos/english_translator/run.py new file mode 100644 index 0000000000000000000000000000000000000000..7b265cca0fd83df162057ae7b6f4646f5d61d303 --- /dev/null +++ b/demos/english_translator/run.py @@ -0,0 +1,25 @@ +import gradio as gr + +from transformers import pipeline + +pipe = pipeline("translation", model="t5-base") + + +def translate(text): + return pipe(text)[0]["translation_text"] + + +with gr.Blocks() as demo: + with gr.Row(): + with gr.Column(): + english = gr.Textbox(label="English text") + translate_btn = gr.Button(value="Translate") + with gr.Column(): + german = gr.Textbox(label="German Text") + + translate_btn.click(translate, inputs=english, outputs=german) + examples = gr.Examples(examples=["I went to the supermarket yesterday.", "Helen is a good swimmer."], + inputs=[english]) + +if __name__ == "__main__": + demo.launch() \ No newline at end of file diff --git a/demos/fake_gan/files/cheetah1.jpg b/demos/fake_gan/files/cheetah1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..66d3b48fd19cd8cd8d8437b6f33183b3d3d42589 --- /dev/null +++ b/demos/fake_gan/files/cheetah1.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:35550bfbba996e59c242af00f6a14a9c0d055dfbc52ad069a1a4e8c1c39ca095 +size 20552 diff --git a/demos/fake_gan/run.py b/demos/fake_gan/run.py new file mode 100644 index 0000000000000000000000000000000000000000..4287662ebf9d8292fb47da5ea4e1a8ff9172ba8a --- /dev/null +++ b/demos/fake_gan/run.py @@ -0,0 +1,53 @@ +# This demo needs to be run from the repo folder. +# python demo/fake_gan/run.py +import os +import random +import time + +import gradio as gr + + +def fake_gan(count, *args): + time.sleep(1) + images = [ + random.choice( + [ + "https://images.unsplash.com/photo-1507003211169-0a1dd7228f2d?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=387&q=80", + "https://images.unsplash.com/photo-1554151228-14d9def656e4?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=386&q=80", + "https://images.unsplash.com/photo-1542909168-82c3e7fdca5c?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8aHVtYW4lMjBmYWNlfGVufDB8fDB8fA%3D%3D&w=1000&q=80", + "https://images.unsplash.com/photo-1546456073-92b9f0a8d413?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=387&q=80", + "https://images.unsplash.com/photo-1601412436009-d964bd02edbc?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=464&q=80", + ] + ) + for _ in range(int(count)) + ] + return images + + +cheetah = os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg") + +demo = gr.Interface( + fn=fake_gan, + inputs=[ + gr.Number(label="Generation Count"), + gr.Image(label="Initial Image (optional)"), + gr.Slider(0, 50, 25, label="TV_scale (for smoothness)"), + gr.Slider(0, 50, 25, label="Range_Scale (out of range RBG)"), + gr.Number(label="Seed"), + gr.Number(label="Respacing"), + ], + outputs=gr.Gallery(label="Generated Images"), + title="FD-GAN", + description="This is a fake demo of a GAN. In reality, the images are randomly chosen from Unsplash.", + examples=[ + [2, cheetah, 12, None, None, None], + [1, cheetah, 2, None, None, None], + [4, cheetah, 42, None, None, None], + [5, cheetah, 23, None, None, None], + [4, cheetah, 11, None, None, None], + [3, cheetah, 1, None, None, None], + ], +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/fake_gan_2/files/cheetah1.jpg b/demos/fake_gan_2/files/cheetah1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..66d3b48fd19cd8cd8d8437b6f33183b3d3d42589 --- /dev/null +++ b/demos/fake_gan_2/files/cheetah1.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:35550bfbba996e59c242af00f6a14a9c0d055dfbc52ad069a1a4e8c1c39ca095 +size 20552 diff --git a/demos/fake_gan_2/files/elephant.jpg b/demos/fake_gan_2/files/elephant.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9e73dfa569601a400272ac06398ebd6280cce2a3 --- /dev/null +++ b/demos/fake_gan_2/files/elephant.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:08a0bc9fb256c98bd98dbb31e54634724196e244f80a37370e22051963884bb3 +size 65355 diff --git a/demos/fake_gan_2/files/tiger.jpg b/demos/fake_gan_2/files/tiger.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1d078ef300abc9df89fb2b2be55a0e038710f379 --- /dev/null +++ b/demos/fake_gan_2/files/tiger.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c92d7a493b2d7da61129112b4ff815f2378428461606c21fc15639dfebd797ff +size 57482 diff --git a/demos/fake_gan_2/files/zebra.jpg b/demos/fake_gan_2/files/zebra.jpg new file mode 100644 index 0000000000000000000000000000000000000000..90ef83d0c40d6bcfc9203962bfe721be44294925 --- /dev/null +++ b/demos/fake_gan_2/files/zebra.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c7114c450c21cc398b74887980d9e98b466564f850765c7970402162274cc80e +size 52203 diff --git a/demos/fake_gan_2/run.py b/demos/fake_gan_2/run.py new file mode 100644 index 0000000000000000000000000000000000000000..43df9a2b157463eb2e53a3bada0d54503071d261 --- /dev/null +++ b/demos/fake_gan_2/run.py @@ -0,0 +1,41 @@ +# This demo needs to be run from the repo folder. +# python demo/fake_gan/run.py +import os +import random +import time + +import gradio as gr + + +def fake_gan(*args): + time.sleep(1) + image = random.choice( + [ + "https://images.unsplash.com/photo-1507003211169-0a1dd7228f2d?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=387&q=80", + "https://images.unsplash.com/photo-1554151228-14d9def656e4?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=386&q=80", + "https://images.unsplash.com/photo-1542909168-82c3e7fdca5c?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8aHVtYW4lMjBmYWNlfGVufDB8fDB8fA%3D%3D&w=1000&q=80", + "https://images.unsplash.com/photo-1546456073-92b9f0a8d413?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=387&q=80", + "https://images.unsplash.com/photo-1601412436009-d964bd02edbc?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=464&q=80", + ] + ) + return image + + +demo = gr.Interface( + fn=fake_gan, + inputs=[ + gr.Image(label="Initial Image (optional)"), + ], + outputs=gr.Image(label="Generated Image"), + title="FD-GAN", + description="This is a fake demo of a GAN. In reality, the images are randomly chosen from Unsplash.", + examples=[ + [os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg")], + [os.path.join(os.path.dirname(__file__), "files/elephant.jpg")], + [os.path.join(os.path.dirname(__file__), "files/tiger.jpg")], + [os.path.join(os.path.dirname(__file__), "files/zebra.jpg")], + ], +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/fake_gan_no_input/run.py b/demos/fake_gan_no_input/run.py new file mode 100644 index 0000000000000000000000000000000000000000..9b7f5152937b5694917e8fa25a2c7b7e83d6080e --- /dev/null +++ b/demos/fake_gan_no_input/run.py @@ -0,0 +1,32 @@ +# This demo needs to be run from the repo folder. +# python demo/fake_gan/run.py +import random +import time + +import gradio as gr + + +def fake_gan(): + time.sleep(1) + image = random.choice( + [ + "https://images.unsplash.com/photo-1507003211169-0a1dd7228f2d?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=387&q=80", + "https://images.unsplash.com/photo-1554151228-14d9def656e4?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=386&q=80", + "https://images.unsplash.com/photo-1542909168-82c3e7fdca5c?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8aHVtYW4lMjBmYWNlfGVufDB8fDB8fA%3D%3D&w=1000&q=80", + "https://images.unsplash.com/photo-1546456073-92b9f0a8d413?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=387&q=80", + "https://images.unsplash.com/photo-1601412436009-d964bd02edbc?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=464&q=80", + ] + ) + return image + + +demo = gr.Interface( + fn=fake_gan, + inputs=None, + outputs=gr.Image(label="Generated Image"), + title="FD-GAN", + description="This is a fake demo of a GAN. In reality, the images are randomly chosen from Unsplash.", +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/filter_records/run.py b/demos/filter_records/run.py new file mode 100644 index 0000000000000000000000000000000000000000..92e54b1136f9e0af85e67fd7f054fe4aaec0651b --- /dev/null +++ b/demos/filter_records/run.py @@ -0,0 +1,24 @@ +import gradio as gr + + +def filter_records(records, gender): + return records[records["gender"] == gender] + + +demo = gr.Interface( + filter_records, + [ + gr.Dataframe( + headers=["name", "age", "gender"], + datatype=["str", "number", "str"], + row_count=5, + col_count=(3, "fixed") + ), + gr.Dropdown(["M", "F", "O"]), + ], + "dataframe", + description="Enter gender as 'M', 'F', or 'O' for other.", +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/filter_records/screenshot.png b/demos/filter_records/screenshot.png new file mode 100644 index 0000000000000000000000000000000000000000..232735d8abbcb175991547291ac5ed637fa1bb3f --- /dev/null +++ b/demos/filter_records/screenshot.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:02074331bd070dc0d4aa8012ffbde7d3a65f41244613d009b86406b5072b32f3 +size 31111 diff --git a/demos/fraud_detector/fraud.csv b/demos/fraud_detector/fraud.csv new file mode 100644 index 0000000000000000000000000000000000000000..8fe13def6c7e0fb86714908a04e8b1df2e0910d2 --- /dev/null +++ b/demos/fraud_detector/fraud.csv @@ -0,0 +1,11 @@ +time,retail,food,other +0,109,145,86 +1,35,87,43 +2,49,117,34 +3,127,66,17 +4,39,82,17 +5,101,56,79 +6,100,129,67 +7,17,88,97 +8,76,85,145 +9,111,106,35 diff --git a/demos/fraud_detector/requirements.txt b/demos/fraud_detector/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..1411a4a0b5ab886adfb744e685d150151ab10023 --- /dev/null +++ b/demos/fraud_detector/requirements.txt @@ -0,0 +1 @@ +pandas \ No newline at end of file diff --git a/demos/fraud_detector/run.py b/demos/fraud_detector/run.py new file mode 100644 index 0000000000000000000000000000000000000000..d5384b8ed05e8c2f2db4d0aaaf681e575afec4b0 --- /dev/null +++ b/demos/fraud_detector/run.py @@ -0,0 +1,39 @@ +import random +import os +import gradio as gr + + +def fraud_detector(card_activity, categories, sensitivity): + activity_range = random.randint(0, 100) + drop_columns = [ + column for column in ["retail", "food", "other"] if column not in categories + ] + if len(drop_columns): + card_activity.drop(columns=drop_columns, inplace=True) + return ( + card_activity, + card_activity, + {"fraud": activity_range / 100.0, "not fraud": 1 - activity_range / 100.0}, + ) + + +demo = gr.Interface( + fraud_detector, + [ + gr.Timeseries(x="time", y=["retail", "food", "other"]), + gr.CheckboxGroup( + ["retail", "food", "other"], value=["retail", "food", "other"] + ), + gr.Slider(1, 3), + ], + [ + "dataframe", + gr.Timeseries(x="time", y=["retail", "food", "other"]), + gr.Label(label="Fraud Level"), + ], + examples=[ + [os.path.join(os.path.dirname(__file__), "fraud.csv"), ["retail", "food", "other"], 1.0], + ], +) +if __name__ == "__main__": + demo.launch() diff --git a/demos/fraud_detector/screenshot.png b/demos/fraud_detector/screenshot.png new file mode 100644 index 0000000000000000000000000000000000000000..fd028254b758a6cdcbc9a779bfd6bcc6b4452090 --- /dev/null +++ b/demos/fraud_detector/screenshot.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:65e355d826dea756a380226c41d8b5839fb83aa8c07a5f98bceb0929e3d8742b +size 93323 diff --git a/demos/gender_sentence_custom_interpretation/run.py b/demos/gender_sentence_custom_interpretation/run.py new file mode 100644 index 0000000000000000000000000000000000000000..93a8f6c6cf485f2b22b6a15ef363b4f4fece03d6 --- /dev/null +++ b/demos/gender_sentence_custom_interpretation/run.py @@ -0,0 +1,46 @@ +import re + +import gradio as gr + +male_words, female_words = ["he", "his", "him"], ["she", "hers", "her"] + + +def gender_of_sentence(sentence): + male_count = len([word for word in sentence.split() if word.lower() in male_words]) + female_count = len( + [word for word in sentence.split() if word.lower() in female_words] + ) + total = max(male_count + female_count, 1) + return {"male": male_count / total, "female": female_count / total} + + +# Number of arguments to interpretation function must +# match number of inputs to prediction function +def interpret_gender(sentence): + result = gender_of_sentence(sentence) + is_male = result["male"] > result["female"] + interpretation = [] + for word in re.split("( )", sentence): + score = 0 + token = word.lower() + if (is_male and token in male_words) or (not is_male and token in female_words): + score = 1 + elif (is_male and token in female_words) or ( + not is_male and token in male_words + ): + score = -1 + interpretation.append((word, score)) + # Output must be a list of lists containing the same number of elements as inputs + # Each element corresponds to the interpretation scores for the given input + return [interpretation] + + +demo = gr.Interface( + fn=gender_of_sentence, + inputs=gr.Textbox(value="She went to his house to get her keys."), + outputs="label", + interpretation=interpret_gender, +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/gender_sentence_custom_interpretation/screenshot.gif b/demos/gender_sentence_custom_interpretation/screenshot.gif new file mode 100644 index 0000000000000000000000000000000000000000..a480e9951427b076384a8819a402a9cbff8caaf1 --- /dev/null +++ b/demos/gender_sentence_custom_interpretation/screenshot.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4e3b9a98e6612b9beb70a0ee8269e5def076c8df7c14d6e8a4afcd6f11a44250 +size 69585 diff --git a/demos/gender_sentence_default_interpretation/run.py b/demos/gender_sentence_default_interpretation/run.py new file mode 100644 index 0000000000000000000000000000000000000000..99312fda6c52f5ff754589cf99a8b7ef031d3f70 --- /dev/null +++ b/demos/gender_sentence_default_interpretation/run.py @@ -0,0 +1,23 @@ +import gradio as gr + +male_words, female_words = ["he", "his", "him"], ["she", "hers", "her"] + + +def gender_of_sentence(sentence): + male_count = len([word for word in sentence.split() if word.lower() in male_words]) + female_count = len( + [word for word in sentence.split() if word.lower() in female_words] + ) + total = max(male_count + female_count, 1) + return {"male": male_count / total, "female": female_count / total} + + +demo = gr.Interface( + fn=gender_of_sentence, + inputs=gr.Textbox(value="She went to his house to get her keys."), + outputs="label", + interpretation="default", +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/gender_sentence_default_interpretation/screenshot.gif b/demos/gender_sentence_default_interpretation/screenshot.gif new file mode 100644 index 0000000000000000000000000000000000000000..012e361179bb162592234e19406fc9e0366eab00 --- /dev/null +++ b/demos/gender_sentence_default_interpretation/screenshot.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:64b533d303e5c7f66394c637209f7d9208625ed7a816a02c88ef95f5dc0291f1 +size 77050 diff --git a/demos/generate_english_german/run.py b/demos/generate_english_german/run.py new file mode 100644 index 0000000000000000000000000000000000000000..4ae58afb88f5ad9998321ef9d0239a7c0f56e773 --- /dev/null +++ b/demos/generate_english_german/run.py @@ -0,0 +1,27 @@ +import gradio as gr + +from transformers import pipeline + +english_translator = gr.Blocks.load(name="spaces/freddyaboulton/english-translator") +english_generator = pipeline("text-generation", model="distilgpt2") + + +def generate_text(text): + english_text = english_generator(text)[0]["generated_text"] + german_text = english_translator(english_text) + return english_text, german_text + + +with gr.Blocks() as demo: + with gr.Row(): + with gr.Column(): + seed = gr.Text(label="Input Phrase") + with gr.Column(): + english = gr.Text(label="Generated English Text") + german = gr.Text(label="Generated German Text") + btn = gr.Button("Generate") + btn.click(generate_text, inputs=[seed], outputs=[english, german]) + gr.Examples(["My name is Clara and I am"], inputs=[seed]) + +if __name__ == "__main__": + demo.launch() \ No newline at end of file diff --git a/demos/generate_tone/requirements.txt b/demos/generate_tone/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..296d654528b719e554528b956c4bf5a1516e812c --- /dev/null +++ b/demos/generate_tone/requirements.txt @@ -0,0 +1 @@ +numpy \ No newline at end of file diff --git a/demos/generate_tone/run.py b/demos/generate_tone/run.py new file mode 100644 index 0000000000000000000000000000000000000000..47cc41399f2ebc322b50258f867897e036b949bf --- /dev/null +++ b/demos/generate_tone/run.py @@ -0,0 +1,25 @@ +import numpy as np +import gradio as gr + +notes = ["C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B"] + +def generate_tone(note, octave, duration): + sr = 48000 + a4_freq, tones_from_a4 = 440, 12 * (octave - 4) + (note - 9) + frequency = a4_freq * 2 ** (tones_from_a4 / 12) + duration = int(duration) + audio = np.linspace(0, duration, duration * sr) + audio = (20000 * np.sin(audio * (2 * np.pi * frequency))).astype(np.int16) + return sr, audio + +demo = gr.Interface( + generate_tone, + [ + gr.Dropdown(notes, type="index"), + gr.Slider(4, 6, step=1), + gr.Textbox(value=1, type="number", label="Duration in seconds"), + ], + "audio", +) +if __name__ == "__main__": + demo.launch() diff --git a/demos/generate_tone/screenshot.png b/demos/generate_tone/screenshot.png new file mode 100644 index 0000000000000000000000000000000000000000..f141d3dc944e9c93d767f5ed92f1e29de1770489 --- /dev/null +++ b/demos/generate_tone/screenshot.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:302cbf9c43fa6c58e93c2b0542180516d47af5ecaa2b5224e49ac21c6989c948 +size 23700 diff --git a/demos/gif_maker/requirements.txt b/demos/gif_maker/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..1db7aea116e2b2026e2b660df58af81d997599e6 --- /dev/null +++ b/demos/gif_maker/requirements.txt @@ -0,0 +1 @@ +opencv-python \ No newline at end of file diff --git a/demos/gif_maker/run.py b/demos/gif_maker/run.py new file mode 100644 index 0000000000000000000000000000000000000000..eed8120d71a2526ad8cff6a7b9b244d3a8b91623 --- /dev/null +++ b/demos/gif_maker/run.py @@ -0,0 +1,23 @@ +import cv2 +import gradio as gr +import tempfile + +def gif_maker(img_files): + img_array = [] + import os + for filename in img_files: + img = cv2.imread(filename.name) + height, width, _ = img.shape + size = (width,height) + img_array.append(img) + output_file = "test.mp4" + out = cv2.VideoWriter(output_file,cv2.VideoWriter_fourcc(*'h264'), 15, size) + for i in range(len(img_array)): + out.write(img_array[i]) + out.release() + return output_file + +demo = gr.Interface(gif_maker, inputs=gr.File(file_count="multiple"), outputs=gr.Video()) + +if __name__ == "__main__": + demo.launch() \ No newline at end of file diff --git a/demos/gpt_j/run.py b/demos/gpt_j/run.py new file mode 100644 index 0000000000000000000000000000000000000000..18dbd4b107f748f30e4c6a7f99e37042837af10c --- /dev/null +++ b/demos/gpt_j/run.py @@ -0,0 +1,19 @@ +import gradio as gr + +title = "GPT-J-6B" + +examples = [ + ["The tower is 324 metres (1,063 ft) tall,"], + ["The Moon's orbit around Earth has"], + ["The smooth Borealis basin in the Northern Hemisphere covers 40%"], +] + +demo = gr.Interface.load( + "huggingface/EleutherAI/gpt-j-6B", + inputs=gr.Textbox(lines=5, max_lines=6, label="Input Text"), + title=title, + examples=examples, +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/gpt_j_unified/run.py b/demos/gpt_j_unified/run.py new file mode 100644 index 0000000000000000000000000000000000000000..b561f89509172e151b9888cad3c937cf842e501f --- /dev/null +++ b/demos/gpt_j_unified/run.py @@ -0,0 +1,14 @@ +import gradio as gr + +component = gr.Textbox(lines=5, label="Text") +api = gr.Interface.load("huggingface/EleutherAI/gpt-j-6B") + +demo = gr.Interface( + fn=lambda x: x[:-50] + api(x[-50:]), + inputs=component, + outputs=component, + title="GPT-J-6B", +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/hangman/run.py b/demos/hangman/run.py new file mode 100644 index 0000000000000000000000000000000000000000..ddd638f60bc671d28ed773ec98bf12fe15e33f11 --- /dev/null +++ b/demos/hangman/run.py @@ -0,0 +1,36 @@ +import gradio as gr +import random + +secret_word = "gradio" + +with gr.Blocks() as demo: + used_letters_var = gr.Variable([]) + with gr.Row() as row: + with gr.Column(): + input_letter = gr.Textbox(label="Enter letter") + btn = gr.Button("Guess Letter") + with gr.Column(): + hangman = gr.Textbox( + label="Hangman", + value="_"*len(secret_word) + ) + used_letters_box = gr.Textbox(label="Used Letters") + + def guess_letter(letter, used_letters): + used_letters.append(letter) + answer = "".join([ + (letter if letter in used_letters else "_") + for letter in secret_word + ]) + return { + used_letters_var: used_letters, + used_letters_box: ", ".join(used_letters), + hangman: answer + } + btn.click( + guess_letter, + [input_letter, used_letters_var], + [used_letters_var, used_letters_box, hangman] + ) +if __name__ == "__main__": + demo.launch() \ No newline at end of file diff --git a/demos/hello_blocks/run.py b/demos/hello_blocks/run.py new file mode 100644 index 0000000000000000000000000000000000000000..23b96a760b6309835495bf548fb8530807516551 --- /dev/null +++ b/demos/hello_blocks/run.py @@ -0,0 +1,13 @@ +import gradio as gr + +def greet(name): + return "Hello " + name + "!" + +with gr.Blocks() as demo: + name = gr.Textbox(label="Name") + output = gr.Textbox(label="Output Box") + greet_btn = gr.Button("Greet") + greet_btn.click(fn=greet, inputs=name, outputs=output) + +if __name__ == "__main__": + demo.launch() \ No newline at end of file diff --git a/demos/hello_blocks/screenshot.gif b/demos/hello_blocks/screenshot.gif new file mode 100644 index 0000000000000000000000000000000000000000..04c9c7c033e28f161a0eb832e7f91e36cd6b9cf4 --- /dev/null +++ b/demos/hello_blocks/screenshot.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2ddf5136775297f274caf79bbd2beb8cf172a5d8941597cc82edb43588c54c65 +size 92391 diff --git a/demos/hello_login/run.py b/demos/hello_login/run.py new file mode 100644 index 0000000000000000000000000000000000000000..2483f95e316003acddb71c334ba57d5bb9c129bd --- /dev/null +++ b/demos/hello_login/run.py @@ -0,0 +1,14 @@ +import gradio as gr + +user_db = {"admin": "admin", "foo": "bar"} + + +def greet(name): + return "Hello " + name + "!!" + + +demo = gr.Interface(fn=greet, inputs="text", outputs="text") +if __name__ == "__main__": + demo.launch( + auth=lambda u, p: user_db.get(u) == p, + auth_message="This is a welcome message") diff --git a/demos/hello_login/screenshot.png b/demos/hello_login/screenshot.png new file mode 100644 index 0000000000000000000000000000000000000000..9e3e678d3da6468bb343ff731e4aac291365abd9 --- /dev/null +++ b/demos/hello_login/screenshot.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ab85deb9bec700c9169cd0f1dacea2a376164274152d0ae8f166afb2fac357c7 +size 16337 diff --git a/demos/hello_world/run.py b/demos/hello_world/run.py new file mode 100644 index 0000000000000000000000000000000000000000..1e8f4e5343ae99ae9f833158f31ff691b7869375 --- /dev/null +++ b/demos/hello_world/run.py @@ -0,0 +1,8 @@ +import gradio as gr + +def greet(name): + return "Hello " + name + "!" + +demo = gr.Interface(fn=greet, inputs="text", outputs="text") +if __name__ == "__main__": + demo.launch() diff --git a/demos/hello_world/screenshot.gif b/demos/hello_world/screenshot.gif new file mode 100644 index 0000000000000000000000000000000000000000..8a7a275722a845c73159593638fce4e913f84fc6 --- /dev/null +++ b/demos/hello_world/screenshot.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:78978f9fb71daf24685e7f2aba0060b2839613d22a4a06d0b95143316883deb6 +size 897877 diff --git a/demos/hello_world/screenshot.png b/demos/hello_world/screenshot.png new file mode 100644 index 0000000000000000000000000000000000000000..e1faa87bd650ec8ac3cedb3ef0cbd481e647b5db --- /dev/null +++ b/demos/hello_world/screenshot.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2a70b1f6047d48d2ecd0ed69b4db77884fc467e396cf03bd9789b59658abed70 +size 11527 diff --git a/demos/hello_world_2/run.py b/demos/hello_world_2/run.py new file mode 100644 index 0000000000000000000000000000000000000000..ac8493a5030415721c9e7182e5cdea8074eb17f7 --- /dev/null +++ b/demos/hello_world_2/run.py @@ -0,0 +1,12 @@ +import gradio as gr + +def greet(name): + return "Hello " + name + "!" + +demo = gr.Interface( + fn=greet, + inputs=gr.Textbox(lines=2, placeholder="Name Here..."), + outputs="text", +) +if __name__ == "__main__": + demo.launch() diff --git a/demos/hello_world_2/screenshot.gif b/demos/hello_world_2/screenshot.gif new file mode 100644 index 0000000000000000000000000000000000000000..d99ef184d9cf1ab18e86d6356a900f031d5c83f6 --- /dev/null +++ b/demos/hello_world_2/screenshot.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:97269daef7203ef7727cba3e0f5a90afa060219692ba535c06818fdc8f11fe06 +size 1121749 diff --git a/demos/hello_world_3/run.py b/demos/hello_world_3/run.py new file mode 100644 index 0000000000000000000000000000000000000000..fbf93b959140a14f39b818ec61e3db5eacc9739d --- /dev/null +++ b/demos/hello_world_3/run.py @@ -0,0 +1,15 @@ +import gradio as gr + +def greet(name, is_morning, temperature): + salutation = "Good morning" if is_morning else "Good evening" + greeting = f"{salutation} {name}. It is {temperature} degrees today" + celsius = (temperature - 32) * 5 / 9 + return greeting, round(celsius, 2) + +demo = gr.Interface( + fn=greet, + inputs=["text", "checkbox", gr.Slider(0, 100)], + outputs=["text", "number"], +) +if __name__ == "__main__": + demo.launch() diff --git a/demos/hello_world_3/screenshot.gif b/demos/hello_world_3/screenshot.gif new file mode 100644 index 0000000000000000000000000000000000000000..41c2292e362619aaaac375820a04f11837c0eaec --- /dev/null +++ b/demos/hello_world_3/screenshot.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0481bb668cc9269f7c680b971dd284f34b7aa822fa1ca530c520b1438e809bc8 +size 506714 diff --git a/demos/image_classifier/files/imagenet_labels.json b/demos/image_classifier/files/imagenet_labels.json new file mode 100644 index 0000000000000000000000000000000000000000..fa059ceeab5d18ab9882df2983b92e8270373e39 --- /dev/null +++ b/demos/image_classifier/files/imagenet_labels.json @@ -0,0 +1,1000 @@ +["tench", + "goldfish", + "great white shark", + "tiger shark", + "hammerhead shark", + "electric ray", + "stingray", + "cock", + "hen", + "ostrich", + "brambling", + "goldfinch", + "house finch", + "junco", + "indigo bunting", + "American robin", + "bulbul", + "jay", + "magpie", + "chickadee", + "American dipper", + "kite", + "bald eagle", + "vulture", + "great grey owl", + "fire salamander", + "smooth newt", + "newt", + "spotted salamander", + "axolotl", + "American bullfrog", + "tree frog", + "tailed frog", + "loggerhead sea turtle", + "leatherback sea turtle", + "mud turtle", + "terrapin", + "box turtle", + "banded gecko", + "green iguana", + "Carolina anole", + "desert grassland whiptail lizard", + "agama", + "frilled-necked lizard", + "alligator lizard", + "Gila monster", + "European green lizard", + "chameleon", + "Komodo dragon", + "Nile crocodile", + "American alligator", + "triceratops", + "worm snake", + "ring-necked snake", + "eastern hog-nosed snake", + "smooth green snake", + "kingsnake", + "garter snake", + "water snake", + "vine snake", + "night snake", + "boa constrictor", + "African rock python", + "Indian cobra", + "green mamba", + "sea snake", + "Saharan horned viper", + "eastern diamondback rattlesnake", + "sidewinder", + "trilobite", + "harvestman", + "scorpion", + "yellow garden spider", + "barn spider", + "European garden spider", + "southern black widow", + "tarantula", + "wolf spider", + "tick", + "centipede", + "black grouse", + "ptarmigan", + "ruffed grouse", + "prairie grouse", + "peacock", + "quail", + "partridge", + "grey parrot", + "macaw", + "sulphur-crested cockatoo", + "lorikeet", + "coucal", + "bee eater", + "hornbill", + "hummingbird", + "jacamar", + "toucan", + "duck", + "red-breasted merganser", + "goose", + "black swan", + "tusker", + "echidna", + "platypus", + "wallaby", + "koala", + "wombat", + "jellyfish", + "sea anemone", + "brain coral", + "flatworm", + "nematode", + "conch", + "snail", + "slug", + "sea slug", + "chiton", + "chambered nautilus", + "Dungeness crab", + "rock crab", + "fiddler crab", + "red king crab", + "American lobster", + "spiny lobster", + "crayfish", + "hermit crab", + "isopod", + "white stork", + "black stork", + "spoonbill", + "flamingo", + "little blue heron", + "great egret", + "bittern", + "crane (bird)", + "limpkin", + "common gallinule", + "American coot", + "bustard", + "ruddy turnstone", + "dunlin", + "common redshank", + "dowitcher", + "oystercatcher", + "pelican", + "king penguin", + "albatross", + "grey whale", + "killer whale", + "dugong", + "sea lion", + "Chihuahua", + "Japanese Chin", + "Maltese", + "Pekingese", + "Shih Tzu", + "King Charles Spaniel", + "Papillon", + "toy terrier", + "Rhodesian Ridgeback", + "Afghan Hound", + "Basset Hound", + "Beagle", + "Bloodhound", + "Bluetick Coonhound", + "Black and Tan Coonhound", + "Treeing Walker Coonhound", + "English foxhound", + "Redbone Coonhound", + "borzoi", + "Irish Wolfhound", + "Italian Greyhound", + "Whippet", + "Ibizan Hound", + "Norwegian Elkhound", + "Otterhound", + "Saluki", + "Scottish Deerhound", + "Weimaraner", + "Staffordshire Bull Terrier", + "American Staffordshire Terrier", + "Bedlington Terrier", + "Border Terrier", + "Kerry Blue Terrier", + "Irish Terrier", + "Norfolk Terrier", + "Norwich Terrier", + "Yorkshire Terrier", + "Wire Fox Terrier", + "Lakeland Terrier", + "Sealyham Terrier", + "Airedale Terrier", + "Cairn Terrier", + "Australian Terrier", + "Dandie Dinmont Terrier", + "Boston Terrier", + "Miniature Schnauzer", + "Giant Schnauzer", + "Standard Schnauzer", + "Scottish Terrier", + "Tibetan Terrier", + "Australian Silky Terrier", + "Soft-coated Wheaten Terrier", + "West Highland White Terrier", + "Lhasa Apso", + "Flat-Coated Retriever", + "Curly-coated Retriever", + "Golden Retriever", + "Labrador Retriever", + "Chesapeake Bay Retriever", + "German Shorthaired Pointer", + "Vizsla", + "English Setter", + "Irish Setter", + "Gordon Setter", + "Brittany", + "Clumber Spaniel", + "English Springer Spaniel", + "Welsh Springer Spaniel", + "Cocker Spaniels", + "Sussex Spaniel", + "Irish Water Spaniel", + "Kuvasz", + "Schipperke", + "Groenendael", + "Malinois", + "Briard", + "Australian Kelpie", + "Komondor", + "Old English Sheepdog", + "Shetland Sheepdog", + "collie", + "Border Collie", + "Bouvier des Flandres", + "Rottweiler", + "German Shepherd Dog", + "Dobermann", + "Miniature Pinscher", + "Greater Swiss Mountain Dog", + "Bernese Mountain Dog", + "Appenzeller Sennenhund", + "Entlebucher Sennenhund", + "Boxer", + "Bullmastiff", + "Tibetan Mastiff", + "French Bulldog", + "Great Dane", + "St. Bernard", + "husky", + "Alaskan Malamute", + "Siberian Husky", + "Dalmatian", + "Affenpinscher", + "Basenji", + "pug", + "Leonberger", + "Newfoundland", + "Pyrenean Mountain Dog", + "Samoyed", + "Pomeranian", + "Chow Chow", + "Keeshond", + "Griffon Bruxellois", + "Pembroke Welsh Corgi", + "Cardigan Welsh Corgi", + "Toy Poodle", + "Miniature Poodle", + "Standard Poodle", + "Mexican hairless dog", + "grey wolf", + "Alaskan tundra wolf", + "red wolf", + "coyote", + "dingo", + "dhole", + "African wild dog", + "hyena", + "red fox", + "kit fox", + "Arctic fox", + "grey fox", + "tabby cat", + "tiger cat", + "Persian cat", + "Siamese cat", + "Egyptian Mau", + "cougar", + "lynx", + "leopard", + "snow leopard", + "jaguar", + "lion", + "tiger", + "cheetah", + "brown bear", + "American black bear", + "polar bear", + "sloth bear", + "mongoose", + "meerkat", + "tiger beetle", + "ladybug", + "ground beetle", + "longhorn beetle", + "leaf beetle", + "dung beetle", + "rhinoceros beetle", + "weevil", + "fly", + "bee", + "ant", + "grasshopper", + "cricket", + "stick insect", + "cockroach", + "mantis", + "cicada", + "leafhopper", + "lacewing", + "dragonfly", + "damselfly", + "red admiral", + "ringlet", + "monarch butterfly", + "small white", + "sulphur butterfly", + "gossamer-winged butterfly", + "starfish", + "sea urchin", + "sea cucumber", + "cottontail rabbit", + "hare", + "Angora rabbit", + "hamster", + "porcupine", + "fox squirrel", + "marmot", + "beaver", + "guinea pig", + "common sorrel", + "zebra", + "pig", + "wild boar", + "warthog", + "hippopotamus", + "ox", + "water buffalo", + "bison", + "ram", + "bighorn sheep", + "Alpine ibex", + "hartebeest", + "impala", + "gazelle", + "dromedary", + "llama", + "weasel", + "mink", + "European polecat", + "black-footed ferret", + "otter", + "skunk", + "badger", + "armadillo", + "three-toed sloth", + "orangutan", + "gorilla", + "chimpanzee", + "gibbon", + "siamang", + "guenon", + "patas monkey", + "baboon", + "macaque", + "langur", + "black-and-white colobus", + "proboscis monkey", + "marmoset", + "white-headed capuchin", + "howler monkey", + "titi", + "Geoffroy's spider monkey", + "common squirrel monkey", + "ring-tailed lemur", + "indri", + "Asian elephant", + "African bush elephant", + "red panda", + "giant panda", + "snoek", + "eel", + "coho salmon", + "rock beauty", + "clownfish", + "sturgeon", + "garfish", + "lionfish", + "pufferfish", + "abacus", + "abaya", + "academic gown", + "accordion", + "acoustic guitar", + "aircraft carrier", + "airliner", + "airship", + "altar", + "ambulance", + "amphibious vehicle", + "analog clock", + "apiary", + "apron", + "waste container", + "assault rifle", + "backpack", + "bakery", + "balance beam", + "balloon", + "ballpoint pen", + "Band-Aid", + "banjo", + "baluster", + "barbell", + "barber chair", + "barbershop", + "barn", + "barometer", + "barrel", + "wheelbarrow", + "baseball", + "basketball", + "bassinet", + "bassoon", + "swimming cap", + "bath towel", + "bathtub", + "station wagon", + "lighthouse", + "beaker", + "military cap", + "beer bottle", + "beer glass", + "bell-cot", + "bib", + "tandem bicycle", + "bikini", + "ring binder", + "binoculars", + "birdhouse", + "boathouse", + "bobsleigh", + "bolo tie", + "poke bonnet", + "bookcase", + "bookstore", + "bottle cap", + "bow", + "bow tie", + "brass", + "bra", + "breakwater", + "breastplate", + "broom", + "bucket", + "buckle", + "bulletproof vest", + "high-speed train", + "butcher shop", + "taxicab", + "cauldron", + "candle", + "cannon", + "canoe", + "can opener", + "cardigan", + "car mirror", + "carousel", + "tool kit", + "carton", + "car wheel", + "automated teller machine", + "cassette", + "cassette player", + "castle", + "catamaran", + "CD player", + "cello", + "mobile phone", + "chain", + "chain-link fence", + "chain mail", + "chainsaw", + "chest", + "chiffonier", + "chime", + "china cabinet", + "Christmas stocking", + "church", + "movie theater", + "cleaver", + "cliff dwelling", + "cloak", + "clogs", + "cocktail shaker", + "coffee mug", + "coffeemaker", + "coil", + "combination lock", + "computer keyboard", + "confectionery store", + "container ship", + "convertible", + "corkscrew", + "cornet", + "cowboy boot", + "cowboy hat", + "cradle", + "crane (machine)", + "crash helmet", + "crate", + "infant bed", + "Crock Pot", + "croquet ball", + "crutch", + "cuirass", + "dam", + "desk", + "desktop computer", + "rotary dial telephone", + "diaper", + "digital clock", + "digital watch", + "dining table", + "dishcloth", + "dishwasher", + "disc brake", + "dock", + "dog sled", + "dome", + "doormat", + "drilling rig", + "drum", + "drumstick", + "dumbbell", + "Dutch oven", + "electric fan", + "electric guitar", + "electric locomotive", + "entertainment center", + "envelope", + "espresso machine", + "face powder", + "feather boa", + "filing cabinet", + "fireboat", + "fire engine", + "fire screen sheet", + "flagpole", + "flute", + "folding chair", + "football helmet", + "forklift", + "fountain", + "fountain pen", + "four-poster bed", + "freight car", + "French horn", + "frying pan", + "fur coat", + "garbage truck", + "gas mask", + "gas pump", + "goblet", + "go-kart", + "golf ball", + "golf cart", + "gondola", + "gong", + "gown", + "grand piano", + "greenhouse", + "grille", + "grocery store", + "guillotine", + "barrette", + "hair spray", + "half-track", + "hammer", + "hamper", + "hair dryer", + "hand-held computer", + "handkerchief", + "hard disk drive", + "harmonica", + "harp", + "harvester", + "hatchet", + "holster", + "home theater", + "honeycomb", + "hook", + "hoop skirt", + "horizontal bar", + "horse-drawn vehicle", + "hourglass", + "iPod", + "clothes iron", + "jack-o'-lantern", + "jeans", + "jeep", + "T-shirt", + "jigsaw puzzle", + "pulled rickshaw", + "joystick", + "kimono", + "knee pad", + "knot", + "lab coat", + "ladle", + "lampshade", + "laptop computer", + "lawn mower", + "lens cap", + "paper knife", + "library", + "lifeboat", + "lighter", + "limousine", + "ocean liner", + "lipstick", + "slip-on shoe", + "lotion", + "speaker", + "loupe", + "sawmill", + "magnetic compass", + "mail bag", + "mailbox", + "tights", + "tank suit", + "manhole cover", + "maraca", + "marimba", + "mask", + "match", + "maypole", + "maze", + "measuring cup", + "medicine chest", + "megalith", + "microphone", + "microwave oven", + "military uniform", + "milk can", + "minibus", + "miniskirt", + "minivan", + "missile", + "mitten", + "mixing bowl", + "mobile home", + "Model T", + "modem", + "monastery", + "monitor", + "moped", + "mortar", + "square academic cap", + "mosque", + "mosquito net", + "scooter", + "mountain bike", + "tent", + "computer mouse", + "mousetrap", + "moving van", + "muzzle", + "nail", + "neck brace", + "necklace", + "nipple", + "notebook computer", + "obelisk", + "oboe", + "ocarina", + "odometer", + "oil filter", + "organ", + "oscilloscope", + "overskirt", + "bullock cart", + "oxygen mask", + "packet", + "paddle", + "paddle wheel", + "padlock", + "paintbrush", + "pajamas", + "palace", + "pan flute", + "paper towel", + "parachute", + "parallel bars", + "park bench", + "parking meter", + "passenger car", + "patio", + "payphone", + "pedestal", + "pencil case", + "pencil sharpener", + "perfume", + "Petri dish", + "photocopier", + "plectrum", + "Pickelhaube", + "picket fence", + "pickup truck", + "pier", + "piggy bank", + "pill bottle", + "pillow", + "ping-pong ball", + "pinwheel", + "pirate ship", + "pitcher", + "hand plane", + "planetarium", + "plastic bag", + "plate rack", + "plow", + "plunger", + "Polaroid camera", + "pole", + "police van", + "poncho", + "billiard table", + "soda bottle", + "pot", + "potter's wheel", + "power drill", + "prayer rug", + "printer", + "prison", + "projectile", + "projector", + "hockey puck", + "punching bag", + "purse", + "quill", + "quilt", + "race car", + "racket", + "radiator", + "radio", + "radio telescope", + "rain barrel", + "recreational vehicle", + "reel", + "reflex camera", + "refrigerator", + "remote control", + "restaurant", + "revolver", + "rifle", + "rocking chair", + "rotisserie", + "eraser", + "rugby ball", + "ruler", + "running shoe", + "safe", + "safety pin", + "salt shaker", + "sandal", + "sarong", + "saxophone", + "scabbard", + "weighing scale", + "school bus", + "schooner", + "scoreboard", + "CRT screen", + "screw", + "screwdriver", + "seat belt", + "sewing machine", + "shield", + "shoe store", + "shoji", + "shopping basket", + "shopping cart", + "shovel", + "shower cap", + "shower curtain", + "ski", + "ski mask", + "sleeping bag", + "slide rule", + "sliding door", + "slot machine", + "snorkel", + "snowmobile", + "snowplow", + "soap dispenser", + "soccer ball", + "sock", + "solar thermal collector", + "sombrero", + "soup bowl", + "space bar", + "space heater", + "space shuttle", + "spatula", + "motorboat", + "spider web", + "spindle", + "sports car", + "spotlight", + "stage", + "steam locomotive", + "through arch bridge", + "steel drum", + "stethoscope", + "scarf", + "stone wall", + "stopwatch", + "stove", + "strainer", + "tram", + "stretcher", + "couch", + "stupa", + "submarine", + "suit", + "sundial", + "sunglass", + "sunglasses", + "sunscreen", + "suspension bridge", + "mop", + "sweatshirt", + "swimsuit", + "swing", + "switch", + "syringe", + "table lamp", + "tank", + "tape player", + "teapot", + "teddy bear", + "television", + "tennis ball", + "thatched roof", + "front curtain", + "thimble", + "threshing machine", + "throne", + "tile roof", + "toaster", + "tobacco shop", + "toilet seat", + "torch", + "totem pole", + "tow truck", + "toy store", + "tractor", + "semi-trailer truck", + "tray", + "trench coat", + "tricycle", + "trimaran", + "tripod", + "triumphal arch", + "trolleybus", + "trombone", + "tub", + "turnstile", + "typewriter keyboard", + "umbrella", + "unicycle", + "upright piano", + "vacuum cleaner", + "vase", + "vault", + "velvet", + "vending machine", + "vestment", + "viaduct", + "violin", + "volleyball", + "waffle iron", + "wall clock", + "wallet", + "wardrobe", + "military aircraft", + "sink", + "washing machine", + "water bottle", + "water jug", + "water tower", + "whiskey jug", + "whistle", + "wig", + "window screen", + "window shade", + "Windsor tie", + "wine bottle", + "wing", + "wok", + "wooden spoon", + "wool", + "split-rail fence", + "shipwreck", + "yawl", + "yurt", + "website", + "comic book", + "crossword", + "traffic sign", + "traffic light", + "dust jacket", + "menu", + "plate", + "guacamole", + "consomme", + "hot pot", + "trifle", + "ice cream", + "ice pop", + "baguette", + "bagel", + "pretzel", + "cheeseburger", + "hot dog", + "mashed potato", + "cabbage", + "broccoli", + "cauliflower", + "zucchini", + "spaghetti squash", + "acorn squash", + "butternut squash", + "cucumber", + "artichoke", + "bell pepper", + "cardoon", + "mushroom", + "Granny Smith", + "strawberry", + "orange", + "lemon", + "fig", + "pineapple", + "banana", + "jackfruit", + "custard apple", + "pomegranate", + "hay", + "carbonara", + "chocolate syrup", + "dough", + "meatloaf", + "pizza", + "pot pie", + "burrito", + "red wine", + "espresso", + "cup", + "eggnog", + "alp", + "bubble", + "cliff", + "coral reef", + "geyser", + "lakeshore", + "promontory", + "shoal", + "seashore", + "valley", + "volcano", + "baseball player", + "bridegroom", + "scuba diver", + "rapeseed", + "daisy", + "yellow lady's slipper", + "corn", + "acorn", + "rose hip", + "horse chestnut seed", + "coral fungus", + "agaric", + "gyromitra", + "stinkhorn mushroom", + "earth star", + "hen-of-the-woods", + "bolete", + "ear", + "toilet paper"] \ No newline at end of file diff --git a/demos/image_classifier/images.zip b/demos/image_classifier/images.zip new file mode 100644 index 0000000000000000000000000000000000000000..c58f463aa8ba38c63d81ec5f5d90aea71418d86f --- /dev/null +++ b/demos/image_classifier/images.zip @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0a3d798e936de549178fa680d496f39d068374f6c3851118cf3997e71eb5b2e5 +size 39415 diff --git a/demos/image_classifier/images/cheetah1.jpeg b/demos/image_classifier/images/cheetah1.jpeg new file mode 100644 index 0000000000000000000000000000000000000000..c510ff30e09c1ce410afa499f0bfc3a63c751134 Binary files /dev/null and b/demos/image_classifier/images/cheetah1.jpeg differ diff --git a/demos/image_classifier/images/cheetah1.jpg b/demos/image_classifier/images/cheetah1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..66d3b48fd19cd8cd8d8437b6f33183b3d3d42589 --- /dev/null +++ b/demos/image_classifier/images/cheetah1.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:35550bfbba996e59c242af00f6a14a9c0d055dfbc52ad069a1a4e8c1c39ca095 +size 20552 diff --git a/demos/image_classifier/images/lion.jpg b/demos/image_classifier/images/lion.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2cf5afb1f0bfe6dac09b7fd6bfeb68e5e80dbe33 --- /dev/null +++ b/demos/image_classifier/images/lion.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4c45ece00075f152cb2e6cfd5f1dfd7dc8e83042264685b4f470026240eff3ef +size 18489 diff --git a/demos/image_classifier/requirements.txt b/demos/image_classifier/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..c2bbfa1f2b3c72184f27937009c87c54c826806c --- /dev/null +++ b/demos/image_classifier/requirements.txt @@ -0,0 +1,2 @@ +numpy +tensorflow \ No newline at end of file diff --git a/demos/image_classifier/run.py b/demos/image_classifier/run.py new file mode 100644 index 0000000000000000000000000000000000000000..e96de59317712ccb41d44e7cb184d639d66e0fb9 --- /dev/null +++ b/demos/image_classifier/run.py @@ -0,0 +1,36 @@ +import os +import requests +import tensorflow as tf + +import gradio as gr + +inception_net = tf.keras.applications.MobileNetV2() # load the model + +# Download human-readable labels for ImageNet. +response = requests.get("https://git.io/JJkYN") +labels = response.text.split("\n") + + +def classify_image(inp): + inp = inp.reshape((-1, 224, 224, 3)) + inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp) + prediction = inception_net.predict(inp).flatten() + return {labels[i]: float(prediction[i]) for i in range(1000)} + + +image = gr.Image(shape=(224, 224)) +label = gr.Label(num_top_classes=3) + +demo = gr.Interface( + fn=classify_image, + inputs=image, + outputs=label, + examples=[ + os.path.join(os.path.dirname(__file__), "images/cheetah1.jpg"), + os.path.join(os.path.dirname(__file__), "images/lion.jpg") + ] + ) + +if __name__ == "__main__": + demo.launch() + diff --git a/demos/image_classifier/screenshot.gif b/demos/image_classifier/screenshot.gif new file mode 100644 index 0000000000000000000000000000000000000000..54612cf0f57059d7ab3e2a52c51b5f7b5680db96 --- /dev/null +++ b/demos/image_classifier/screenshot.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:97cc57f521c8b2d482fffeb04da7b452da6d3abb0ced50ed544d22a2456a4a20 +size 421819 diff --git a/demos/image_classifier/screenshot.png b/demos/image_classifier/screenshot.png new file mode 100644 index 0000000000000000000000000000000000000000..2ec6074bf79d2bc1012831184d83fe2d684ede23 --- /dev/null +++ b/demos/image_classifier/screenshot.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:53b089dcb36451d6ff3c10592be52bf26109908f27905e83ab905767efc41659 +size 553635 diff --git a/demos/image_classifier_2/files/imagenet_labels.json b/demos/image_classifier_2/files/imagenet_labels.json new file mode 100644 index 0000000000000000000000000000000000000000..fa059ceeab5d18ab9882df2983b92e8270373e39 --- /dev/null +++ b/demos/image_classifier_2/files/imagenet_labels.json @@ -0,0 +1,1000 @@ +["tench", + "goldfish", + "great white shark", + "tiger shark", + "hammerhead shark", + "electric ray", + "stingray", + "cock", + "hen", + "ostrich", + "brambling", + "goldfinch", + "house finch", + "junco", + "indigo bunting", + "American robin", + "bulbul", + "jay", + "magpie", + "chickadee", + "American dipper", + "kite", + "bald eagle", + "vulture", + "great grey owl", + "fire salamander", + "smooth newt", + "newt", + "spotted salamander", + "axolotl", + "American bullfrog", + "tree frog", + "tailed frog", + "loggerhead sea turtle", + "leatherback sea turtle", + "mud turtle", + "terrapin", + "box turtle", + "banded gecko", + "green iguana", + "Carolina anole", + "desert grassland whiptail lizard", + "agama", + "frilled-necked lizard", + "alligator lizard", + "Gila monster", + "European green lizard", + "chameleon", + "Komodo dragon", + "Nile crocodile", + "American alligator", + "triceratops", + "worm snake", + "ring-necked snake", + "eastern hog-nosed snake", + "smooth green snake", + "kingsnake", + "garter snake", + "water snake", + "vine snake", + "night snake", + "boa constrictor", + "African rock python", + "Indian cobra", + "green mamba", + "sea snake", + "Saharan horned viper", + "eastern diamondback rattlesnake", + "sidewinder", + "trilobite", + "harvestman", + "scorpion", + "yellow garden spider", + "barn spider", + "European garden spider", + "southern black widow", + "tarantula", + "wolf spider", + "tick", + "centipede", + "black grouse", + "ptarmigan", + "ruffed grouse", + "prairie grouse", + "peacock", + "quail", + "partridge", + "grey parrot", + "macaw", + "sulphur-crested cockatoo", + "lorikeet", + "coucal", + "bee eater", + "hornbill", + "hummingbird", + "jacamar", + "toucan", + "duck", + "red-breasted merganser", + "goose", + "black swan", + "tusker", + "echidna", + "platypus", + "wallaby", + "koala", + "wombat", + "jellyfish", + "sea anemone", + "brain coral", + "flatworm", + "nematode", + "conch", + "snail", + "slug", + "sea slug", + "chiton", + "chambered nautilus", + "Dungeness crab", + "rock crab", + "fiddler crab", + "red king crab", + "American lobster", + "spiny lobster", + "crayfish", + "hermit crab", + "isopod", + "white stork", + "black stork", + "spoonbill", + "flamingo", + "little blue heron", + "great egret", + "bittern", + "crane (bird)", + "limpkin", + "common gallinule", + "American coot", + "bustard", + "ruddy turnstone", + "dunlin", + "common redshank", + "dowitcher", + "oystercatcher", + "pelican", + "king penguin", + "albatross", + "grey whale", + "killer whale", + "dugong", + "sea lion", + "Chihuahua", + "Japanese Chin", + "Maltese", + "Pekingese", + "Shih Tzu", + "King Charles Spaniel", + "Papillon", + "toy terrier", + "Rhodesian Ridgeback", + "Afghan Hound", + "Basset Hound", + "Beagle", + "Bloodhound", + "Bluetick Coonhound", + "Black and Tan Coonhound", + "Treeing Walker Coonhound", + "English foxhound", + "Redbone Coonhound", + "borzoi", + "Irish Wolfhound", + "Italian Greyhound", + "Whippet", + "Ibizan Hound", + "Norwegian Elkhound", + "Otterhound", + "Saluki", + "Scottish Deerhound", + "Weimaraner", + "Staffordshire Bull Terrier", + "American Staffordshire Terrier", + "Bedlington Terrier", + "Border Terrier", + "Kerry Blue Terrier", + "Irish Terrier", + "Norfolk Terrier", + "Norwich Terrier", + "Yorkshire Terrier", + "Wire Fox Terrier", + "Lakeland Terrier", + "Sealyham Terrier", + "Airedale Terrier", + "Cairn Terrier", + "Australian Terrier", + "Dandie Dinmont Terrier", + "Boston Terrier", + "Miniature Schnauzer", + "Giant Schnauzer", + "Standard Schnauzer", + "Scottish Terrier", + "Tibetan Terrier", + "Australian Silky Terrier", + "Soft-coated Wheaten Terrier", + "West Highland White Terrier", + "Lhasa Apso", + "Flat-Coated Retriever", + "Curly-coated Retriever", + "Golden Retriever", + "Labrador Retriever", + "Chesapeake Bay Retriever", + "German Shorthaired Pointer", + "Vizsla", + "English Setter", + "Irish Setter", + "Gordon Setter", + "Brittany", + "Clumber Spaniel", + "English Springer Spaniel", + "Welsh Springer Spaniel", + "Cocker Spaniels", + "Sussex Spaniel", + "Irish Water Spaniel", + "Kuvasz", + "Schipperke", + "Groenendael", + "Malinois", + "Briard", + "Australian Kelpie", + "Komondor", + "Old English Sheepdog", + "Shetland Sheepdog", + "collie", + "Border Collie", + "Bouvier des Flandres", + "Rottweiler", + "German Shepherd Dog", + "Dobermann", + "Miniature Pinscher", + "Greater Swiss Mountain Dog", + "Bernese Mountain Dog", + "Appenzeller Sennenhund", + "Entlebucher Sennenhund", + "Boxer", + "Bullmastiff", + "Tibetan Mastiff", + "French Bulldog", + "Great Dane", + "St. Bernard", + "husky", + "Alaskan Malamute", + "Siberian Husky", + "Dalmatian", + "Affenpinscher", + "Basenji", + "pug", + "Leonberger", + "Newfoundland", + "Pyrenean Mountain Dog", + "Samoyed", + "Pomeranian", + "Chow Chow", + "Keeshond", + "Griffon Bruxellois", + "Pembroke Welsh Corgi", + "Cardigan Welsh Corgi", + "Toy Poodle", + "Miniature Poodle", + "Standard Poodle", + "Mexican hairless dog", + "grey wolf", + "Alaskan tundra wolf", + "red wolf", + "coyote", + "dingo", + "dhole", + "African wild dog", + "hyena", + "red fox", + "kit fox", + "Arctic fox", + "grey fox", + "tabby cat", + "tiger cat", + "Persian cat", + "Siamese cat", + "Egyptian Mau", + "cougar", + "lynx", + "leopard", + "snow leopard", + "jaguar", + "lion", + "tiger", + "cheetah", + "brown bear", + "American black bear", + "polar bear", + "sloth bear", + "mongoose", + "meerkat", + "tiger beetle", + "ladybug", + "ground beetle", + "longhorn beetle", + "leaf beetle", + "dung beetle", + "rhinoceros beetle", + "weevil", + "fly", + "bee", + "ant", + "grasshopper", + "cricket", + "stick insect", + "cockroach", + "mantis", + "cicada", + "leafhopper", + "lacewing", + "dragonfly", + "damselfly", + "red admiral", + "ringlet", + "monarch butterfly", + "small white", + "sulphur butterfly", + "gossamer-winged butterfly", + "starfish", + "sea urchin", + "sea cucumber", + "cottontail rabbit", + "hare", + "Angora rabbit", + "hamster", + "porcupine", + "fox squirrel", + "marmot", + "beaver", + "guinea pig", + "common sorrel", + "zebra", + "pig", + "wild boar", + "warthog", + "hippopotamus", + "ox", + "water buffalo", + "bison", + "ram", + "bighorn sheep", + "Alpine ibex", + "hartebeest", + "impala", + "gazelle", + "dromedary", + "llama", + "weasel", + "mink", + "European polecat", + "black-footed ferret", + "otter", + "skunk", + "badger", + "armadillo", + "three-toed sloth", + "orangutan", + "gorilla", + "chimpanzee", + "gibbon", + "siamang", + "guenon", + "patas monkey", + "baboon", + "macaque", + "langur", + "black-and-white colobus", + "proboscis monkey", + "marmoset", + "white-headed capuchin", + "howler monkey", + "titi", + "Geoffroy's spider monkey", + "common squirrel monkey", + "ring-tailed lemur", + "indri", + "Asian elephant", + "African bush elephant", + "red panda", + "giant panda", + "snoek", + "eel", + "coho salmon", + "rock beauty", + "clownfish", + "sturgeon", + "garfish", + "lionfish", + "pufferfish", + "abacus", + "abaya", + "academic gown", + "accordion", + "acoustic guitar", + "aircraft carrier", + "airliner", + "airship", + "altar", + "ambulance", + "amphibious vehicle", + "analog clock", + "apiary", + "apron", + "waste container", + "assault rifle", + "backpack", + "bakery", + "balance beam", + "balloon", + "ballpoint pen", + "Band-Aid", + "banjo", + "baluster", + "barbell", + "barber chair", + "barbershop", + "barn", + "barometer", + "barrel", + "wheelbarrow", + "baseball", + "basketball", + "bassinet", + "bassoon", + "swimming cap", + "bath towel", + "bathtub", + "station wagon", + "lighthouse", + "beaker", + "military cap", + "beer bottle", + "beer glass", + "bell-cot", + "bib", + "tandem bicycle", + "bikini", + "ring binder", + "binoculars", + "birdhouse", + "boathouse", + "bobsleigh", + "bolo tie", + "poke bonnet", + "bookcase", + "bookstore", + "bottle cap", + "bow", + "bow tie", + "brass", + "bra", + "breakwater", + "breastplate", + "broom", + "bucket", + "buckle", + "bulletproof vest", + "high-speed train", + "butcher shop", + "taxicab", + "cauldron", + "candle", + "cannon", + "canoe", + "can opener", + "cardigan", + "car mirror", + "carousel", + "tool kit", + "carton", + "car wheel", + "automated teller machine", + "cassette", + "cassette player", + "castle", + "catamaran", + "CD player", + "cello", + "mobile phone", + "chain", + "chain-link fence", + "chain mail", + "chainsaw", + "chest", + "chiffonier", + "chime", + "china cabinet", + "Christmas stocking", + "church", + "movie theater", + "cleaver", + "cliff dwelling", + "cloak", + "clogs", + "cocktail shaker", + "coffee mug", + "coffeemaker", + "coil", + "combination lock", + "computer keyboard", + "confectionery store", + "container ship", + "convertible", + "corkscrew", + "cornet", + "cowboy boot", + "cowboy hat", + "cradle", + "crane (machine)", + "crash helmet", + "crate", + "infant bed", + "Crock Pot", + "croquet ball", + "crutch", + "cuirass", + "dam", + "desk", + "desktop computer", + "rotary dial telephone", + "diaper", + "digital clock", + "digital watch", + "dining table", + "dishcloth", + "dishwasher", + "disc brake", + "dock", + "dog sled", + "dome", + "doormat", + "drilling rig", + "drum", + "drumstick", + "dumbbell", + "Dutch oven", + "electric fan", + "electric guitar", + "electric locomotive", + "entertainment center", + "envelope", + "espresso machine", + "face powder", + "feather boa", + "filing cabinet", + "fireboat", + "fire engine", + "fire screen sheet", + "flagpole", + "flute", + "folding chair", + "football helmet", + "forklift", + "fountain", + "fountain pen", + "four-poster bed", + "freight car", + "French horn", + "frying pan", + "fur coat", + "garbage truck", + "gas mask", + "gas pump", + "goblet", + "go-kart", + "golf ball", + "golf cart", + "gondola", + "gong", + "gown", + "grand piano", + "greenhouse", + "grille", + "grocery store", + "guillotine", + "barrette", + "hair spray", + "half-track", + "hammer", + "hamper", + "hair dryer", + "hand-held computer", + "handkerchief", + "hard disk drive", + "harmonica", + "harp", + "harvester", + "hatchet", + "holster", + "home theater", + "honeycomb", + "hook", + "hoop skirt", + "horizontal bar", + "horse-drawn vehicle", + "hourglass", + "iPod", + "clothes iron", + "jack-o'-lantern", + "jeans", + "jeep", + "T-shirt", + "jigsaw puzzle", + "pulled rickshaw", + "joystick", + "kimono", + "knee pad", + "knot", + "lab coat", + "ladle", + "lampshade", + "laptop computer", + "lawn mower", + "lens cap", + "paper knife", + "library", + "lifeboat", + "lighter", + "limousine", + "ocean liner", + "lipstick", + "slip-on shoe", + "lotion", + "speaker", + "loupe", + "sawmill", + "magnetic compass", + "mail bag", + "mailbox", + "tights", + "tank suit", + "manhole cover", + "maraca", + "marimba", + "mask", + "match", + "maypole", + "maze", + "measuring cup", + "medicine chest", + "megalith", + "microphone", + "microwave oven", + "military uniform", + "milk can", + "minibus", + "miniskirt", + "minivan", + "missile", + "mitten", + "mixing bowl", + "mobile home", + "Model T", + "modem", + "monastery", + "monitor", + "moped", + "mortar", + "square academic cap", + "mosque", + "mosquito net", + "scooter", + "mountain bike", + "tent", + "computer mouse", + "mousetrap", + "moving van", + "muzzle", + "nail", + "neck brace", + "necklace", + "nipple", + "notebook computer", + "obelisk", + "oboe", + "ocarina", + "odometer", + "oil filter", + "organ", + "oscilloscope", + "overskirt", + "bullock cart", + "oxygen mask", + "packet", + "paddle", + "paddle wheel", + "padlock", + "paintbrush", + "pajamas", + "palace", + "pan flute", + "paper towel", + "parachute", + "parallel bars", + "park bench", + "parking meter", + "passenger car", + "patio", + "payphone", + "pedestal", + "pencil case", + "pencil sharpener", + "perfume", + "Petri dish", + "photocopier", + "plectrum", + "Pickelhaube", + "picket fence", + "pickup truck", + "pier", + "piggy bank", + "pill bottle", + "pillow", + "ping-pong ball", + "pinwheel", + "pirate ship", + "pitcher", + "hand plane", + "planetarium", + "plastic bag", + "plate rack", + "plow", + "plunger", + "Polaroid camera", + "pole", + "police van", + "poncho", + "billiard table", + "soda bottle", + "pot", + "potter's wheel", + "power drill", + "prayer rug", + "printer", + "prison", + "projectile", + "projector", + "hockey puck", + "punching bag", + "purse", + "quill", + "quilt", + "race car", + "racket", + "radiator", + "radio", + "radio telescope", + "rain barrel", + "recreational vehicle", + "reel", + "reflex camera", + "refrigerator", + "remote control", + "restaurant", + "revolver", + "rifle", + "rocking chair", + "rotisserie", + "eraser", + "rugby ball", + "ruler", + "running shoe", + "safe", + "safety pin", + "salt shaker", + "sandal", + "sarong", + "saxophone", + "scabbard", + "weighing scale", + "school bus", + "schooner", + "scoreboard", + "CRT screen", + "screw", + "screwdriver", + "seat belt", + "sewing machine", + "shield", + "shoe store", + "shoji", + "shopping basket", + "shopping cart", + "shovel", + "shower cap", + "shower curtain", + "ski", + "ski mask", + "sleeping bag", + "slide rule", + "sliding door", + "slot machine", + "snorkel", + "snowmobile", + "snowplow", + "soap dispenser", + "soccer ball", + "sock", + "solar thermal collector", + "sombrero", + "soup bowl", + "space bar", + "space heater", + "space shuttle", + "spatula", + "motorboat", + "spider web", + "spindle", + "sports car", + "spotlight", + "stage", + "steam locomotive", + "through arch bridge", + "steel drum", + "stethoscope", + "scarf", + "stone wall", + "stopwatch", + "stove", + "strainer", + "tram", + "stretcher", + "couch", + "stupa", + "submarine", + "suit", + "sundial", + "sunglass", + "sunglasses", + "sunscreen", + "suspension bridge", + "mop", + "sweatshirt", + "swimsuit", + "swing", + "switch", + "syringe", + "table lamp", + "tank", + "tape player", + "teapot", + "teddy bear", + "television", + "tennis ball", + "thatched roof", + "front curtain", + "thimble", + "threshing machine", + "throne", + "tile roof", + "toaster", + "tobacco shop", + "toilet seat", + "torch", + "totem pole", + "tow truck", + "toy store", + "tractor", + "semi-trailer truck", + "tray", + "trench coat", + "tricycle", + "trimaran", + "tripod", + "triumphal arch", + "trolleybus", + "trombone", + "tub", + "turnstile", + "typewriter keyboard", + "umbrella", + "unicycle", + "upright piano", + "vacuum cleaner", + "vase", + "vault", + "velvet", + "vending machine", + "vestment", + "viaduct", + "violin", + "volleyball", + "waffle iron", + "wall clock", + "wallet", + "wardrobe", + "military aircraft", + "sink", + "washing machine", + "water bottle", + "water jug", + "water tower", + "whiskey jug", + "whistle", + "wig", + "window screen", + "window shade", + "Windsor tie", + "wine bottle", + "wing", + "wok", + "wooden spoon", + "wool", + "split-rail fence", + "shipwreck", + "yawl", + "yurt", + "website", + "comic book", + "crossword", + "traffic sign", + "traffic light", + "dust jacket", + "menu", + "plate", + "guacamole", + "consomme", + "hot pot", + "trifle", + "ice cream", + "ice pop", + "baguette", + "bagel", + "pretzel", + "cheeseburger", + "hot dog", + "mashed potato", + "cabbage", + "broccoli", + "cauliflower", + "zucchini", + "spaghetti squash", + "acorn squash", + "butternut squash", + "cucumber", + "artichoke", + "bell pepper", + "cardoon", + "mushroom", + "Granny Smith", + "strawberry", + "orange", + "lemon", + "fig", + "pineapple", + "banana", + "jackfruit", + "custard apple", + "pomegranate", + "hay", + "carbonara", + "chocolate syrup", + "dough", + "meatloaf", + "pizza", + "pot pie", + "burrito", + "red wine", + "espresso", + "cup", + "eggnog", + "alp", + "bubble", + "cliff", + "coral reef", + "geyser", + "lakeshore", + "promontory", + "shoal", + "seashore", + "valley", + "volcano", + "baseball player", + "bridegroom", + "scuba diver", + "rapeseed", + "daisy", + "yellow lady's slipper", + "corn", + "acorn", + "rose hip", + "horse chestnut seed", + "coral fungus", + "agaric", + "gyromitra", + "stinkhorn mushroom", + "earth star", + "hen-of-the-woods", + "bolete", + "ear", + "toilet paper"] \ No newline at end of file diff --git a/demos/image_classifier_2/requirements.txt b/demos/image_classifier_2/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..2ab187b1e35179bc3f56ab7cdd30df60b7b95a54 --- /dev/null +++ b/demos/image_classifier_2/requirements.txt @@ -0,0 +1,3 @@ +pillow +torch +torchvision \ No newline at end of file diff --git a/demos/image_classifier_2/run.py b/demos/image_classifier_2/run.py new file mode 100644 index 0000000000000000000000000000000000000000..d378b8fe44af4d8f1d875db8399e61e928c2eaa9 --- /dev/null +++ b/demos/image_classifier_2/run.py @@ -0,0 +1,29 @@ +import requests +import torch +from PIL import Image +from torchvision import transforms + +import gradio as gr + +model = torch.hub.load("pytorch/vision:v0.6.0", "resnet18", pretrained=True).eval() + +# Download human-readable labels for ImageNet. +response = requests.get("https://git.io/JJkYN") +labels = response.text.split("\n") + + +def predict(inp): + inp = Image.fromarray(inp.astype("uint8"), "RGB") + inp = transforms.ToTensor()(inp).unsqueeze(0) + with torch.no_grad(): + prediction = torch.nn.functional.softmax(model(inp)[0], dim=0) + return {labels[i]: float(prediction[i]) for i in range(1000)} + + +inputs = gr.Image() +outputs = gr.Label(num_top_classes=3) + +demo = gr.Interface(fn=predict, inputs=inputs, outputs=outputs) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/image_classifier_interface_load/cheetah1.jpeg b/demos/image_classifier_interface_load/cheetah1.jpeg new file mode 100644 index 0000000000000000000000000000000000000000..c510ff30e09c1ce410afa499f0bfc3a63c751134 Binary files /dev/null and b/demos/image_classifier_interface_load/cheetah1.jpeg differ diff --git a/demos/image_classifier_interface_load/cheetah1.jpg b/demos/image_classifier_interface_load/cheetah1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..66d3b48fd19cd8cd8d8437b6f33183b3d3d42589 --- /dev/null +++ b/demos/image_classifier_interface_load/cheetah1.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:35550bfbba996e59c242af00f6a14a9c0d055dfbc52ad069a1a4e8c1c39ca095 +size 20552 diff --git a/demos/image_classifier_interface_load/lion.jpg b/demos/image_classifier_interface_load/lion.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2cf5afb1f0bfe6dac09b7fd6bfeb68e5e80dbe33 --- /dev/null +++ b/demos/image_classifier_interface_load/lion.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4c45ece00075f152cb2e6cfd5f1dfd7dc8e83042264685b4f470026240eff3ef +size 18489 diff --git a/demos/image_classifier_interface_load/run.py b/demos/image_classifier_interface_load/run.py new file mode 100644 index 0000000000000000000000000000000000000000..c7dd053309b2a51cc6c1be5628eb19141cacf8fc --- /dev/null +++ b/demos/image_classifier_interface_load/run.py @@ -0,0 +1,32 @@ +import gradio as gr +import pathlib + +current_dir = pathlib.Path(__file__) + +images = [current_dir / "cheetah1.jpeg", current_dir / "cheetah1.jpg", current_dir / "lion.jpg"] + + +img_classifier = gr.Interface.load( + "models/google/vit-base-patch16-224", examples=images, cache_examples=False +) + + +def func(img, text): + return img_classifier(img), text + + +using_img_classifier_as_function = gr.Interface( + func, + [gr.Image(type="filepath"), "text"], + ["label", "text"], + examples=[ + [current_dir / "cheetah1.jpeg", None], + [current_dir / "cheetah1.jpg", "cheetah"], + [current_dir / "lion.jpg", "lion"], + ], + cache_examples=True, +) +demo = gr.TabbedInterface([using_img_classifier_as_function, img_classifier]) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/image_classifier_interpretation/files/imagenet_labels.json b/demos/image_classifier_interpretation/files/imagenet_labels.json new file mode 100644 index 0000000000000000000000000000000000000000..fa059ceeab5d18ab9882df2983b92e8270373e39 --- /dev/null +++ b/demos/image_classifier_interpretation/files/imagenet_labels.json @@ -0,0 +1,1000 @@ +["tench", + "goldfish", + "great white shark", + "tiger shark", + "hammerhead shark", + "electric ray", + "stingray", + "cock", + "hen", + "ostrich", + "brambling", + "goldfinch", + "house finch", + "junco", + "indigo bunting", + "American robin", + "bulbul", + "jay", + "magpie", + "chickadee", + "American dipper", + "kite", + "bald eagle", + "vulture", + "great grey owl", + "fire salamander", + "smooth newt", + "newt", + "spotted salamander", + "axolotl", + "American bullfrog", + "tree frog", + "tailed frog", + "loggerhead sea turtle", + "leatherback sea turtle", + "mud turtle", + "terrapin", + "box turtle", + "banded gecko", + "green iguana", + "Carolina anole", + "desert grassland whiptail lizard", + "agama", + "frilled-necked lizard", + "alligator lizard", + "Gila monster", + "European green lizard", + "chameleon", + "Komodo dragon", + "Nile crocodile", + "American alligator", + "triceratops", + "worm snake", + "ring-necked snake", + "eastern hog-nosed snake", + "smooth green snake", + "kingsnake", + "garter snake", + "water snake", + "vine snake", + "night snake", + "boa constrictor", + "African rock python", + "Indian cobra", + "green mamba", + "sea snake", + "Saharan horned viper", + "eastern diamondback rattlesnake", + "sidewinder", + "trilobite", + "harvestman", + "scorpion", + "yellow garden spider", + "barn spider", + "European garden spider", + "southern black widow", + "tarantula", + "wolf spider", + "tick", + "centipede", + "black grouse", + "ptarmigan", + "ruffed grouse", + "prairie grouse", + "peacock", + "quail", + "partridge", + "grey parrot", + "macaw", + "sulphur-crested cockatoo", + "lorikeet", + "coucal", + "bee eater", + "hornbill", + "hummingbird", + "jacamar", + "toucan", + "duck", + "red-breasted merganser", + "goose", + "black swan", + "tusker", + "echidna", + "platypus", + "wallaby", + "koala", + "wombat", + "jellyfish", + "sea anemone", + "brain coral", + "flatworm", + "nematode", + "conch", + "snail", + "slug", + "sea slug", + "chiton", + "chambered nautilus", + "Dungeness crab", + "rock crab", + "fiddler crab", + "red king crab", + "American lobster", + "spiny lobster", + "crayfish", + "hermit crab", + "isopod", + "white stork", + "black stork", + "spoonbill", + "flamingo", + "little blue heron", + "great egret", + "bittern", + "crane (bird)", + "limpkin", + "common gallinule", + "American coot", + "bustard", + "ruddy turnstone", + "dunlin", + "common redshank", + "dowitcher", + "oystercatcher", + "pelican", + "king penguin", + "albatross", + "grey whale", + "killer whale", + "dugong", + "sea lion", + "Chihuahua", + "Japanese Chin", + "Maltese", + "Pekingese", + "Shih Tzu", + "King Charles Spaniel", + "Papillon", + "toy terrier", + "Rhodesian Ridgeback", + "Afghan Hound", + "Basset Hound", + "Beagle", + "Bloodhound", + "Bluetick Coonhound", + "Black and Tan Coonhound", + "Treeing Walker Coonhound", + "English foxhound", + "Redbone Coonhound", + "borzoi", + "Irish Wolfhound", + "Italian Greyhound", + "Whippet", + "Ibizan Hound", + "Norwegian Elkhound", + "Otterhound", + "Saluki", + "Scottish Deerhound", + "Weimaraner", + "Staffordshire Bull Terrier", + "American Staffordshire Terrier", + "Bedlington Terrier", + "Border Terrier", + "Kerry Blue Terrier", + "Irish Terrier", + "Norfolk Terrier", + "Norwich Terrier", + "Yorkshire Terrier", + "Wire Fox Terrier", + "Lakeland Terrier", + "Sealyham Terrier", + "Airedale Terrier", + "Cairn Terrier", + "Australian Terrier", + "Dandie Dinmont Terrier", + "Boston Terrier", + "Miniature Schnauzer", + "Giant Schnauzer", + "Standard Schnauzer", + "Scottish Terrier", + "Tibetan Terrier", + "Australian Silky Terrier", + "Soft-coated Wheaten Terrier", + "West Highland White Terrier", + "Lhasa Apso", + "Flat-Coated Retriever", + "Curly-coated Retriever", + "Golden Retriever", + "Labrador Retriever", + "Chesapeake Bay Retriever", + "German Shorthaired Pointer", + "Vizsla", + "English Setter", + "Irish Setter", + "Gordon Setter", + "Brittany", + "Clumber Spaniel", + "English Springer Spaniel", + "Welsh Springer Spaniel", + "Cocker Spaniels", + "Sussex Spaniel", + "Irish Water Spaniel", + "Kuvasz", + "Schipperke", + "Groenendael", + "Malinois", + "Briard", + "Australian Kelpie", + "Komondor", + "Old English Sheepdog", + "Shetland Sheepdog", + "collie", + "Border Collie", + "Bouvier des Flandres", + "Rottweiler", + "German Shepherd Dog", + "Dobermann", + "Miniature Pinscher", + "Greater Swiss Mountain Dog", + "Bernese Mountain Dog", + "Appenzeller Sennenhund", + "Entlebucher Sennenhund", + "Boxer", + "Bullmastiff", + "Tibetan Mastiff", + "French Bulldog", + "Great Dane", + "St. Bernard", + "husky", + "Alaskan Malamute", + "Siberian Husky", + "Dalmatian", + "Affenpinscher", + "Basenji", + "pug", + "Leonberger", + "Newfoundland", + "Pyrenean Mountain Dog", + "Samoyed", + "Pomeranian", + "Chow Chow", + "Keeshond", + "Griffon Bruxellois", + "Pembroke Welsh Corgi", + "Cardigan Welsh Corgi", + "Toy Poodle", + "Miniature Poodle", + "Standard Poodle", + "Mexican hairless dog", + "grey wolf", + "Alaskan tundra wolf", + "red wolf", + "coyote", + "dingo", + "dhole", + "African wild dog", + "hyena", + "red fox", + "kit fox", + "Arctic fox", + "grey fox", + "tabby cat", + "tiger cat", + "Persian cat", + "Siamese cat", + "Egyptian Mau", + "cougar", + "lynx", + "leopard", + "snow leopard", + "jaguar", + "lion", + "tiger", + "cheetah", + "brown bear", + "American black bear", + "polar bear", + "sloth bear", + "mongoose", + "meerkat", + "tiger beetle", + "ladybug", + "ground beetle", + "longhorn beetle", + "leaf beetle", + "dung beetle", + "rhinoceros beetle", + "weevil", + "fly", + "bee", + "ant", + "grasshopper", + "cricket", + "stick insect", + "cockroach", + "mantis", + "cicada", + "leafhopper", + "lacewing", + "dragonfly", + "damselfly", + "red admiral", + "ringlet", + "monarch butterfly", + "small white", + "sulphur butterfly", + "gossamer-winged butterfly", + "starfish", + "sea urchin", + "sea cucumber", + "cottontail rabbit", + "hare", + "Angora rabbit", + "hamster", + "porcupine", + "fox squirrel", + "marmot", + "beaver", + "guinea pig", + "common sorrel", + "zebra", + "pig", + "wild boar", + "warthog", + "hippopotamus", + "ox", + "water buffalo", + "bison", + "ram", + "bighorn sheep", + "Alpine ibex", + "hartebeest", + "impala", + "gazelle", + "dromedary", + "llama", + "weasel", + "mink", + "European polecat", + "black-footed ferret", + "otter", + "skunk", + "badger", + "armadillo", + "three-toed sloth", + "orangutan", + "gorilla", + "chimpanzee", + "gibbon", + "siamang", + "guenon", + "patas monkey", + "baboon", + "macaque", + "langur", + "black-and-white colobus", + "proboscis monkey", + "marmoset", + "white-headed capuchin", + "howler monkey", + "titi", + "Geoffroy's spider monkey", + "common squirrel monkey", + "ring-tailed lemur", + "indri", + "Asian elephant", + "African bush elephant", + "red panda", + "giant panda", + "snoek", + "eel", + "coho salmon", + "rock beauty", + "clownfish", + "sturgeon", + "garfish", + "lionfish", + "pufferfish", + "abacus", + "abaya", + "academic gown", + "accordion", + "acoustic guitar", + "aircraft carrier", + "airliner", + "airship", + "altar", + "ambulance", + "amphibious vehicle", + "analog clock", + "apiary", + "apron", + "waste container", + "assault rifle", + "backpack", + "bakery", + "balance beam", + "balloon", + "ballpoint pen", + "Band-Aid", + "banjo", + "baluster", + "barbell", + "barber chair", + "barbershop", + "barn", + "barometer", + "barrel", + "wheelbarrow", + "baseball", + "basketball", + "bassinet", + "bassoon", + "swimming cap", + "bath towel", + "bathtub", + "station wagon", + "lighthouse", + "beaker", + "military cap", + "beer bottle", + "beer glass", + "bell-cot", + "bib", + "tandem bicycle", + "bikini", + "ring binder", + "binoculars", + "birdhouse", + "boathouse", + "bobsleigh", + "bolo tie", + "poke bonnet", + "bookcase", + "bookstore", + "bottle cap", + "bow", + "bow tie", + "brass", + "bra", + "breakwater", + "breastplate", + "broom", + "bucket", + "buckle", + "bulletproof vest", + "high-speed train", + "butcher shop", + "taxicab", + "cauldron", + "candle", + "cannon", + "canoe", + "can opener", + "cardigan", + "car mirror", + "carousel", + "tool kit", + "carton", + "car wheel", + "automated teller machine", + "cassette", + "cassette player", + "castle", + "catamaran", + "CD player", + "cello", + "mobile phone", + "chain", + "chain-link fence", + "chain mail", + "chainsaw", + "chest", + "chiffonier", + "chime", + "china cabinet", + "Christmas stocking", + "church", + "movie theater", + "cleaver", + "cliff dwelling", + "cloak", + "clogs", + "cocktail shaker", + "coffee mug", + "coffeemaker", + "coil", + "combination lock", + "computer keyboard", + "confectionery store", + "container ship", + "convertible", + "corkscrew", + "cornet", + "cowboy boot", + "cowboy hat", + "cradle", + "crane (machine)", + "crash helmet", + "crate", + "infant bed", + "Crock Pot", + "croquet ball", + "crutch", + "cuirass", + "dam", + "desk", + "desktop computer", + "rotary dial telephone", + "diaper", + "digital clock", + "digital watch", + "dining table", + "dishcloth", + "dishwasher", + "disc brake", + "dock", + "dog sled", + "dome", + "doormat", + "drilling rig", + "drum", + "drumstick", + "dumbbell", + "Dutch oven", + "electric fan", + "electric guitar", + "electric locomotive", + "entertainment center", + "envelope", + "espresso machine", + "face powder", + "feather boa", + "filing cabinet", + "fireboat", + "fire engine", + "fire screen sheet", + "flagpole", + "flute", + "folding chair", + "football helmet", + "forklift", + "fountain", + "fountain pen", + "four-poster bed", + "freight car", + "French horn", + "frying pan", + "fur coat", + "garbage truck", + "gas mask", + "gas pump", + "goblet", + "go-kart", + "golf ball", + "golf cart", + "gondola", + "gong", + "gown", + "grand piano", + "greenhouse", + "grille", + "grocery store", + "guillotine", + "barrette", + "hair spray", + "half-track", + "hammer", + "hamper", + "hair dryer", + "hand-held computer", + "handkerchief", + "hard disk drive", + "harmonica", + "harp", + "harvester", + "hatchet", + "holster", + "home theater", + "honeycomb", + "hook", + "hoop skirt", + "horizontal bar", + "horse-drawn vehicle", + "hourglass", + "iPod", + "clothes iron", + "jack-o'-lantern", + "jeans", + "jeep", + "T-shirt", + "jigsaw puzzle", + "pulled rickshaw", + "joystick", + "kimono", + "knee pad", + "knot", + "lab coat", + "ladle", + "lampshade", + "laptop computer", + "lawn mower", + "lens cap", + "paper knife", + "library", + "lifeboat", + "lighter", + "limousine", + "ocean liner", + "lipstick", + "slip-on shoe", + "lotion", + "speaker", + "loupe", + "sawmill", + "magnetic compass", + "mail bag", + "mailbox", + "tights", + "tank suit", + "manhole cover", + "maraca", + "marimba", + "mask", + "match", + "maypole", + "maze", + "measuring cup", + "medicine chest", + "megalith", + "microphone", + "microwave oven", + "military uniform", + "milk can", + "minibus", + "miniskirt", + "minivan", + "missile", + "mitten", + "mixing bowl", + "mobile home", + "Model T", + "modem", + "monastery", + "monitor", + "moped", + "mortar", + "square academic cap", + "mosque", + "mosquito net", + "scooter", + "mountain bike", + "tent", + "computer mouse", + "mousetrap", + "moving van", + "muzzle", + "nail", + "neck brace", + "necklace", + "nipple", + "notebook computer", + "obelisk", + "oboe", + "ocarina", + "odometer", + "oil filter", + "organ", + "oscilloscope", + "overskirt", + "bullock cart", + "oxygen mask", + "packet", + "paddle", + "paddle wheel", + "padlock", + "paintbrush", + "pajamas", + "palace", + "pan flute", + "paper towel", + "parachute", + "parallel bars", + "park bench", + "parking meter", + "passenger car", + "patio", + "payphone", + "pedestal", + "pencil case", + "pencil sharpener", + "perfume", + "Petri dish", + "photocopier", + "plectrum", + "Pickelhaube", + "picket fence", + "pickup truck", + "pier", + "piggy bank", + "pill bottle", + "pillow", + "ping-pong ball", + "pinwheel", + "pirate ship", + "pitcher", + "hand plane", + "planetarium", + "plastic bag", + "plate rack", + "plow", + "plunger", + "Polaroid camera", + "pole", + "police van", + "poncho", + "billiard table", + "soda bottle", + "pot", + "potter's wheel", + "power drill", + "prayer rug", + "printer", + "prison", + "projectile", + "projector", + "hockey puck", + "punching bag", + "purse", + "quill", + "quilt", + "race car", + "racket", + "radiator", + "radio", + "radio telescope", + "rain barrel", + "recreational vehicle", + "reel", + "reflex camera", + "refrigerator", + "remote control", + "restaurant", + "revolver", + "rifle", + "rocking chair", + "rotisserie", + "eraser", + "rugby ball", + "ruler", + "running shoe", + "safe", + "safety pin", + "salt shaker", + "sandal", + "sarong", + "saxophone", + "scabbard", + "weighing scale", + "school bus", + "schooner", + "scoreboard", + "CRT screen", + "screw", + "screwdriver", + "seat belt", + "sewing machine", + "shield", + "shoe store", + "shoji", + "shopping basket", + "shopping cart", + "shovel", + "shower cap", + "shower curtain", + "ski", + "ski mask", + "sleeping bag", + "slide rule", + "sliding door", + "slot machine", + "snorkel", + "snowmobile", + "snowplow", + "soap dispenser", + "soccer ball", + "sock", + "solar thermal collector", + "sombrero", + "soup bowl", + "space bar", + "space heater", + "space shuttle", + "spatula", + "motorboat", + "spider web", + "spindle", + "sports car", + "spotlight", + "stage", + "steam locomotive", + "through arch bridge", + "steel drum", + "stethoscope", + "scarf", + "stone wall", + "stopwatch", + "stove", + "strainer", + "tram", + "stretcher", + "couch", + "stupa", + "submarine", + "suit", + "sundial", + "sunglass", + "sunglasses", + "sunscreen", + "suspension bridge", + "mop", + "sweatshirt", + "swimsuit", + "swing", + "switch", + "syringe", + "table lamp", + "tank", + "tape player", + "teapot", + "teddy bear", + "television", + "tennis ball", + "thatched roof", + "front curtain", + "thimble", + "threshing machine", + "throne", + "tile roof", + "toaster", + "tobacco shop", + "toilet seat", + "torch", + "totem pole", + "tow truck", + "toy store", + "tractor", + "semi-trailer truck", + "tray", + "trench coat", + "tricycle", + "trimaran", + "tripod", + "triumphal arch", + "trolleybus", + "trombone", + "tub", + "turnstile", + "typewriter keyboard", + "umbrella", + "unicycle", + "upright piano", + "vacuum cleaner", + "vase", + "vault", + "velvet", + "vending machine", + "vestment", + "viaduct", + "violin", + "volleyball", + "waffle iron", + "wall clock", + "wallet", + "wardrobe", + "military aircraft", + "sink", + "washing machine", + "water bottle", + "water jug", + "water tower", + "whiskey jug", + "whistle", + "wig", + "window screen", + "window shade", + "Windsor tie", + "wine bottle", + "wing", + "wok", + "wooden spoon", + "wool", + "split-rail fence", + "shipwreck", + "yawl", + "yurt", + "website", + "comic book", + "crossword", + "traffic sign", + "traffic light", + "dust jacket", + "menu", + "plate", + "guacamole", + "consomme", + "hot pot", + "trifle", + "ice cream", + "ice pop", + "baguette", + "bagel", + "pretzel", + "cheeseburger", + "hot dog", + "mashed potato", + "cabbage", + "broccoli", + "cauliflower", + "zucchini", + "spaghetti squash", + "acorn squash", + "butternut squash", + "cucumber", + "artichoke", + "bell pepper", + "cardoon", + "mushroom", + "Granny Smith", + "strawberry", + "orange", + "lemon", + "fig", + "pineapple", + "banana", + "jackfruit", + "custard apple", + "pomegranate", + "hay", + "carbonara", + "chocolate syrup", + "dough", + "meatloaf", + "pizza", + "pot pie", + "burrito", + "red wine", + "espresso", + "cup", + "eggnog", + "alp", + "bubble", + "cliff", + "coral reef", + "geyser", + "lakeshore", + "promontory", + "shoal", + "seashore", + "valley", + "volcano", + "baseball player", + "bridegroom", + "scuba diver", + "rapeseed", + "daisy", + "yellow lady's slipper", + "corn", + "acorn", + "rose hip", + "horse chestnut seed", + "coral fungus", + "agaric", + "gyromitra", + "stinkhorn mushroom", + "earth star", + "hen-of-the-woods", + "bolete", + "ear", + "toilet paper"] \ No newline at end of file diff --git a/demos/image_classifier_interpretation/images/cheetah1.jpg b/demos/image_classifier_interpretation/images/cheetah1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..66d3b48fd19cd8cd8d8437b6f33183b3d3d42589 --- /dev/null +++ b/demos/image_classifier_interpretation/images/cheetah1.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:35550bfbba996e59c242af00f6a14a9c0d055dfbc52ad069a1a4e8c1c39ca095 +size 20552 diff --git a/demos/image_classifier_interpretation/images/lion.jpg b/demos/image_classifier_interpretation/images/lion.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2cf5afb1f0bfe6dac09b7fd6bfeb68e5e80dbe33 --- /dev/null +++ b/demos/image_classifier_interpretation/images/lion.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4c45ece00075f152cb2e6cfd5f1dfd7dc8e83042264685b4f470026240eff3ef +size 18489 diff --git a/demos/image_classifier_interpretation/requirements.txt b/demos/image_classifier_interpretation/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..c2bbfa1f2b3c72184f27937009c87c54c826806c --- /dev/null +++ b/demos/image_classifier_interpretation/requirements.txt @@ -0,0 +1,2 @@ +numpy +tensorflow \ No newline at end of file diff --git a/demos/image_classifier_interpretation/run.py b/demos/image_classifier_interpretation/run.py new file mode 100644 index 0000000000000000000000000000000000000000..f052b3ec80ace747429aa99e3a8e3aa37e465121 --- /dev/null +++ b/demos/image_classifier_interpretation/run.py @@ -0,0 +1,28 @@ +import requests +import tensorflow as tf + +import gradio as gr + +inception_net = tf.keras.applications.MobileNetV2() # load the model + +# Download human-readable labels for ImageNet. +response = requests.get("https://git.io/JJkYN") +labels = response.text.split("\n") + + +def classify_image(inp): + inp = inp.reshape((-1, 224, 224, 3)) + inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp) + prediction = inception_net.predict(inp).flatten() + return {labels[i]: float(prediction[i]) for i in range(1000)} + + +image = gr.Image(shape=(224, 224)) +label = gr.Label(num_top_classes=3) + +demo = gr.Interface( + fn=classify_image, inputs=image, outputs=label, interpretation="default" +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/image_classifier_interpretation/screenshot.gif b/demos/image_classifier_interpretation/screenshot.gif new file mode 100644 index 0000000000000000000000000000000000000000..54612cf0f57059d7ab3e2a52c51b5f7b5680db96 --- /dev/null +++ b/demos/image_classifier_interpretation/screenshot.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:97cc57f521c8b2d482fffeb04da7b452da6d3abb0ced50ed544d22a2456a4a20 +size 421819 diff --git a/demos/image_classifier_interpretation/screenshot.png b/demos/image_classifier_interpretation/screenshot.png new file mode 100644 index 0000000000000000000000000000000000000000..2ec6074bf79d2bc1012831184d83fe2d684ede23 --- /dev/null +++ b/demos/image_classifier_interpretation/screenshot.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:53b089dcb36451d6ff3c10592be52bf26109908f27905e83ab905767efc41659 +size 553635 diff --git a/demos/image_mod/images/cheetah1.jpg b/demos/image_mod/images/cheetah1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..66d3b48fd19cd8cd8d8437b6f33183b3d3d42589 --- /dev/null +++ b/demos/image_mod/images/cheetah1.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:35550bfbba996e59c242af00f6a14a9c0d055dfbc52ad069a1a4e8c1c39ca095 +size 20552 diff --git a/demos/image_mod/images/lion.jpg b/demos/image_mod/images/lion.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2cf5afb1f0bfe6dac09b7fd6bfeb68e5e80dbe33 --- /dev/null +++ b/demos/image_mod/images/lion.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4c45ece00075f152cb2e6cfd5f1dfd7dc8e83042264685b4f470026240eff3ef +size 18489 diff --git a/demos/image_mod/images/logo.png b/demos/image_mod/images/logo.png new file mode 100644 index 0000000000000000000000000000000000000000..b15ea0336b8c14631f77f00f72695d14eb76f698 --- /dev/null +++ b/demos/image_mod/images/logo.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:92ba3bf0faed5ab591ec5ad3d06fa89409eea4de694b2b6cea3cc989e08ecc79 +size 5328 diff --git a/demos/image_mod/run.py b/demos/image_mod/run.py new file mode 100644 index 0000000000000000000000000000000000000000..df891fc0ac63f6f593b02322385e5498b472aa3a --- /dev/null +++ b/demos/image_mod/run.py @@ -0,0 +1,17 @@ +import gradio as gr +import os + + +def image_mod(image): + return image.rotate(45) + + +demo = gr.Interface(image_mod, gr.Image(type="pil"), "image", + flagging_options=["blurry", "incorrect", "other"], examples=[ + os.path.join(os.path.dirname(__file__), "images/cheetah1.jpg"), + os.path.join(os.path.dirname(__file__), "images/lion.jpg"), + os.path.join(os.path.dirname(__file__), "images/logo.png") + ]) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/image_mod/screenshot.png b/demos/image_mod/screenshot.png new file mode 100644 index 0000000000000000000000000000000000000000..07939d98debb9d571a75ba02e2948cf75afeb65a --- /dev/null +++ b/demos/image_mod/screenshot.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f9e12c6742252fc970c3983e6691050d55034d40d1b553b93a94eb9b5c94c6e9 +size 1108299 diff --git a/demos/image_mod_default_image/images/cheetah1.jpg b/demos/image_mod_default_image/images/cheetah1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..66d3b48fd19cd8cd8d8437b6f33183b3d3d42589 --- /dev/null +++ b/demos/image_mod_default_image/images/cheetah1.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:35550bfbba996e59c242af00f6a14a9c0d055dfbc52ad069a1a4e8c1c39ca095 +size 20552 diff --git a/demos/image_mod_default_image/images/lion.jpg b/demos/image_mod_default_image/images/lion.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2cf5afb1f0bfe6dac09b7fd6bfeb68e5e80dbe33 --- /dev/null +++ b/demos/image_mod_default_image/images/lion.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4c45ece00075f152cb2e6cfd5f1dfd7dc8e83042264685b4f470026240eff3ef +size 18489 diff --git a/demos/image_mod_default_image/images/logo.png b/demos/image_mod_default_image/images/logo.png new file mode 100644 index 0000000000000000000000000000000000000000..b15ea0336b8c14631f77f00f72695d14eb76f698 --- /dev/null +++ b/demos/image_mod_default_image/images/logo.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:92ba3bf0faed5ab591ec5ad3d06fa89409eea4de694b2b6cea3cc989e08ecc79 +size 5328 diff --git a/demos/image_mod_default_image/run.py b/demos/image_mod_default_image/run.py new file mode 100644 index 0000000000000000000000000000000000000000..c2ad1f8be43b53d179254cb9a0cadcb4c11378b3 --- /dev/null +++ b/demos/image_mod_default_image/run.py @@ -0,0 +1,18 @@ +import gradio as gr +import os + + +def image_mod(image): + return image.rotate(45) + + +cheetah = os.path.join(os.path.dirname(__file__), "images/cheetah1.jpg") + +demo = gr.Interface(image_mod, gr.Image(type="pil", value=cheetah), "image", + flagging_options=["blurry", "incorrect", "other"], examples=[ + os.path.join(os.path.dirname(__file__), "images/lion.jpg"), + os.path.join(os.path.dirname(__file__), "images/logo.png") + ]) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/input-output/config.json b/demos/input-output/config.json new file mode 100644 index 0000000000000000000000000000000000000000..f264101b261efdc3d3325ed808d043072e98cad5 --- /dev/null +++ b/demos/input-output/config.json @@ -0,0 +1,50 @@ +{ + "mode": "blocks", + "components": [ + { + "id": 1, + "type": "textbox", + "props": { + "lines": 1, + "placeholder": null, + "value": "", + "name": "textbox", + "label": "Input-Output", + "css": {}, + "interactive": null + } + }, + { + "id": 2, + "type": "button", + "props": { + "value": "Run", + "name": "button", + "label": null, + "css": {}, + "interactive": null + } + } + ], + "theme": "default", + "layout": { + "id": 0, + "children": [ + { + "id": 1 + }, + { + "id": 2 + } + ] + }, + "dependencies": [ + { + "targets": [2], + "trigger": "click", + "inputs": [1], + "outputs": [1], + "queue": false + } + ] +} diff --git a/demos/input-output/run.py b/demos/input-output/run.py new file mode 100644 index 0000000000000000000000000000000000000000..a09c05fc514335919f2cfa7330b15cebf10bbe82 --- /dev/null +++ b/demos/input-output/run.py @@ -0,0 +1,16 @@ +import gradio as gr + + +def image_mod(text): + return text[::-1] + + +demo = gr.Blocks() + +with demo: + text = gr.Textbox(label="Input-Output") + btn = gr.Button("Run") + btn.click(image_mod, text, text) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/interface_parallel/run.py b/demos/interface_parallel/run.py new file mode 100644 index 0000000000000000000000000000000000000000..8ac946bd166cc889554294c8ea4a0d74bcb240bf --- /dev/null +++ b/demos/interface_parallel/run.py @@ -0,0 +1,8 @@ +import gradio as gr + +greeter_1 = gr.Interface(lambda name: f"Hello {name}!", inputs="textbox", outputs=gr.Textbox(label="Greeter 1")) +greeter_2 = gr.Interface(lambda name: f"Greetings {name}!", inputs="textbox", outputs=gr.Textbox(label="Greeter 2")) +demo = gr.Parallel(greeter_1, greeter_2) + +if __name__ == "__main__": + demo.launch() \ No newline at end of file diff --git a/demos/interface_parallel_load/run.py b/demos/interface_parallel_load/run.py new file mode 100644 index 0000000000000000000000000000000000000000..cae63973294842b75f6759537c1d01d861e3574c --- /dev/null +++ b/demos/interface_parallel_load/run.py @@ -0,0 +1,10 @@ +import gradio as gr + +generator1 = gr.Interface.load("huggingface/gpt2") +generator2 = gr.Interface.load("huggingface/EleutherAI/gpt-neo-2.7B") +generator3 = gr.Interface.load("huggingface/EleutherAI/gpt-j-6B") + +demo = gr.Parallel(generator1, generator2, generator3) + +if __name__ == "__main__": + demo.launch() \ No newline at end of file diff --git a/demos/interface_random_slider/run.py b/demos/interface_random_slider/run.py new file mode 100644 index 0000000000000000000000000000000000000000..9965e1f35ac6df15fedb5205aaecfe3d46b09209 --- /dev/null +++ b/demos/interface_random_slider/run.py @@ -0,0 +1,23 @@ +import gradio as gr + + +def func(slider_1, slider_2): + return slider_1 + slider_2 * 5 + + +demo = gr.Interface( + func, + [ + gr.Slider(minimum=1.5, maximum=250000.89, randomize=True, label="Random Big Range"), + gr.Slider(minimum=-1, maximum=1, randomize=True, step=0.05, label="Random only multiple of 0.05 allowed"), + gr.Slider(minimum=0, maximum=1, randomize=True, step=0.25, label="Random only multiples of 0.25 allowed"), + gr.Slider(minimum=-100, maximum=100, randomize=True, step=3, label="Random between -100 and 100 step 3"), + gr.Slider(minimum=-100, maximum=100, randomize=True, label="Random between -100 and 100"), + gr.Slider(value=0.25, minimum=5, maximum=30, step=-1), + ], + "number", + interpretation="default" +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/interface_series/run.py b/demos/interface_series/run.py new file mode 100644 index 0000000000000000000000000000000000000000..ac942ff94b23e605f75948797f796208e11e3a9a --- /dev/null +++ b/demos/interface_series/run.py @@ -0,0 +1,10 @@ +import gradio as gr + +get_name = gr.Interface(lambda name: name, inputs="textbox", outputs="textbox") +prepend_hello = gr.Interface(lambda name: f"Hello {name}!", inputs="textbox", outputs="textbox") +append_nice = gr.Interface(lambda greeting: f"{greeting} Nice to meet you!", + inputs="textbox", outputs=gr.Textbox(label="Greeting")) +demo = gr.Series(get_name, prepend_hello, append_nice) + +if __name__ == "__main__": + demo.launch() \ No newline at end of file diff --git a/demos/interface_series_load/run.py b/demos/interface_series_load/run.py new file mode 100644 index 0000000000000000000000000000000000000000..38e694c42c36860b98ce204aa816a18a94b02e4a --- /dev/null +++ b/demos/interface_series_load/run.py @@ -0,0 +1,9 @@ +import gradio as gr + +generator = gr.Interface.load("huggingface/gpt2") +translator = gr.Interface.load("huggingface/t5-small") + +demo = gr.Series(generator, translator) + +if __name__ == "__main__": + demo.launch() \ No newline at end of file diff --git a/demos/kitchen_sink/config.json b/demos/kitchen_sink/config.json new file mode 100644 index 0000000000000000000000000000000000000000..416a4ed813b377e1ec953bb54c95481692371d1e --- /dev/null +++ b/demos/kitchen_sink/config.json @@ -0,0 +1,941 @@ +{ + "version": "3.0.16\n", + "mode": "blocks", + "dev_mode": true, + "components": [ + { + "id": 26, + "type": "markdown", + "props": { + "value": "Try out all the components!
", + "name": "markdown", + "visible": true, + "style": {} + } + }, + { + "id": 28, + "type": "row", + "props": { + "type": "row", + "visible": true, + "style": { + "equal_height": false, + "mobile_collapse": true + } + } + }, + { + "id": 29, + "type": "column", + "props": { + "type": "column", + "variant": "panel", + "visible": true, + "style": {} + } + }, + { + "id": 30, + "type": "column", + "props": { + "type": "column", + "variant": "default", + "visible": true, + "style": {} + } + }, + { + "id": 0, + "type": "textbox", + "props": { + "lines": 1, + "max_lines": 20, + "value": "Lorem ipsum", + "label": "Textbox", + "show_label": true, + "name": "textbox", + "visible": true, + "style": {} + } + }, + { + "id": 1, + "type": "textbox", + "props": { + "lines": 3, + "max_lines": 20, + "placeholder": "Type here..", + "value": "", + "label": "Textbox 2", + "show_label": true, + "name": "textbox", + "visible": true, + "style": {} + } + }, + { + "id": 2, + "type": "number", + "props": { + "value": 42.0, + "label": "Number", + "show_label": true, + "name": "number", + "visible": true, + "style": {} + } + }, + { + "id": 3, + "type": "slider", + "props": { + "minimum": 10, + "maximum": 20, + "step": 0.1, + "value": 15, + "label": "Slider: 10 - 20", + "show_label": true, + "name": "slider", + "visible": true, + "style": {} + } + }, + { + "id": 4, + "type": "slider", + "props": { + "minimum": 0, + "maximum": 20, + "step": 0.04, + "value": 0, + "label": "Slider: step @ 0.04", + "show_label": true, + "name": "slider", + "visible": true, + "style": {} + } + }, + { + "id": 5, + "type": "checkbox", + "props": { + "value": false, + "label": "Checkbox", + "show_label": true, + "name": "checkbox", + "visible": true, + "style": {} + } + }, + { + "id": 6, + "type": "checkboxgroup", + "props": { + "choices": [ + "foo", + "bar", + "baz" + ], + "value": [ + "foo", + "bar" + ], + "label": "CheckboxGroup", + "show_label": true, + "name": "checkboxgroup", + "visible": true, + "style": {} + } + }, + { + "id": 7, + "type": "radio", + "props": { + "choices": [ + "foo", + "bar", + "baz" + ], + "value": "baz", + "label": "Radio", + "show_label": true, + "name": "radio", + "visible": true, + "style": {} + } + }, + { + "id": 8, + "type": "dropdown", + "props": { + "choices": [ + "foo", + "bar", + "baz" + ], + "value": "foo", + "label": "Dropdown", + "show_label": true, + "name": "dropdown", + "visible": true, + "style": {} + } + }, + { + "id": 9, + "type": "image", + "props": { + "image_mode": "RGB", + "source": "upload", + "tool": "editor", + "streaming": false, + "label": "Image", + "show_label": true, + "name": "image", + "visible": true, + "style": {} + } + }, + { + "id": 10, + "type": "image", + "props": { + "image_mode": "RGB", + "source": "upload", + "tool": "select", + "streaming": false, + "label": "Image w/ Cropper", + "show_label": true, + "name": "image", + "visible": true, + "style": {} + } + }, + { + "id": 11, + "type": "image", + "props": { + "image_mode": "RGB", + "source": "canvas", + "tool": "editor", + "streaming": false, + "label": "Sketchpad", + "show_label": true, + "name": "image", + "visible": true, + "style": {} + } + }, + { + "id": 12, + "type": "image", + "props": { + "image_mode": "RGB", + "source": "webcam", + "tool": "editor", + "streaming": false, + "label": "Webcam", + "show_label": true, + "name": "image", + "visible": true, + "style": {} + } + }, + { + "id": 13, + "type": "video", + "props": { + "source": "upload", + "label": "Video", + "show_label": true, + "name": "video", + "visible": true, + "style": {} + } + }, + { + "id": 14, + "type": "audio", + "props": { + "source": "upload", + "streaming": false, + "label": "Audio", + "show_label": true, + "name": "audio", + "visible": true, + "style": {} + } + }, + { + "id": 15, + "type": "audio", + "props": { + "source": "microphone", + "streaming": false, + "label": "Microphone", + "show_label": true, + "name": "audio", + "visible": true, + "style": {} + } + }, + { + "id": 31, + "type": "row", + "props": { + "type": "row", + "visible": true, + "style": { + "mobile_collapse": false + } + } + }, + { + "id": 32, + "type": "button", + "props": { + "value": "Clear", + "variant": "secondary", + "name": "button", + "visible": true, + "style": {} + } + }, + { + "id": 33, + "type": "button", + "props": { + "value": "Submit", + "variant": "primary", + "name": "button", + "visible": true, + "style": {} + } + }, + { + "id": 34, + "type": "column", + "props": { + "type": "column", + "variant": "panel", + "visible": true, + "style": {} + } + }, + { + "id": 35, + "type": "statustracker", + "props": { + "cover_container": true, + "name": "statustracker", + "visible": true, + "style": {} + } + }, + { + "id": 16, + "type": "textbox", + "props": { + "lines": 1, + "max_lines": 20, + "value": "", + "label": "Textbox", + "show_label": true, + "interactive": false, + "name": "textbox", + "visible": true, + "style": {} + } + }, + { + "id": 17, + "type": "label", + "props": { + "label": "Label", + "show_label": true, + "interactive": false, + "name": "label", + "visible": true, + "style": {} + } + }, + { + "id": 18, + "type": "audio", + "props": { + "source": "upload", + "streaming": false, + "label": "Audio", + "show_label": true, + "interactive": false, + "name": "audio", + "visible": true, + "style": {} + } + }, + { + "id": 19, + "type": "image", + "props": { + "image_mode": "RGB", + "source": "upload", + "tool": "editor", + "streaming": false, + "label": "Image", + "show_label": true, + "interactive": false, + "name": "image", + "visible": true, + "style": {} + } + }, + { + "id": 20, + "type": "video", + "props": { + "source": "upload", + "label": "Video", + "show_label": true, + "interactive": false, + "name": "video", + "visible": true, + "style": {} + } + }, + { + "id": 21, + "type": "highlightedtext", + "props": { + "color_map": { + "punc": "pink", + "test 0": "blue" + }, + "show_legend": false, + "label": "HighlightedText", + "show_label": true, + "interactive": false, + "name": "highlightedtext", + "visible": true, + "style": {} + } + }, + { + "id": 22, + "type": "highlightedtext", + "props": { + "show_legend": true, + "label": "HighlightedText", + "show_label": true, + "interactive": false, + "name": "highlightedtext", + "visible": true, + "style": {} + } + }, + { + "id": 23, + "type": "json", + "props": { + "label": "JSON", + "show_label": true, + "interactive": false, + "name": "json", + "visible": true, + "style": {} + } + }, + { + "id": 24, + "type": "html", + "props": { + "value": "", + "label": "HTML", + "show_label": true, + "interactive": false, + "name": "html", + "visible": true, + "style": {} + } + }, + { + "id": 36, + "type": "row", + "props": { + "type": "row", + "visible": true, + "style": { + "mobile_collapse": false + } + } + }, + { + "id": 37, + "type": "button", + "props": { + "value": "Flag", + "variant": "secondary", + "name": "button", + "visible": true, + "style": {} + } + }, + { + "id": 38, + "type": "dataset", + "props": { + "components": [ + "textbox", + "textbox", + "number", + "slider", + "slider", + "checkbox", + "checkboxgroup", + "radio", + "dropdown", + "image", + "image", + "image", + "image", + "video", + "audio", + "audio" + ], + "headers": [ + "Textbox", + "Textbox 2", + "Number", + "Slider: 10 - 20", + "Slider: step @ 0.04", + "Checkbox", + "CheckboxGroup", + "Radio", + "Dropdown", + "Image", + "Image w/ Cropper", + "Sketchpad", + "Webcam", + "Video", + "Audio", + "Microphone" + ], + "samples": [ + [ + "the quick brown fox", + "jumps over the lazy dog", + 10, + 12, + 4, + true, + [ + "foo", + "baz" + ], + "baz", + "bar", + "/Users/dawoodkhan/Desktop/Developer/gradio/demo/kitchen_sink/files/cheetah1.jpg", + "/Users/dawoodkhan/Desktop/Developer/gradio/demo/kitchen_sink/files/cheetah1.jpg", + "/Users/dawoodkhan/Desktop/Developer/gradio/demo/kitchen_sink/files/cheetah1.jpg", + "/Users/dawoodkhan/Desktop/Developer/gradio/demo/kitchen_sink/files/cheetah1.jpg", + "/Users/dawoodkhan/Desktop/Developer/gradio/demo/kitchen_sink/files/world.mp4", + "/Users/dawoodkhan/Desktop/Developer/gradio/demo/kitchen_sink/files/cantina.wav" + ], + [ + "the quick brown fox", + "jumps over the lazy dog", + 10, + 12, + 4, + true, + [ + "foo", + "baz" + ], + "baz", + "bar", + "/Users/dawoodkhan/Desktop/Developer/gradio/demo/kitchen_sink/files/cheetah1.jpg", + "/Users/dawoodkhan/Desktop/Developer/gradio/demo/kitchen_sink/files/cheetah1.jpg", + "/Users/dawoodkhan/Desktop/Developer/gradio/demo/kitchen_sink/files/cheetah1.jpg", + "/Users/dawoodkhan/Desktop/Developer/gradio/demo/kitchen_sink/files/cheetah1.jpg", + "/Users/dawoodkhan/Desktop/Developer/gradio/demo/kitchen_sink/files/world.mp4", + "/Users/dawoodkhan/Desktop/Developer/gradio/demo/kitchen_sink/files/cantina.wav" + ], + [ + "the quick brown fox", + "jumps over the lazy dog", + 10, + 12, + 4, + true, + [ + "foo", + "baz" + ], + "baz", + "bar", + "/Users/dawoodkhan/Desktop/Developer/gradio/demo/kitchen_sink/files/cheetah1.jpg", + "/Users/dawoodkhan/Desktop/Developer/gradio/demo/kitchen_sink/files/cheetah1.jpg", + "/Users/dawoodkhan/Desktop/Developer/gradio/demo/kitchen_sink/files/cheetah1.jpg", + "/Users/dawoodkhan/Desktop/Developer/gradio/demo/kitchen_sink/files/cheetah1.jpg", + "/Users/dawoodkhan/Desktop/Developer/gradio/demo/kitchen_sink/files/world.mp4", + "/Users/dawoodkhan/Desktop/Developer/gradio/demo/kitchen_sink/files/cantina.wav" + ] + ], + "type": "index", + "name": "dataset", + "visible": true, + "style": {} + } + }, + { + "id": 39, + "type": "markdown", + "props": { + "value": "Learn more about Gradio
", + "name": "markdown", + "visible": true, + "style": {} + } + } + ], + "theme": "default", + "css": null, + "enable_queue": false, + "layout": { + "id": 25, + "children": [ + { + "id": 26 + }, + { + "id": 27 + }, + { + "id": 28, + "children": [ + { + "id": 29, + "children": [ + { + "id": 30, + "children": [ + { + "id": 0 + }, + { + "id": 1 + }, + { + "id": 2 + }, + { + "id": 3 + }, + { + "id": 4 + }, + { + "id": 5 + }, + { + "id": 6 + }, + { + "id": 7 + }, + { + "id": 8 + }, + { + "id": 9 + }, + { + "id": 10 + }, + { + "id": 11 + }, + { + "id": 12 + }, + { + "id": 13 + }, + { + "id": 14 + }, + { + "id": 15 + } + ] + }, + { + "id": 31, + "children": [ + { + "id": 32 + }, + { + "id": 33 + } + ] + } + ] + }, + { + "id": 34, + "children": [ + { + "id": 35 + }, + { + "id": 16 + }, + { + "id": 17 + }, + { + "id": 18 + }, + { + "id": 19 + }, + { + "id": 20 + }, + { + "id": 21 + }, + { + "id": 22 + }, + { + "id": 23 + }, + { + "id": 24 + }, + { + "id": 36, + "children": [ + { + "id": 37 + } + ] + } + ] + } + ] + }, + { + "id": 38 + }, + { + "id": 39 + } + ] + }, + "dependencies": [ + { + "targets": [ + 33 + ], + "trigger": "click", + "inputs": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15 + ], + "outputs": [ + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24 + ], + "backend_fn": true, + "js": null, + "status_tracker": 35, + "queue": null, + "api_name": "predict", + "scroll_to_output": true, + "show_progress": true, + "documentation": [ + [ + "(str): text", + "(str): text", + "(float | None): numeric input", + "(number): numeric input", + "(number): numeric input", + "(bool): boolean input", + "(List[str]): list of selected choices", + "(str): selected choice", + "(str): selected choice", + "(str): base64 url data", + "(str): base64 url data", + "(str): base64 url data", + "(str): base64 url data", + "(Dict[name: str, data: str]): JSON object with filename as 'name' property and base64 data as 'data' property", + "(Dict[name: str, data: str]): JSON object with filename as 'name' property and base64 data as 'data' property", + "(Dict[name: str, data: str]): JSON object with filename as 'name' property and base64 data as 'data' property" + ], + [ + "(str | None): text", + "(Dict[label: str, confidences: List[Dict[label: str, confidence: number]]]): Object with key 'label' representing primary label, and key 'confidences' representing a list of label-confidence pairs", + "(str): base64 url data", + "(str): base64 url data", + "(str): base64 url data", + "(List[Tuple[str, str | number | None]]): List of (word, category) tuples", + "(List[Tuple[str, str | number | None]]): List of (word, category) tuples", + "(Dict | List): JSON output", + null + ] + ] + }, + { + "targets": [ + 32 + ], + "trigger": "click", + "inputs": [], + "outputs": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 30 + ], + "backend_fn": false, + "js": "() => [\"\", \"\", null, 15, 0, null, [], \"baz\", \"foo\", null, null, null, null, null, null, null, \"\", null, null, null, null, null, null, null, null, {\"variant\": null, \"visible\": true, \"__type__\": \"update\"}]\n ", + "status_tracker": null, + "queue": null, + "api_name": null, + "scroll_to_output": false, + "show_progress": true + }, + { + "targets": [ + 37 + ], + "trigger": "click", + "inputs": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24 + ], + "outputs": [], + "backend_fn": true, + "js": null, + "status_tracker": null, + "queue": false, + "api_name": null, + "scroll_to_output": false, + "show_progress": true + }, + { + "targets": [ + 38 + ], + "trigger": "click", + "inputs": [ + 38 + ], + "outputs": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15 + ], + "backend_fn": true, + "js": null, + "status_tracker": null, + "queue": false, + "api_name": null, + "scroll_to_output": false, + "show_progress": true + } + ] +} \ No newline at end of file diff --git a/demos/kitchen_sink/files/cantina.wav b/demos/kitchen_sink/files/cantina.wav new file mode 100644 index 0000000000000000000000000000000000000000..83651968c382d3c17ad48d84995c9b71753ba694 --- /dev/null +++ b/demos/kitchen_sink/files/cantina.wav @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2e5f73001b324e413bdcf658fca5485057c333f4198e51e7e86bb2e772cd0973 +size 132344 diff --git a/demos/kitchen_sink/files/cheetah1.jpg b/demos/kitchen_sink/files/cheetah1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..66d3b48fd19cd8cd8d8437b6f33183b3d3d42589 --- /dev/null +++ b/demos/kitchen_sink/files/cheetah1.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:35550bfbba996e59c242af00f6a14a9c0d055dfbc52ad069a1a4e8c1c39ca095 +size 20552 diff --git a/demos/kitchen_sink/files/time.csv b/demos/kitchen_sink/files/time.csv new file mode 100644 index 0000000000000000000000000000000000000000..ddb2035c4ed0377f54ee1602fff9f05ba5daa2db --- /dev/null +++ b/demos/kitchen_sink/files/time.csv @@ -0,0 +1,8 @@ +time,value,price +1,1,4 +2,3,8 +3,6,12 +4,10,16 +5,15,20 +6,21,24 +7,28,28 \ No newline at end of file diff --git a/demos/kitchen_sink/files/titanic.csv b/demos/kitchen_sink/files/titanic.csv new file mode 100644 index 0000000000000000000000000000000000000000..63b68ab0ba98c667f515c52f08c0bbd5573d5330 --- /dev/null +++ b/demos/kitchen_sink/files/titanic.csv @@ -0,0 +1,892 @@ +PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked +1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S +2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C +3,1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/O2. 3101282,7.925,,S +4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35,1,0,113803,53.1,C123,S +5,0,3,"Allen, Mr. William Henry",male,35,0,0,373450,8.05,,S +6,0,3,"Moran, Mr. James",male,,0,0,330877,8.4583,,Q +7,0,1,"McCarthy, Mr. Timothy J",male,54,0,0,17463,51.8625,E46,S +8,0,3,"Palsson, Master. Gosta Leonard",male,2,3,1,349909,21.075,,S +9,1,3,"Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",female,27,0,2,347742,11.1333,,S +10,1,2,"Nasser, Mrs. Nicholas (Adele Achem)",female,14,1,0,237736,30.0708,,C +11,1,3,"Sandstrom, Miss. Marguerite Rut",female,4,1,1,PP 9549,16.7,G6,S +12,1,1,"Bonnell, Miss. Elizabeth",female,58,0,0,113783,26.55,C103,S +13,0,3,"Saundercock, Mr. William Henry",male,20,0,0,A/5. 2151,8.05,,S +14,0,3,"Andersson, Mr. Anders Johan",male,39,1,5,347082,31.275,,S +15,0,3,"Vestrom, Miss. Hulda Amanda Adolfina",female,14,0,0,350406,7.8542,,S +16,1,2,"Hewlett, Mrs. (Mary D Kingcome) ",female,55,0,0,248706,16,,S +17,0,3,"Rice, Master. Eugene",male,2,4,1,382652,29.125,,Q +18,1,2,"Williams, Mr. Charles Eugene",male,,0,0,244373,13,,S +19,0,3,"Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)",female,31,1,0,345763,18,,S +20,1,3,"Masselmani, Mrs. Fatima",female,,0,0,2649,7.225,,C +21,0,2,"Fynney, Mr. Joseph J",male,35,0,0,239865,26,,S +22,1,2,"Beesley, Mr. Lawrence",male,34,0,0,248698,13,D56,S +23,1,3,"McGowan, Miss. Anna ""Annie""",female,15,0,0,330923,8.0292,,Q +24,1,1,"Sloper, Mr. William Thompson",male,28,0,0,113788,35.5,A6,S +25,0,3,"Palsson, Miss. Torborg Danira",female,8,3,1,349909,21.075,,S +26,1,3,"Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)",female,38,1,5,347077,31.3875,,S +27,0,3,"Emir, Mr. Farred Chehab",male,,0,0,2631,7.225,,C +28,0,1,"Fortune, Mr. Charles Alexander",male,19,3,2,19950,263,C23 C25 C27,S +29,1,3,"O'Dwyer, Miss. Ellen ""Nellie""",female,,0,0,330959,7.8792,,Q +30,0,3,"Todoroff, Mr. Lalio",male,,0,0,349216,7.8958,,S +31,0,1,"Uruchurtu, Don. Manuel E",male,40,0,0,PC 17601,27.7208,,C +32,1,1,"Spencer, Mrs. William Augustus (Marie Eugenie)",female,,1,0,PC 17569,146.5208,B78,C +33,1,3,"Glynn, Miss. Mary Agatha",female,,0,0,335677,7.75,,Q +34,0,2,"Wheadon, Mr. Edward H",male,66,0,0,C.A. 24579,10.5,,S +35,0,1,"Meyer, Mr. Edgar Joseph",male,28,1,0,PC 17604,82.1708,,C +36,0,1,"Holverson, Mr. Alexander Oskar",male,42,1,0,113789,52,,S +37,1,3,"Mamee, Mr. Hanna",male,,0,0,2677,7.2292,,C +38,0,3,"Cann, Mr. Ernest Charles",male,21,0,0,A./5. 2152,8.05,,S +39,0,3,"Vander Planke, Miss. Augusta Maria",female,18,2,0,345764,18,,S +40,1,3,"Nicola-Yarred, Miss. Jamila",female,14,1,0,2651,11.2417,,C +41,0,3,"Ahlin, Mrs. Johan (Johanna Persdotter Larsson)",female,40,1,0,7546,9.475,,S +42,0,2,"Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)",female,27,1,0,11668,21,,S +43,0,3,"Kraeff, Mr. Theodor",male,,0,0,349253,7.8958,,C +44,1,2,"Laroche, Miss. Simonne Marie Anne Andree",female,3,1,2,SC/Paris 2123,41.5792,,C +45,1,3,"Devaney, Miss. Margaret Delia",female,19,0,0,330958,7.8792,,Q +46,0,3,"Rogers, Mr. William John",male,,0,0,S.C./A.4. 23567,8.05,,S +47,0,3,"Lennon, Mr. Denis",male,,1,0,370371,15.5,,Q +48,1,3,"O'Driscoll, Miss. Bridget",female,,0,0,14311,7.75,,Q +49,0,3,"Samaan, Mr. Youssef",male,,2,0,2662,21.6792,,C +50,0,3,"Arnold-Franchi, Mrs. Josef (Josefine Franchi)",female,18,1,0,349237,17.8,,S +51,0,3,"Panula, Master. Juha Niilo",male,7,4,1,3101295,39.6875,,S +52,0,3,"Nosworthy, Mr. Richard Cater",male,21,0,0,A/4. 39886,7.8,,S +53,1,1,"Harper, Mrs. Henry Sleeper (Myna Haxtun)",female,49,1,0,PC 17572,76.7292,D33,C +54,1,2,"Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)",female,29,1,0,2926,26,,S +55,0,1,"Ostby, Mr. Engelhart Cornelius",male,65,0,1,113509,61.9792,B30,C +56,1,1,"Woolner, Mr. Hugh",male,,0,0,19947,35.5,C52,S +57,1,2,"Rugg, Miss. Emily",female,21,0,0,C.A. 31026,10.5,,S +58,0,3,"Novel, Mr. Mansouer",male,28.5,0,0,2697,7.2292,,C +59,1,2,"West, Miss. Constance Mirium",female,5,1,2,C.A. 34651,27.75,,S +60,0,3,"Goodwin, Master. William Frederick",male,11,5,2,CA 2144,46.9,,S +61,0,3,"Sirayanian, Mr. Orsen",male,22,0,0,2669,7.2292,,C +62,1,1,"Icard, Miss. Amelie",female,38,0,0,113572,80,B28, +63,0,1,"Harris, Mr. Henry Birkhardt",male,45,1,0,36973,83.475,C83,S +64,0,3,"Skoog, Master. Harald",male,4,3,2,347088,27.9,,S +65,0,1,"Stewart, Mr. Albert A",male,,0,0,PC 17605,27.7208,,C +66,1,3,"Moubarek, Master. Gerios",male,,1,1,2661,15.2458,,C +67,1,2,"Nye, Mrs. (Elizabeth Ramell)",female,29,0,0,C.A. 29395,10.5,F33,S +68,0,3,"Crease, Mr. Ernest James",male,19,0,0,S.P. 3464,8.1583,,S +69,1,3,"Andersson, Miss. Erna Alexandra",female,17,4,2,3101281,7.925,,S +70,0,3,"Kink, Mr. Vincenz",male,26,2,0,315151,8.6625,,S +71,0,2,"Jenkin, Mr. Stephen Curnow",male,32,0,0,C.A. 33111,10.5,,S +72,0,3,"Goodwin, Miss. Lillian Amy",female,16,5,2,CA 2144,46.9,,S +73,0,2,"Hood, Mr. Ambrose Jr",male,21,0,0,S.O.C. 14879,73.5,,S +74,0,3,"Chronopoulos, Mr. Apostolos",male,26,1,0,2680,14.4542,,C +75,1,3,"Bing, Mr. Lee",male,32,0,0,1601,56.4958,,S +76,0,3,"Moen, Mr. Sigurd Hansen",male,25,0,0,348123,7.65,F G73,S +77,0,3,"Staneff, Mr. Ivan",male,,0,0,349208,7.8958,,S +78,0,3,"Moutal, Mr. Rahamin Haim",male,,0,0,374746,8.05,,S +79,1,2,"Caldwell, Master. Alden Gates",male,0.83,0,2,248738,29,,S +80,1,3,"Dowdell, Miss. Elizabeth",female,30,0,0,364516,12.475,,S +81,0,3,"Waelens, Mr. Achille",male,22,0,0,345767,9,,S +82,1,3,"Sheerlinck, Mr. Jan Baptist",male,29,0,0,345779,9.5,,S +83,1,3,"McDermott, Miss. Brigdet Delia",female,,0,0,330932,7.7875,,Q +84,0,1,"Carrau, Mr. Francisco M",male,28,0,0,113059,47.1,,S +85,1,2,"Ilett, Miss. Bertha",female,17,0,0,SO/C 14885,10.5,,S +86,1,3,"Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson)",female,33,3,0,3101278,15.85,,S +87,0,3,"Ford, Mr. William Neal",male,16,1,3,W./C. 6608,34.375,,S +88,0,3,"Slocovski, Mr. Selman Francis",male,,0,0,SOTON/OQ 392086,8.05,,S +89,1,1,"Fortune, Miss. Mabel Helen",female,23,3,2,19950,263,C23 C25 C27,S +90,0,3,"Celotti, Mr. Francesco",male,24,0,0,343275,8.05,,S +91,0,3,"Christmann, Mr. Emil",male,29,0,0,343276,8.05,,S +92,0,3,"Andreasson, Mr. Paul Edvin",male,20,0,0,347466,7.8542,,S +93,0,1,"Chaffee, Mr. Herbert Fuller",male,46,1,0,W.E.P. 5734,61.175,E31,S +94,0,3,"Dean, Mr. Bertram Frank",male,26,1,2,C.A. 2315,20.575,,S +95,0,3,"Coxon, Mr. Daniel",male,59,0,0,364500,7.25,,S +96,0,3,"Shorney, Mr. Charles Joseph",male,,0,0,374910,8.05,,S +97,0,1,"Goldschmidt, Mr. George B",male,71,0,0,PC 17754,34.6542,A5,C +98,1,1,"Greenfield, Mr. William Bertram",male,23,0,1,PC 17759,63.3583,D10 D12,C +99,1,2,"Doling, Mrs. John T (Ada Julia Bone)",female,34,0,1,231919,23,,S +100,0,2,"Kantor, Mr. Sinai",male,34,1,0,244367,26,,S +101,0,3,"Petranec, Miss. Matilda",female,28,0,0,349245,7.8958,,S +102,0,3,"Petroff, Mr. Pastcho (""Pentcho"")",male,,0,0,349215,7.8958,,S +103,0,1,"White, Mr. Richard Frasar",male,21,0,1,35281,77.2875,D26,S +104,0,3,"Johansson, Mr. Gustaf Joel",male,33,0,0,7540,8.6542,,S +105,0,3,"Gustafsson, Mr. Anders Vilhelm",male,37,2,0,3101276,7.925,,S +106,0,3,"Mionoff, Mr. Stoytcho",male,28,0,0,349207,7.8958,,S +107,1,3,"Salkjelsvik, Miss. Anna Kristine",female,21,0,0,343120,7.65,,S +108,1,3,"Moss, Mr. Albert Johan",male,,0,0,312991,7.775,,S +109,0,3,"Rekic, Mr. Tido",male,38,0,0,349249,7.8958,,S +110,1,3,"Moran, Miss. Bertha",female,,1,0,371110,24.15,,Q +111,0,1,"Porter, Mr. Walter Chamberlain",male,47,0,0,110465,52,C110,S +112,0,3,"Zabour, Miss. Hileni",female,14.5,1,0,2665,14.4542,,C +113,0,3,"Barton, Mr. David John",male,22,0,0,324669,8.05,,S +114,0,3,"Jussila, Miss. Katriina",female,20,1,0,4136,9.825,,S +115,0,3,"Attalah, Miss. Malake",female,17,0,0,2627,14.4583,,C +116,0,3,"Pekoniemi, Mr. Edvard",male,21,0,0,STON/O 2. 3101294,7.925,,S +117,0,3,"Connors, Mr. Patrick",male,70.5,0,0,370369,7.75,,Q +118,0,2,"Turpin, Mr. William John Robert",male,29,1,0,11668,21,,S +119,0,1,"Baxter, Mr. Quigg Edmond",male,24,0,1,PC 17558,247.5208,B58 B60,C +120,0,3,"Andersson, Miss. Ellis Anna Maria",female,2,4,2,347082,31.275,,S +121,0,2,"Hickman, Mr. Stanley George",male,21,2,0,S.O.C. 14879,73.5,,S +122,0,3,"Moore, Mr. Leonard Charles",male,,0,0,A4. 54510,8.05,,S +123,0,2,"Nasser, Mr. Nicholas",male,32.5,1,0,237736,30.0708,,C +124,1,2,"Webber, Miss. Susan",female,32.5,0,0,27267,13,E101,S +125,0,1,"White, Mr. Percival Wayland",male,54,0,1,35281,77.2875,D26,S +126,1,3,"Nicola-Yarred, Master. Elias",male,12,1,0,2651,11.2417,,C +127,0,3,"McMahon, Mr. Martin",male,,0,0,370372,7.75,,Q +128,1,3,"Madsen, Mr. Fridtjof Arne",male,24,0,0,C 17369,7.1417,,S +129,1,3,"Peter, Miss. Anna",female,,1,1,2668,22.3583,F E69,C +130,0,3,"Ekstrom, Mr. Johan",male,45,0,0,347061,6.975,,S +131,0,3,"Drazenoic, Mr. Jozef",male,33,0,0,349241,7.8958,,C +132,0,3,"Coelho, Mr. Domingos Fernandeo",male,20,0,0,SOTON/O.Q. 3101307,7.05,,S +133,0,3,"Robins, Mrs. Alexander A (Grace Charity Laury)",female,47,1,0,A/5. 3337,14.5,,S +134,1,2,"Weisz, Mrs. Leopold (Mathilde Francoise Pede)",female,29,1,0,228414,26,,S +135,0,2,"Sobey, Mr. Samuel James Hayden",male,25,0,0,C.A. 29178,13,,S +136,0,2,"Richard, Mr. Emile",male,23,0,0,SC/PARIS 2133,15.0458,,C +137,1,1,"Newsom, Miss. Helen Monypeny",female,19,0,2,11752,26.2833,D47,S +138,0,1,"Futrelle, Mr. Jacques Heath",male,37,1,0,113803,53.1,C123,S +139,0,3,"Osen, Mr. Olaf Elon",male,16,0,0,7534,9.2167,,S +140,0,1,"Giglio, Mr. Victor",male,24,0,0,PC 17593,79.2,B86,C +141,0,3,"Boulos, Mrs. Joseph (Sultana)",female,,0,2,2678,15.2458,,C +142,1,3,"Nysten, Miss. Anna Sofia",female,22,0,0,347081,7.75,,S +143,1,3,"Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck)",female,24,1,0,STON/O2. 3101279,15.85,,S +144,0,3,"Burke, Mr. Jeremiah",male,19,0,0,365222,6.75,,Q +145,0,2,"Andrew, Mr. Edgardo Samuel",male,18,0,0,231945,11.5,,S +146,0,2,"Nicholls, Mr. Joseph Charles",male,19,1,1,C.A. 33112,36.75,,S +147,1,3,"Andersson, Mr. August Edvard (""Wennerstrom"")",male,27,0,0,350043,7.7958,,S +148,0,3,"Ford, Miss. Robina Maggie ""Ruby""",female,9,2,2,W./C. 6608,34.375,,S +149,0,2,"Navratil, Mr. Michel (""Louis M Hoffman"")",male,36.5,0,2,230080,26,F2,S +150,0,2,"Byles, Rev. Thomas Roussel Davids",male,42,0,0,244310,13,,S +151,0,2,"Bateman, Rev. Robert James",male,51,0,0,S.O.P. 1166,12.525,,S +152,1,1,"Pears, Mrs. Thomas (Edith Wearne)",female,22,1,0,113776,66.6,C2,S +153,0,3,"Meo, Mr. Alfonzo",male,55.5,0,0,A.5. 11206,8.05,,S +154,0,3,"van Billiard, Mr. Austin Blyler",male,40.5,0,2,A/5. 851,14.5,,S +155,0,3,"Olsen, Mr. Ole Martin",male,,0,0,Fa 265302,7.3125,,S +156,0,1,"Williams, Mr. Charles Duane",male,51,0,1,PC 17597,61.3792,,C +157,1,3,"Gilnagh, Miss. Katherine ""Katie""",female,16,0,0,35851,7.7333,,Q +158,0,3,"Corn, Mr. Harry",male,30,0,0,SOTON/OQ 392090,8.05,,S +159,0,3,"Smiljanic, Mr. Mile",male,,0,0,315037,8.6625,,S +160,0,3,"Sage, Master. Thomas Henry",male,,8,2,CA. 2343,69.55,,S +161,0,3,"Cribb, Mr. John Hatfield",male,44,0,1,371362,16.1,,S +162,1,2,"Watt, Mrs. James (Elizabeth ""Bessie"" Inglis Milne)",female,40,0,0,C.A. 33595,15.75,,S +163,0,3,"Bengtsson, Mr. John Viktor",male,26,0,0,347068,7.775,,S +164,0,3,"Calic, Mr. Jovo",male,17,0,0,315093,8.6625,,S +165,0,3,"Panula, Master. Eino Viljami",male,1,4,1,3101295,39.6875,,S +166,1,3,"Goldsmith, Master. Frank John William ""Frankie""",male,9,0,2,363291,20.525,,S +167,1,1,"Chibnall, Mrs. (Edith Martha Bowerman)",female,,0,1,113505,55,E33,S +168,0,3,"Skoog, Mrs. William (Anna Bernhardina Karlsson)",female,45,1,4,347088,27.9,,S +169,0,1,"Baumann, Mr. John D",male,,0,0,PC 17318,25.925,,S +170,0,3,"Ling, Mr. Lee",male,28,0,0,1601,56.4958,,S +171,0,1,"Van der hoef, Mr. Wyckoff",male,61,0,0,111240,33.5,B19,S +172,0,3,"Rice, Master. Arthur",male,4,4,1,382652,29.125,,Q +173,1,3,"Johnson, Miss. Eleanor Ileen",female,1,1,1,347742,11.1333,,S +174,0,3,"Sivola, Mr. Antti Wilhelm",male,21,0,0,STON/O 2. 3101280,7.925,,S +175,0,1,"Smith, Mr. James Clinch",male,56,0,0,17764,30.6958,A7,C +176,0,3,"Klasen, Mr. Klas Albin",male,18,1,1,350404,7.8542,,S +177,0,3,"Lefebre, Master. Henry Forbes",male,,3,1,4133,25.4667,,S +178,0,1,"Isham, Miss. Ann Elizabeth",female,50,0,0,PC 17595,28.7125,C49,C +179,0,2,"Hale, Mr. Reginald",male,30,0,0,250653,13,,S +180,0,3,"Leonard, Mr. Lionel",male,36,0,0,LINE,0,,S +181,0,3,"Sage, Miss. Constance Gladys",female,,8,2,CA. 2343,69.55,,S +182,0,2,"Pernot, Mr. Rene",male,,0,0,SC/PARIS 2131,15.05,,C +183,0,3,"Asplund, Master. Clarence Gustaf Hugo",male,9,4,2,347077,31.3875,,S +184,1,2,"Becker, Master. Richard F",male,1,2,1,230136,39,F4,S +185,1,3,"Kink-Heilmann, Miss. Luise Gretchen",female,4,0,2,315153,22.025,,S +186,0,1,"Rood, Mr. Hugh Roscoe",male,,0,0,113767,50,A32,S +187,1,3,"O'Brien, Mrs. Thomas (Johanna ""Hannah"" Godfrey)",female,,1,0,370365,15.5,,Q +188,1,1,"Romaine, Mr. Charles Hallace (""Mr C Rolmane"")",male,45,0,0,111428,26.55,,S +189,0,3,"Bourke, Mr. John",male,40,1,1,364849,15.5,,Q +190,0,3,"Turcin, Mr. Stjepan",male,36,0,0,349247,7.8958,,S +191,1,2,"Pinsky, Mrs. (Rosa)",female,32,0,0,234604,13,,S +192,0,2,"Carbines, Mr. William",male,19,0,0,28424,13,,S +193,1,3,"Andersen-Jensen, Miss. Carla Christine Nielsine",female,19,1,0,350046,7.8542,,S +194,1,2,"Navratil, Master. Michel M",male,3,1,1,230080,26,F2,S +195,1,1,"Brown, Mrs. James Joseph (Margaret Tobin)",female,44,0,0,PC 17610,27.7208,B4,C +196,1,1,"Lurette, Miss. Elise",female,58,0,0,PC 17569,146.5208,B80,C +197,0,3,"Mernagh, Mr. Robert",male,,0,0,368703,7.75,,Q +198,0,3,"Olsen, Mr. Karl Siegwart Andreas",male,42,0,1,4579,8.4042,,S +199,1,3,"Madigan, Miss. Margaret ""Maggie""",female,,0,0,370370,7.75,,Q +200,0,2,"Yrois, Miss. Henriette (""Mrs Harbeck"")",female,24,0,0,248747,13,,S +201,0,3,"Vande Walle, Mr. Nestor Cyriel",male,28,0,0,345770,9.5,,S +202,0,3,"Sage, Mr. Frederick",male,,8,2,CA. 2343,69.55,,S +203,0,3,"Johanson, Mr. Jakob Alfred",male,34,0,0,3101264,6.4958,,S +204,0,3,"Youseff, Mr. Gerious",male,45.5,0,0,2628,7.225,,C +205,1,3,"Cohen, Mr. Gurshon ""Gus""",male,18,0,0,A/5 3540,8.05,,S +206,0,3,"Strom, Miss. Telma Matilda",female,2,0,1,347054,10.4625,G6,S +207,0,3,"Backstrom, Mr. Karl Alfred",male,32,1,0,3101278,15.85,,S +208,1,3,"Albimona, Mr. Nassef Cassem",male,26,0,0,2699,18.7875,,C +209,1,3,"Carr, Miss. Helen ""Ellen""",female,16,0,0,367231,7.75,,Q +210,1,1,"Blank, Mr. Henry",male,40,0,0,112277,31,A31,C +211,0,3,"Ali, Mr. Ahmed",male,24,0,0,SOTON/O.Q. 3101311,7.05,,S +212,1,2,"Cameron, Miss. Clear Annie",female,35,0,0,F.C.C. 13528,21,,S +213,0,3,"Perkin, Mr. John Henry",male,22,0,0,A/5 21174,7.25,,S +214,0,2,"Givard, Mr. Hans Kristensen",male,30,0,0,250646,13,,S +215,0,3,"Kiernan, Mr. Philip",male,,1,0,367229,7.75,,Q +216,1,1,"Newell, Miss. Madeleine",female,31,1,0,35273,113.275,D36,C +217,1,3,"Honkanen, Miss. Eliina",female,27,0,0,STON/O2. 3101283,7.925,,S +218,0,2,"Jacobsohn, Mr. Sidney Samuel",male,42,1,0,243847,27,,S +219,1,1,"Bazzani, Miss. Albina",female,32,0,0,11813,76.2917,D15,C +220,0,2,"Harris, Mr. Walter",male,30,0,0,W/C 14208,10.5,,S +221,1,3,"Sunderland, Mr. Victor Francis",male,16,0,0,SOTON/OQ 392089,8.05,,S +222,0,2,"Bracken, Mr. James H",male,27,0,0,220367,13,,S +223,0,3,"Green, Mr. George Henry",male,51,0,0,21440,8.05,,S +224,0,3,"Nenkoff, Mr. Christo",male,,0,0,349234,7.8958,,S +225,1,1,"Hoyt, Mr. Frederick Maxfield",male,38,1,0,19943,90,C93,S +226,0,3,"Berglund, Mr. Karl Ivar Sven",male,22,0,0,PP 4348,9.35,,S +227,1,2,"Mellors, Mr. William John",male,19,0,0,SW/PP 751,10.5,,S +228,0,3,"Lovell, Mr. John Hall (""Henry"")",male,20.5,0,0,A/5 21173,7.25,,S +229,0,2,"Fahlstrom, Mr. Arne Jonas",male,18,0,0,236171,13,,S +230,0,3,"Lefebre, Miss. Mathilde",female,,3,1,4133,25.4667,,S +231,1,1,"Harris, Mrs. Henry Birkhardt (Irene Wallach)",female,35,1,0,36973,83.475,C83,S +232,0,3,"Larsson, Mr. Bengt Edvin",male,29,0,0,347067,7.775,,S +233,0,2,"Sjostedt, Mr. Ernst Adolf",male,59,0,0,237442,13.5,,S +234,1,3,"Asplund, Miss. Lillian Gertrud",female,5,4,2,347077,31.3875,,S +235,0,2,"Leyson, Mr. Robert William Norman",male,24,0,0,C.A. 29566,10.5,,S +236,0,3,"Harknett, Miss. Alice Phoebe",female,,0,0,W./C. 6609,7.55,,S +237,0,2,"Hold, Mr. Stephen",male,44,1,0,26707,26,,S +238,1,2,"Collyer, Miss. Marjorie ""Lottie""",female,8,0,2,C.A. 31921,26.25,,S +239,0,2,"Pengelly, Mr. Frederick William",male,19,0,0,28665,10.5,,S +240,0,2,"Hunt, Mr. George Henry",male,33,0,0,SCO/W 1585,12.275,,S +241,0,3,"Zabour, Miss. Thamine",female,,1,0,2665,14.4542,,C +242,1,3,"Murphy, Miss. Katherine ""Kate""",female,,1,0,367230,15.5,,Q +243,0,2,"Coleridge, Mr. Reginald Charles",male,29,0,0,W./C. 14263,10.5,,S +244,0,3,"Maenpaa, Mr. Matti Alexanteri",male,22,0,0,STON/O 2. 3101275,7.125,,S +245,0,3,"Attalah, Mr. Sleiman",male,30,0,0,2694,7.225,,C +246,0,1,"Minahan, Dr. William Edward",male,44,2,0,19928,90,C78,Q +247,0,3,"Lindahl, Miss. Agda Thorilda Viktoria",female,25,0,0,347071,7.775,,S +248,1,2,"Hamalainen, Mrs. William (Anna)",female,24,0,2,250649,14.5,,S +249,1,1,"Beckwith, Mr. Richard Leonard",male,37,1,1,11751,52.5542,D35,S +250,0,2,"Carter, Rev. Ernest Courtenay",male,54,1,0,244252,26,,S +251,0,3,"Reed, Mr. James George",male,,0,0,362316,7.25,,S +252,0,3,"Strom, Mrs. Wilhelm (Elna Matilda Persson)",female,29,1,1,347054,10.4625,G6,S +253,0,1,"Stead, Mr. William Thomas",male,62,0,0,113514,26.55,C87,S +254,0,3,"Lobb, Mr. William Arthur",male,30,1,0,A/5. 3336,16.1,,S +255,0,3,"Rosblom, Mrs. Viktor (Helena Wilhelmina)",female,41,0,2,370129,20.2125,,S +256,1,3,"Touma, Mrs. Darwis (Hanne Youssef Razi)",female,29,0,2,2650,15.2458,,C +257,1,1,"Thorne, Mrs. Gertrude Maybelle",female,,0,0,PC 17585,79.2,,C +258,1,1,"Cherry, Miss. Gladys",female,30,0,0,110152,86.5,B77,S +259,1,1,"Ward, Miss. Anna",female,35,0,0,PC 17755,512.3292,,C +260,1,2,"Parrish, Mrs. (Lutie Davis)",female,50,0,1,230433,26,,S +261,0,3,"Smith, Mr. Thomas",male,,0,0,384461,7.75,,Q +262,1,3,"Asplund, Master. Edvin Rojj Felix",male,3,4,2,347077,31.3875,,S +263,0,1,"Taussig, Mr. Emil",male,52,1,1,110413,79.65,E67,S +264,0,1,"Harrison, Mr. William",male,40,0,0,112059,0,B94,S +265,0,3,"Henry, Miss. Delia",female,,0,0,382649,7.75,,Q +266,0,2,"Reeves, Mr. David",male,36,0,0,C.A. 17248,10.5,,S +267,0,3,"Panula, Mr. Ernesti Arvid",male,16,4,1,3101295,39.6875,,S +268,1,3,"Persson, Mr. Ernst Ulrik",male,25,1,0,347083,7.775,,S +269,1,1,"Graham, Mrs. William Thompson (Edith Junkins)",female,58,0,1,PC 17582,153.4625,C125,S +270,1,1,"Bissette, Miss. Amelia",female,35,0,0,PC 17760,135.6333,C99,S +271,0,1,"Cairns, Mr. Alexander",male,,0,0,113798,31,,S +272,1,3,"Tornquist, Mr. William Henry",male,25,0,0,LINE,0,,S +273,1,2,"Mellinger, Mrs. (Elizabeth Anne Maidment)",female,41,0,1,250644,19.5,,S +274,0,1,"Natsch, Mr. Charles H",male,37,0,1,PC 17596,29.7,C118,C +275,1,3,"Healy, Miss. Hanora ""Nora""",female,,0,0,370375,7.75,,Q +276,1,1,"Andrews, Miss. Kornelia Theodosia",female,63,1,0,13502,77.9583,D7,S +277,0,3,"Lindblom, Miss. Augusta Charlotta",female,45,0,0,347073,7.75,,S +278,0,2,"Parkes, Mr. Francis ""Frank""",male,,0,0,239853,0,,S +279,0,3,"Rice, Master. Eric",male,7,4,1,382652,29.125,,Q +280,1,3,"Abbott, Mrs. Stanton (Rosa Hunt)",female,35,1,1,C.A. 2673,20.25,,S +281,0,3,"Duane, Mr. Frank",male,65,0,0,336439,7.75,,Q +282,0,3,"Olsson, Mr. Nils Johan Goransson",male,28,0,0,347464,7.8542,,S +283,0,3,"de Pelsmaeker, Mr. Alfons",male,16,0,0,345778,9.5,,S +284,1,3,"Dorking, Mr. Edward Arthur",male,19,0,0,A/5. 10482,8.05,,S +285,0,1,"Smith, Mr. Richard William",male,,0,0,113056,26,A19,S +286,0,3,"Stankovic, Mr. Ivan",male,33,0,0,349239,8.6625,,C +287,1,3,"de Mulder, Mr. Theodore",male,30,0,0,345774,9.5,,S +288,0,3,"Naidenoff, Mr. Penko",male,22,0,0,349206,7.8958,,S +289,1,2,"Hosono, Mr. Masabumi",male,42,0,0,237798,13,,S +290,1,3,"Connolly, Miss. Kate",female,22,0,0,370373,7.75,,Q +291,1,1,"Barber, Miss. Ellen ""Nellie""",female,26,0,0,19877,78.85,,S +292,1,1,"Bishop, Mrs. Dickinson H (Helen Walton)",female,19,1,0,11967,91.0792,B49,C +293,0,2,"Levy, Mr. Rene Jacques",male,36,0,0,SC/Paris 2163,12.875,D,C +294,0,3,"Haas, Miss. Aloisia",female,24,0,0,349236,8.85,,S +295,0,3,"Mineff, Mr. Ivan",male,24,0,0,349233,7.8958,,S +296,0,1,"Lewy, Mr. Ervin G",male,,0,0,PC 17612,27.7208,,C +297,0,3,"Hanna, Mr. Mansour",male,23.5,0,0,2693,7.2292,,C +298,0,1,"Allison, Miss. Helen Loraine",female,2,1,2,113781,151.55,C22 C26,S +299,1,1,"Saalfeld, Mr. Adolphe",male,,0,0,19988,30.5,C106,S +300,1,1,"Baxter, Mrs. James (Helene DeLaudeniere Chaput)",female,50,0,1,PC 17558,247.5208,B58 B60,C +301,1,3,"Kelly, Miss. Anna Katherine ""Annie Kate""",female,,0,0,9234,7.75,,Q +302,1,3,"McCoy, Mr. Bernard",male,,2,0,367226,23.25,,Q +303,0,3,"Johnson, Mr. William Cahoone Jr",male,19,0,0,LINE,0,,S +304,1,2,"Keane, Miss. Nora A",female,,0,0,226593,12.35,E101,Q +305,0,3,"Williams, Mr. Howard Hugh ""Harry""",male,,0,0,A/5 2466,8.05,,S +306,1,1,"Allison, Master. Hudson Trevor",male,0.92,1,2,113781,151.55,C22 C26,S +307,1,1,"Fleming, Miss. Margaret",female,,0,0,17421,110.8833,,C +308,1,1,"Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)",female,17,1,0,PC 17758,108.9,C65,C +309,0,2,"Abelson, Mr. Samuel",male,30,1,0,P/PP 3381,24,,C +310,1,1,"Francatelli, Miss. Laura Mabel",female,30,0,0,PC 17485,56.9292,E36,C +311,1,1,"Hays, Miss. Margaret Bechstein",female,24,0,0,11767,83.1583,C54,C +312,1,1,"Ryerson, Miss. Emily Borie",female,18,2,2,PC 17608,262.375,B57 B59 B63 B66,C +313,0,2,"Lahtinen, Mrs. William (Anna Sylfven)",female,26,1,1,250651,26,,S +314,0,3,"Hendekovic, Mr. Ignjac",male,28,0,0,349243,7.8958,,S +315,0,2,"Hart, Mr. Benjamin",male,43,1,1,F.C.C. 13529,26.25,,S +316,1,3,"Nilsson, Miss. Helmina Josefina",female,26,0,0,347470,7.8542,,S +317,1,2,"Kantor, Mrs. Sinai (Miriam Sternin)",female,24,1,0,244367,26,,S +318,0,2,"Moraweck, Dr. Ernest",male,54,0,0,29011,14,,S +319,1,1,"Wick, Miss. Mary Natalie",female,31,0,2,36928,164.8667,C7,S +320,1,1,"Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone)",female,40,1,1,16966,134.5,E34,C +321,0,3,"Dennis, Mr. Samuel",male,22,0,0,A/5 21172,7.25,,S +322,0,3,"Danoff, Mr. Yoto",male,27,0,0,349219,7.8958,,S +323,1,2,"Slayter, Miss. Hilda Mary",female,30,0,0,234818,12.35,,Q +324,1,2,"Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh)",female,22,1,1,248738,29,,S +325,0,3,"Sage, Mr. George John Jr",male,,8,2,CA. 2343,69.55,,S +326,1,1,"Young, Miss. Marie Grice",female,36,0,0,PC 17760,135.6333,C32,C +327,0,3,"Nysveen, Mr. Johan Hansen",male,61,0,0,345364,6.2375,,S +328,1,2,"Ball, Mrs. (Ada E Hall)",female,36,0,0,28551,13,D,S +329,1,3,"Goldsmith, Mrs. Frank John (Emily Alice Brown)",female,31,1,1,363291,20.525,,S +330,1,1,"Hippach, Miss. Jean Gertrude",female,16,0,1,111361,57.9792,B18,C +331,1,3,"McCoy, Miss. Agnes",female,,2,0,367226,23.25,,Q +332,0,1,"Partner, Mr. Austen",male,45.5,0,0,113043,28.5,C124,S +333,0,1,"Graham, Mr. George Edward",male,38,0,1,PC 17582,153.4625,C91,S +334,0,3,"Vander Planke, Mr. Leo Edmondus",male,16,2,0,345764,18,,S +335,1,1,"Frauenthal, Mrs. Henry William (Clara Heinsheimer)",female,,1,0,PC 17611,133.65,,S +336,0,3,"Denkoff, Mr. Mitto",male,,0,0,349225,7.8958,,S +337,0,1,"Pears, Mr. Thomas Clinton",male,29,1,0,113776,66.6,C2,S +338,1,1,"Burns, Miss. Elizabeth Margaret",female,41,0,0,16966,134.5,E40,C +339,1,3,"Dahl, Mr. Karl Edwart",male,45,0,0,7598,8.05,,S +340,0,1,"Blackwell, Mr. Stephen Weart",male,45,0,0,113784,35.5,T,S +341,1,2,"Navratil, Master. Edmond Roger",male,2,1,1,230080,26,F2,S +342,1,1,"Fortune, Miss. Alice Elizabeth",female,24,3,2,19950,263,C23 C25 C27,S +343,0,2,"Collander, Mr. Erik Gustaf",male,28,0,0,248740,13,,S +344,0,2,"Sedgwick, Mr. Charles Frederick Waddington",male,25,0,0,244361,13,,S +345,0,2,"Fox, Mr. Stanley Hubert",male,36,0,0,229236,13,,S +346,1,2,"Brown, Miss. Amelia ""Mildred""",female,24,0,0,248733,13,F33,S +347,1,2,"Smith, Miss. Marion Elsie",female,40,0,0,31418,13,,S +348,1,3,"Davison, Mrs. Thomas Henry (Mary E Finck)",female,,1,0,386525,16.1,,S +349,1,3,"Coutts, Master. William Loch ""William""",male,3,1,1,C.A. 37671,15.9,,S +350,0,3,"Dimic, Mr. Jovan",male,42,0,0,315088,8.6625,,S +351,0,3,"Odahl, Mr. Nils Martin",male,23,0,0,7267,9.225,,S +352,0,1,"Williams-Lambert, Mr. Fletcher Fellows",male,,0,0,113510,35,C128,S +353,0,3,"Elias, Mr. Tannous",male,15,1,1,2695,7.2292,,C +354,0,3,"Arnold-Franchi, Mr. Josef",male,25,1,0,349237,17.8,,S +355,0,3,"Yousif, Mr. Wazli",male,,0,0,2647,7.225,,C +356,0,3,"Vanden Steen, Mr. Leo Peter",male,28,0,0,345783,9.5,,S +357,1,1,"Bowerman, Miss. Elsie Edith",female,22,0,1,113505,55,E33,S +358,0,2,"Funk, Miss. Annie Clemmer",female,38,0,0,237671,13,,S +359,1,3,"McGovern, Miss. Mary",female,,0,0,330931,7.8792,,Q +360,1,3,"Mockler, Miss. Helen Mary ""Ellie""",female,,0,0,330980,7.8792,,Q +361,0,3,"Skoog, Mr. Wilhelm",male,40,1,4,347088,27.9,,S +362,0,2,"del Carlo, Mr. Sebastiano",male,29,1,0,SC/PARIS 2167,27.7208,,C +363,0,3,"Barbara, Mrs. (Catherine David)",female,45,0,1,2691,14.4542,,C +364,0,3,"Asim, Mr. Adola",male,35,0,0,SOTON/O.Q. 3101310,7.05,,S +365,0,3,"O'Brien, Mr. Thomas",male,,1,0,370365,15.5,,Q +366,0,3,"Adahl, Mr. Mauritz Nils Martin",male,30,0,0,C 7076,7.25,,S +367,1,1,"Warren, Mrs. Frank Manley (Anna Sophia Atkinson)",female,60,1,0,110813,75.25,D37,C +368,1,3,"Moussa, Mrs. (Mantoura Boulos)",female,,0,0,2626,7.2292,,C +369,1,3,"Jermyn, Miss. Annie",female,,0,0,14313,7.75,,Q +370,1,1,"Aubart, Mme. Leontine Pauline",female,24,0,0,PC 17477,69.3,B35,C +371,1,1,"Harder, Mr. George Achilles",male,25,1,0,11765,55.4417,E50,C +372,0,3,"Wiklund, Mr. Jakob Alfred",male,18,1,0,3101267,6.4958,,S +373,0,3,"Beavan, Mr. William Thomas",male,19,0,0,323951,8.05,,S +374,0,1,"Ringhini, Mr. Sante",male,22,0,0,PC 17760,135.6333,,C +375,0,3,"Palsson, Miss. Stina Viola",female,3,3,1,349909,21.075,,S +376,1,1,"Meyer, Mrs. Edgar Joseph (Leila Saks)",female,,1,0,PC 17604,82.1708,,C +377,1,3,"Landergren, Miss. Aurora Adelia",female,22,0,0,C 7077,7.25,,S +378,0,1,"Widener, Mr. Harry Elkins",male,27,0,2,113503,211.5,C82,C +379,0,3,"Betros, Mr. Tannous",male,20,0,0,2648,4.0125,,C +380,0,3,"Gustafsson, Mr. Karl Gideon",male,19,0,0,347069,7.775,,S +381,1,1,"Bidois, Miss. Rosalie",female,42,0,0,PC 17757,227.525,,C +382,1,3,"Nakid, Miss. Maria (""Mary"")",female,1,0,2,2653,15.7417,,C +383,0,3,"Tikkanen, Mr. Juho",male,32,0,0,STON/O 2. 3101293,7.925,,S +384,1,1,"Holverson, Mrs. Alexander Oskar (Mary Aline Towner)",female,35,1,0,113789,52,,S +385,0,3,"Plotcharsky, Mr. Vasil",male,,0,0,349227,7.8958,,S +386,0,2,"Davies, Mr. Charles Henry",male,18,0,0,S.O.C. 14879,73.5,,S +387,0,3,"Goodwin, Master. Sidney Leonard",male,1,5,2,CA 2144,46.9,,S +388,1,2,"Buss, Miss. Kate",female,36,0,0,27849,13,,S +389,0,3,"Sadlier, Mr. Matthew",male,,0,0,367655,7.7292,,Q +390,1,2,"Lehmann, Miss. Bertha",female,17,0,0,SC 1748,12,,C +391,1,1,"Carter, Mr. William Ernest",male,36,1,2,113760,120,B96 B98,S +392,1,3,"Jansson, Mr. Carl Olof",male,21,0,0,350034,7.7958,,S +393,0,3,"Gustafsson, Mr. Johan Birger",male,28,2,0,3101277,7.925,,S +394,1,1,"Newell, Miss. Marjorie",female,23,1,0,35273,113.275,D36,C +395,1,3,"Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson)",female,24,0,2,PP 9549,16.7,G6,S +396,0,3,"Johansson, Mr. Erik",male,22,0,0,350052,7.7958,,S +397,0,3,"Olsson, Miss. Elina",female,31,0,0,350407,7.8542,,S +398,0,2,"McKane, Mr. Peter David",male,46,0,0,28403,26,,S +399,0,2,"Pain, Dr. Alfred",male,23,0,0,244278,10.5,,S +400,1,2,"Trout, Mrs. William H (Jessie L)",female,28,0,0,240929,12.65,,S +401,1,3,"Niskanen, Mr. Juha",male,39,0,0,STON/O 2. 3101289,7.925,,S +402,0,3,"Adams, Mr. John",male,26,0,0,341826,8.05,,S +403,0,3,"Jussila, Miss. Mari Aina",female,21,1,0,4137,9.825,,S +404,0,3,"Hakkarainen, Mr. Pekka Pietari",male,28,1,0,STON/O2. 3101279,15.85,,S +405,0,3,"Oreskovic, Miss. Marija",female,20,0,0,315096,8.6625,,S +406,0,2,"Gale, Mr. Shadrach",male,34,1,0,28664,21,,S +407,0,3,"Widegren, Mr. Carl/Charles Peter",male,51,0,0,347064,7.75,,S +408,1,2,"Richards, Master. William Rowe",male,3,1,1,29106,18.75,,S +409,0,3,"Birkeland, Mr. Hans Martin Monsen",male,21,0,0,312992,7.775,,S +410,0,3,"Lefebre, Miss. Ida",female,,3,1,4133,25.4667,,S +411,0,3,"Sdycoff, Mr. Todor",male,,0,0,349222,7.8958,,S +412,0,3,"Hart, Mr. Henry",male,,0,0,394140,6.8583,,Q +413,1,1,"Minahan, Miss. Daisy E",female,33,1,0,19928,90,C78,Q +414,0,2,"Cunningham, Mr. Alfred Fleming",male,,0,0,239853,0,,S +415,1,3,"Sundman, Mr. Johan Julian",male,44,0,0,STON/O 2. 3101269,7.925,,S +416,0,3,"Meek, Mrs. Thomas (Annie Louise Rowley)",female,,0,0,343095,8.05,,S +417,1,2,"Drew, Mrs. James Vivian (Lulu Thorne Christian)",female,34,1,1,28220,32.5,,S +418,1,2,"Silven, Miss. Lyyli Karoliina",female,18,0,2,250652,13,,S +419,0,2,"Matthews, Mr. William John",male,30,0,0,28228,13,,S +420,0,3,"Van Impe, Miss. Catharina",female,10,0,2,345773,24.15,,S +421,0,3,"Gheorgheff, Mr. Stanio",male,,0,0,349254,7.8958,,C +422,0,3,"Charters, Mr. David",male,21,0,0,A/5. 13032,7.7333,,Q +423,0,3,"Zimmerman, Mr. Leo",male,29,0,0,315082,7.875,,S +424,0,3,"Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren)",female,28,1,1,347080,14.4,,S +425,0,3,"Rosblom, Mr. Viktor Richard",male,18,1,1,370129,20.2125,,S +426,0,3,"Wiseman, Mr. Phillippe",male,,0,0,A/4. 34244,7.25,,S +427,1,2,"Clarke, Mrs. Charles V (Ada Maria Winfield)",female,28,1,0,2003,26,,S +428,1,2,"Phillips, Miss. Kate Florence (""Mrs Kate Louise Phillips Marshall"")",female,19,0,0,250655,26,,S +429,0,3,"Flynn, Mr. James",male,,0,0,364851,7.75,,Q +430,1,3,"Pickard, Mr. Berk (Berk Trembisky)",male,32,0,0,SOTON/O.Q. 392078,8.05,E10,S +431,1,1,"Bjornstrom-Steffansson, Mr. Mauritz Hakan",male,28,0,0,110564,26.55,C52,S +432,1,3,"Thorneycroft, Mrs. Percival (Florence Kate White)",female,,1,0,376564,16.1,,S +433,1,2,"Louch, Mrs. Charles Alexander (Alice Adelaide Slow)",female,42,1,0,SC/AH 3085,26,,S +434,0,3,"Kallio, Mr. Nikolai Erland",male,17,0,0,STON/O 2. 3101274,7.125,,S +435,0,1,"Silvey, Mr. William Baird",male,50,1,0,13507,55.9,E44,S +436,1,1,"Carter, Miss. Lucile Polk",female,14,1,2,113760,120,B96 B98,S +437,0,3,"Ford, Miss. Doolina Margaret ""Daisy""",female,21,2,2,W./C. 6608,34.375,,S +438,1,2,"Richards, Mrs. Sidney (Emily Hocking)",female,24,2,3,29106,18.75,,S +439,0,1,"Fortune, Mr. Mark",male,64,1,4,19950,263,C23 C25 C27,S +440,0,2,"Kvillner, Mr. Johan Henrik Johannesson",male,31,0,0,C.A. 18723,10.5,,S +441,1,2,"Hart, Mrs. Benjamin (Esther Ada Bloomfield)",female,45,1,1,F.C.C. 13529,26.25,,S +442,0,3,"Hampe, Mr. Leon",male,20,0,0,345769,9.5,,S +443,0,3,"Petterson, Mr. Johan Emil",male,25,1,0,347076,7.775,,S +444,1,2,"Reynaldo, Ms. Encarnacion",female,28,0,0,230434,13,,S +445,1,3,"Johannesen-Bratthammer, Mr. Bernt",male,,0,0,65306,8.1125,,S +446,1,1,"Dodge, Master. Washington",male,4,0,2,33638,81.8583,A34,S +447,1,2,"Mellinger, Miss. Madeleine Violet",female,13,0,1,250644,19.5,,S +448,1,1,"Seward, Mr. Frederic Kimber",male,34,0,0,113794,26.55,,S +449,1,3,"Baclini, Miss. Marie Catherine",female,5,2,1,2666,19.2583,,C +450,1,1,"Peuchen, Major. Arthur Godfrey",male,52,0,0,113786,30.5,C104,S +451,0,2,"West, Mr. Edwy Arthur",male,36,1,2,C.A. 34651,27.75,,S +452,0,3,"Hagland, Mr. Ingvald Olai Olsen",male,,1,0,65303,19.9667,,S +453,0,1,"Foreman, Mr. Benjamin Laventall",male,30,0,0,113051,27.75,C111,C +454,1,1,"Goldenberg, Mr. Samuel L",male,49,1,0,17453,89.1042,C92,C +455,0,3,"Peduzzi, Mr. Joseph",male,,0,0,A/5 2817,8.05,,S +456,1,3,"Jalsevac, Mr. Ivan",male,29,0,0,349240,7.8958,,C +457,0,1,"Millet, Mr. Francis Davis",male,65,0,0,13509,26.55,E38,S +458,1,1,"Kenyon, Mrs. Frederick R (Marion)",female,,1,0,17464,51.8625,D21,S +459,1,2,"Toomey, Miss. Ellen",female,50,0,0,F.C.C. 13531,10.5,,S +460,0,3,"O'Connor, Mr. Maurice",male,,0,0,371060,7.75,,Q +461,1,1,"Anderson, Mr. Harry",male,48,0,0,19952,26.55,E12,S +462,0,3,"Morley, Mr. William",male,34,0,0,364506,8.05,,S +463,0,1,"Gee, Mr. Arthur H",male,47,0,0,111320,38.5,E63,S +464,0,2,"Milling, Mr. Jacob Christian",male,48,0,0,234360,13,,S +465,0,3,"Maisner, Mr. Simon",male,,0,0,A/S 2816,8.05,,S +466,0,3,"Goncalves, Mr. Manuel Estanslas",male,38,0,0,SOTON/O.Q. 3101306,7.05,,S +467,0,2,"Campbell, Mr. William",male,,0,0,239853,0,,S +468,0,1,"Smart, Mr. John Montgomery",male,56,0,0,113792,26.55,,S +469,0,3,"Scanlan, Mr. James",male,,0,0,36209,7.725,,Q +470,1,3,"Baclini, Miss. Helene Barbara",female,0.75,2,1,2666,19.2583,,C +471,0,3,"Keefe, Mr. Arthur",male,,0,0,323592,7.25,,S +472,0,3,"Cacic, Mr. Luka",male,38,0,0,315089,8.6625,,S +473,1,2,"West, Mrs. Edwy Arthur (Ada Mary Worth)",female,33,1,2,C.A. 34651,27.75,,S +474,1,2,"Jerwan, Mrs. Amin S (Marie Marthe Thuillard)",female,23,0,0,SC/AH Basle 541,13.7917,D,C +475,0,3,"Strandberg, Miss. Ida Sofia",female,22,0,0,7553,9.8375,,S +476,0,1,"Clifford, Mr. George Quincy",male,,0,0,110465,52,A14,S +477,0,2,"Renouf, Mr. Peter Henry",male,34,1,0,31027,21,,S +478,0,3,"Braund, Mr. Lewis Richard",male,29,1,0,3460,7.0458,,S +479,0,3,"Karlsson, Mr. Nils August",male,22,0,0,350060,7.5208,,S +480,1,3,"Hirvonen, Miss. Hildur E",female,2,0,1,3101298,12.2875,,S +481,0,3,"Goodwin, Master. Harold Victor",male,9,5,2,CA 2144,46.9,,S +482,0,2,"Frost, Mr. Anthony Wood ""Archie""",male,,0,0,239854,0,,S +483,0,3,"Rouse, Mr. Richard Henry",male,50,0,0,A/5 3594,8.05,,S +484,1,3,"Turkula, Mrs. (Hedwig)",female,63,0,0,4134,9.5875,,S +485,1,1,"Bishop, Mr. Dickinson H",male,25,1,0,11967,91.0792,B49,C +486,0,3,"Lefebre, Miss. Jeannie",female,,3,1,4133,25.4667,,S +487,1,1,"Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby)",female,35,1,0,19943,90,C93,S +488,0,1,"Kent, Mr. Edward Austin",male,58,0,0,11771,29.7,B37,C +489,0,3,"Somerton, Mr. Francis William",male,30,0,0,A.5. 18509,8.05,,S +490,1,3,"Coutts, Master. Eden Leslie ""Neville""",male,9,1,1,C.A. 37671,15.9,,S +491,0,3,"Hagland, Mr. Konrad Mathias Reiersen",male,,1,0,65304,19.9667,,S +492,0,3,"Windelov, Mr. Einar",male,21,0,0,SOTON/OQ 3101317,7.25,,S +493,0,1,"Molson, Mr. Harry Markland",male,55,0,0,113787,30.5,C30,S +494,0,1,"Artagaveytia, Mr. Ramon",male,71,0,0,PC 17609,49.5042,,C +495,0,3,"Stanley, Mr. Edward Roland",male,21,0,0,A/4 45380,8.05,,S +496,0,3,"Yousseff, Mr. Gerious",male,,0,0,2627,14.4583,,C +497,1,1,"Eustis, Miss. Elizabeth Mussey",female,54,1,0,36947,78.2667,D20,C +498,0,3,"Shellard, Mr. Frederick William",male,,0,0,C.A. 6212,15.1,,S +499,0,1,"Allison, Mrs. Hudson J C (Bessie Waldo Daniels)",female,25,1,2,113781,151.55,C22 C26,S +500,0,3,"Svensson, Mr. Olof",male,24,0,0,350035,7.7958,,S +501,0,3,"Calic, Mr. Petar",male,17,0,0,315086,8.6625,,S +502,0,3,"Canavan, Miss. Mary",female,21,0,0,364846,7.75,,Q +503,0,3,"O'Sullivan, Miss. Bridget Mary",female,,0,0,330909,7.6292,,Q +504,0,3,"Laitinen, Miss. Kristina Sofia",female,37,0,0,4135,9.5875,,S +505,1,1,"Maioni, Miss. Roberta",female,16,0,0,110152,86.5,B79,S +506,0,1,"Penasco y Castellana, Mr. Victor de Satode",male,18,1,0,PC 17758,108.9,C65,C +507,1,2,"Quick, Mrs. Frederick Charles (Jane Richards)",female,33,0,2,26360,26,,S +508,1,1,"Bradley, Mr. George (""George Arthur Brayton"")",male,,0,0,111427,26.55,,S +509,0,3,"Olsen, Mr. Henry Margido",male,28,0,0,C 4001,22.525,,S +510,1,3,"Lang, Mr. Fang",male,26,0,0,1601,56.4958,,S +511,1,3,"Daly, Mr. Eugene Patrick",male,29,0,0,382651,7.75,,Q +512,0,3,"Webber, Mr. James",male,,0,0,SOTON/OQ 3101316,8.05,,S +513,1,1,"McGough, Mr. James Robert",male,36,0,0,PC 17473,26.2875,E25,S +514,1,1,"Rothschild, Mrs. Martin (Elizabeth L. Barrett)",female,54,1,0,PC 17603,59.4,,C +515,0,3,"Coleff, Mr. Satio",male,24,0,0,349209,7.4958,,S +516,0,1,"Walker, Mr. William Anderson",male,47,0,0,36967,34.0208,D46,S +517,1,2,"Lemore, Mrs. (Amelia Milley)",female,34,0,0,C.A. 34260,10.5,F33,S +518,0,3,"Ryan, Mr. Patrick",male,,0,0,371110,24.15,,Q +519,1,2,"Angle, Mrs. William A (Florence ""Mary"" Agnes Hughes)",female,36,1,0,226875,26,,S +520,0,3,"Pavlovic, Mr. Stefo",male,32,0,0,349242,7.8958,,S +521,1,1,"Perreault, Miss. Anne",female,30,0,0,12749,93.5,B73,S +522,0,3,"Vovk, Mr. Janko",male,22,0,0,349252,7.8958,,S +523,0,3,"Lahoud, Mr. Sarkis",male,,0,0,2624,7.225,,C +524,1,1,"Hippach, Mrs. Louis Albert (Ida Sophia Fischer)",female,44,0,1,111361,57.9792,B18,C +525,0,3,"Kassem, Mr. Fared",male,,0,0,2700,7.2292,,C +526,0,3,"Farrell, Mr. James",male,40.5,0,0,367232,7.75,,Q +527,1,2,"Ridsdale, Miss. Lucy",female,50,0,0,W./C. 14258,10.5,,S +528,0,1,"Farthing, Mr. John",male,,0,0,PC 17483,221.7792,C95,S +529,0,3,"Salonen, Mr. Johan Werner",male,39,0,0,3101296,7.925,,S +530,0,2,"Hocking, Mr. Richard George",male,23,2,1,29104,11.5,,S +531,1,2,"Quick, Miss. Phyllis May",female,2,1,1,26360,26,,S +532,0,3,"Toufik, Mr. Nakli",male,,0,0,2641,7.2292,,C +533,0,3,"Elias, Mr. Joseph Jr",male,17,1,1,2690,7.2292,,C +534,1,3,"Peter, Mrs. Catherine (Catherine Rizk)",female,,0,2,2668,22.3583,,C +535,0,3,"Cacic, Miss. Marija",female,30,0,0,315084,8.6625,,S +536,1,2,"Hart, Miss. Eva Miriam",female,7,0,2,F.C.C. 13529,26.25,,S +537,0,1,"Butt, Major. Archibald Willingham",male,45,0,0,113050,26.55,B38,S +538,1,1,"LeRoy, Miss. Bertha",female,30,0,0,PC 17761,106.425,,C +539,0,3,"Risien, Mr. Samuel Beard",male,,0,0,364498,14.5,,S +540,1,1,"Frolicher, Miss. Hedwig Margaritha",female,22,0,2,13568,49.5,B39,C +541,1,1,"Crosby, Miss. Harriet R",female,36,0,2,WE/P 5735,71,B22,S +542,0,3,"Andersson, Miss. Ingeborg Constanzia",female,9,4,2,347082,31.275,,S +543,0,3,"Andersson, Miss. Sigrid Elisabeth",female,11,4,2,347082,31.275,,S +544,1,2,"Beane, Mr. Edward",male,32,1,0,2908,26,,S +545,0,1,"Douglas, Mr. Walter Donald",male,50,1,0,PC 17761,106.425,C86,C +546,0,1,"Nicholson, Mr. Arthur Ernest",male,64,0,0,693,26,,S +547,1,2,"Beane, Mrs. Edward (Ethel Clarke)",female,19,1,0,2908,26,,S +548,1,2,"Padro y Manent, Mr. Julian",male,,0,0,SC/PARIS 2146,13.8625,,C +549,0,3,"Goldsmith, Mr. Frank John",male,33,1,1,363291,20.525,,S +550,1,2,"Davies, Master. John Morgan Jr",male,8,1,1,C.A. 33112,36.75,,S +551,1,1,"Thayer, Mr. John Borland Jr",male,17,0,2,17421,110.8833,C70,C +552,0,2,"Sharp, Mr. Percival James R",male,27,0,0,244358,26,,S +553,0,3,"O'Brien, Mr. Timothy",male,,0,0,330979,7.8292,,Q +554,1,3,"Leeni, Mr. Fahim (""Philip Zenni"")",male,22,0,0,2620,7.225,,C +555,1,3,"Ohman, Miss. Velin",female,22,0,0,347085,7.775,,S +556,0,1,"Wright, Mr. George",male,62,0,0,113807,26.55,,S +557,1,1,"Duff Gordon, Lady. (Lucille Christiana Sutherland) (""Mrs Morgan"")",female,48,1,0,11755,39.6,A16,C +558,0,1,"Robbins, Mr. Victor",male,,0,0,PC 17757,227.525,,C +559,1,1,"Taussig, Mrs. Emil (Tillie Mandelbaum)",female,39,1,1,110413,79.65,E67,S +560,1,3,"de Messemaeker, Mrs. Guillaume Joseph (Emma)",female,36,1,0,345572,17.4,,S +561,0,3,"Morrow, Mr. Thomas Rowan",male,,0,0,372622,7.75,,Q +562,0,3,"Sivic, Mr. Husein",male,40,0,0,349251,7.8958,,S +563,0,2,"Norman, Mr. Robert Douglas",male,28,0,0,218629,13.5,,S +564,0,3,"Simmons, Mr. John",male,,0,0,SOTON/OQ 392082,8.05,,S +565,0,3,"Meanwell, Miss. (Marion Ogden)",female,,0,0,SOTON/O.Q. 392087,8.05,,S +566,0,3,"Davies, Mr. Alfred J",male,24,2,0,A/4 48871,24.15,,S +567,0,3,"Stoytcheff, Mr. Ilia",male,19,0,0,349205,7.8958,,S +568,0,3,"Palsson, Mrs. Nils (Alma Cornelia Berglund)",female,29,0,4,349909,21.075,,S +569,0,3,"Doharr, Mr. Tannous",male,,0,0,2686,7.2292,,C +570,1,3,"Jonsson, Mr. Carl",male,32,0,0,350417,7.8542,,S +571,1,2,"Harris, Mr. George",male,62,0,0,S.W./PP 752,10.5,,S +572,1,1,"Appleton, Mrs. Edward Dale (Charlotte Lamson)",female,53,2,0,11769,51.4792,C101,S +573,1,1,"Flynn, Mr. John Irwin (""Irving"")",male,36,0,0,PC 17474,26.3875,E25,S +574,1,3,"Kelly, Miss. Mary",female,,0,0,14312,7.75,,Q +575,0,3,"Rush, Mr. Alfred George John",male,16,0,0,A/4. 20589,8.05,,S +576,0,3,"Patchett, Mr. George",male,19,0,0,358585,14.5,,S +577,1,2,"Garside, Miss. Ethel",female,34,0,0,243880,13,,S +578,1,1,"Silvey, Mrs. William Baird (Alice Munger)",female,39,1,0,13507,55.9,E44,S +579,0,3,"Caram, Mrs. Joseph (Maria Elias)",female,,1,0,2689,14.4583,,C +580,1,3,"Jussila, Mr. Eiriik",male,32,0,0,STON/O 2. 3101286,7.925,,S +581,1,2,"Christy, Miss. Julie Rachel",female,25,1,1,237789,30,,S +582,1,1,"Thayer, Mrs. John Borland (Marian Longstreth Morris)",female,39,1,1,17421,110.8833,C68,C +583,0,2,"Downton, Mr. William James",male,54,0,0,28403,26,,S +584,0,1,"Ross, Mr. John Hugo",male,36,0,0,13049,40.125,A10,C +585,0,3,"Paulner, Mr. Uscher",male,,0,0,3411,8.7125,,C +586,1,1,"Taussig, Miss. Ruth",female,18,0,2,110413,79.65,E68,S +587,0,2,"Jarvis, Mr. John Denzil",male,47,0,0,237565,15,,S +588,1,1,"Frolicher-Stehli, Mr. Maxmillian",male,60,1,1,13567,79.2,B41,C +589,0,3,"Gilinski, Mr. Eliezer",male,22,0,0,14973,8.05,,S +590,0,3,"Murdlin, Mr. Joseph",male,,0,0,A./5. 3235,8.05,,S +591,0,3,"Rintamaki, Mr. Matti",male,35,0,0,STON/O 2. 3101273,7.125,,S +592,1,1,"Stephenson, Mrs. Walter Bertram (Martha Eustis)",female,52,1,0,36947,78.2667,D20,C +593,0,3,"Elsbury, Mr. William James",male,47,0,0,A/5 3902,7.25,,S +594,0,3,"Bourke, Miss. Mary",female,,0,2,364848,7.75,,Q +595,0,2,"Chapman, Mr. John Henry",male,37,1,0,SC/AH 29037,26,,S +596,0,3,"Van Impe, Mr. Jean Baptiste",male,36,1,1,345773,24.15,,S +597,1,2,"Leitch, Miss. Jessie Wills",female,,0,0,248727,33,,S +598,0,3,"Johnson, Mr. Alfred",male,49,0,0,LINE,0,,S +599,0,3,"Boulos, Mr. Hanna",male,,0,0,2664,7.225,,C +600,1,1,"Duff Gordon, Sir. Cosmo Edmund (""Mr Morgan"")",male,49,1,0,PC 17485,56.9292,A20,C +601,1,2,"Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy)",female,24,2,1,243847,27,,S +602,0,3,"Slabenoff, Mr. Petco",male,,0,0,349214,7.8958,,S +603,0,1,"Harrington, Mr. Charles H",male,,0,0,113796,42.4,,S +604,0,3,"Torber, Mr. Ernst William",male,44,0,0,364511,8.05,,S +605,1,1,"Homer, Mr. Harry (""Mr E Haven"")",male,35,0,0,111426,26.55,,C +606,0,3,"Lindell, Mr. Edvard Bengtsson",male,36,1,0,349910,15.55,,S +607,0,3,"Karaic, Mr. Milan",male,30,0,0,349246,7.8958,,S +608,1,1,"Daniel, Mr. Robert Williams",male,27,0,0,113804,30.5,,S +609,1,2,"Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue)",female,22,1,2,SC/Paris 2123,41.5792,,C +610,1,1,"Shutes, Miss. Elizabeth W",female,40,0,0,PC 17582,153.4625,C125,S +611,0,3,"Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren)",female,39,1,5,347082,31.275,,S +612,0,3,"Jardin, Mr. Jose Neto",male,,0,0,SOTON/O.Q. 3101305,7.05,,S +613,1,3,"Murphy, Miss. Margaret Jane",female,,1,0,367230,15.5,,Q +614,0,3,"Horgan, Mr. John",male,,0,0,370377,7.75,,Q +615,0,3,"Brocklebank, Mr. William Alfred",male,35,0,0,364512,8.05,,S +616,1,2,"Herman, Miss. Alice",female,24,1,2,220845,65,,S +617,0,3,"Danbom, Mr. Ernst Gilbert",male,34,1,1,347080,14.4,,S +618,0,3,"Lobb, Mrs. William Arthur (Cordelia K Stanlick)",female,26,1,0,A/5. 3336,16.1,,S +619,1,2,"Becker, Miss. Marion Louise",female,4,2,1,230136,39,F4,S +620,0,2,"Gavey, Mr. Lawrence",male,26,0,0,31028,10.5,,S +621,0,3,"Yasbeck, Mr. Antoni",male,27,1,0,2659,14.4542,,C +622,1,1,"Kimball, Mr. Edwin Nelson Jr",male,42,1,0,11753,52.5542,D19,S +623,1,3,"Nakid, Mr. Sahid",male,20,1,1,2653,15.7417,,C +624,0,3,"Hansen, Mr. Henry Damsgaard",male,21,0,0,350029,7.8542,,S +625,0,3,"Bowen, Mr. David John ""Dai""",male,21,0,0,54636,16.1,,S +626,0,1,"Sutton, Mr. Frederick",male,61,0,0,36963,32.3208,D50,S +627,0,2,"Kirkland, Rev. Charles Leonard",male,57,0,0,219533,12.35,,Q +628,1,1,"Longley, Miss. Gretchen Fiske",female,21,0,0,13502,77.9583,D9,S +629,0,3,"Bostandyeff, Mr. Guentcho",male,26,0,0,349224,7.8958,,S +630,0,3,"O'Connell, Mr. Patrick D",male,,0,0,334912,7.7333,,Q +631,1,1,"Barkworth, Mr. Algernon Henry Wilson",male,80,0,0,27042,30,A23,S +632,0,3,"Lundahl, Mr. Johan Svensson",male,51,0,0,347743,7.0542,,S +633,1,1,"Stahelin-Maeglin, Dr. Max",male,32,0,0,13214,30.5,B50,C +634,0,1,"Parr, Mr. William Henry Marsh",male,,0,0,112052,0,,S +635,0,3,"Skoog, Miss. Mabel",female,9,3,2,347088,27.9,,S +636,1,2,"Davis, Miss. Mary",female,28,0,0,237668,13,,S +637,0,3,"Leinonen, Mr. Antti Gustaf",male,32,0,0,STON/O 2. 3101292,7.925,,S +638,0,2,"Collyer, Mr. Harvey",male,31,1,1,C.A. 31921,26.25,,S +639,0,3,"Panula, Mrs. Juha (Maria Emilia Ojala)",female,41,0,5,3101295,39.6875,,S +640,0,3,"Thorneycroft, Mr. Percival",male,,1,0,376564,16.1,,S +641,0,3,"Jensen, Mr. Hans Peder",male,20,0,0,350050,7.8542,,S +642,1,1,"Sagesser, Mlle. Emma",female,24,0,0,PC 17477,69.3,B35,C +643,0,3,"Skoog, Miss. Margit Elizabeth",female,2,3,2,347088,27.9,,S +644,1,3,"Foo, Mr. Choong",male,,0,0,1601,56.4958,,S +645,1,3,"Baclini, Miss. Eugenie",female,0.75,2,1,2666,19.2583,,C +646,1,1,"Harper, Mr. Henry Sleeper",male,48,1,0,PC 17572,76.7292,D33,C +647,0,3,"Cor, Mr. Liudevit",male,19,0,0,349231,7.8958,,S +648,1,1,"Simonius-Blumer, Col. Oberst Alfons",male,56,0,0,13213,35.5,A26,C +649,0,3,"Willey, Mr. Edward",male,,0,0,S.O./P.P. 751,7.55,,S +650,1,3,"Stanley, Miss. Amy Zillah Elsie",female,23,0,0,CA. 2314,7.55,,S +651,0,3,"Mitkoff, Mr. Mito",male,,0,0,349221,7.8958,,S +652,1,2,"Doling, Miss. Elsie",female,18,0,1,231919,23,,S +653,0,3,"Kalvik, Mr. Johannes Halvorsen",male,21,0,0,8475,8.4333,,S +654,1,3,"O'Leary, Miss. Hanora ""Norah""",female,,0,0,330919,7.8292,,Q +655,0,3,"Hegarty, Miss. Hanora ""Nora""",female,18,0,0,365226,6.75,,Q +656,0,2,"Hickman, Mr. Leonard Mark",male,24,2,0,S.O.C. 14879,73.5,,S +657,0,3,"Radeff, Mr. Alexander",male,,0,0,349223,7.8958,,S +658,0,3,"Bourke, Mrs. John (Catherine)",female,32,1,1,364849,15.5,,Q +659,0,2,"Eitemiller, Mr. George Floyd",male,23,0,0,29751,13,,S +660,0,1,"Newell, Mr. Arthur Webster",male,58,0,2,35273,113.275,D48,C +661,1,1,"Frauenthal, Dr. Henry William",male,50,2,0,PC 17611,133.65,,S +662,0,3,"Badt, Mr. Mohamed",male,40,0,0,2623,7.225,,C +663,0,1,"Colley, Mr. Edward Pomeroy",male,47,0,0,5727,25.5875,E58,S +664,0,3,"Coleff, Mr. Peju",male,36,0,0,349210,7.4958,,S +665,1,3,"Lindqvist, Mr. Eino William",male,20,1,0,STON/O 2. 3101285,7.925,,S +666,0,2,"Hickman, Mr. Lewis",male,32,2,0,S.O.C. 14879,73.5,,S +667,0,2,"Butler, Mr. Reginald Fenton",male,25,0,0,234686,13,,S +668,0,3,"Rommetvedt, Mr. Knud Paust",male,,0,0,312993,7.775,,S +669,0,3,"Cook, Mr. Jacob",male,43,0,0,A/5 3536,8.05,,S +670,1,1,"Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)",female,,1,0,19996,52,C126,S +671,1,2,"Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford)",female,40,1,1,29750,39,,S +672,0,1,"Davidson, Mr. Thornton",male,31,1,0,F.C. 12750,52,B71,S +673,0,2,"Mitchell, Mr. Henry Michael",male,70,0,0,C.A. 24580,10.5,,S +674,1,2,"Wilhelms, Mr. Charles",male,31,0,0,244270,13,,S +675,0,2,"Watson, Mr. Ennis Hastings",male,,0,0,239856,0,,S +676,0,3,"Edvardsson, Mr. Gustaf Hjalmar",male,18,0,0,349912,7.775,,S +677,0,3,"Sawyer, Mr. Frederick Charles",male,24.5,0,0,342826,8.05,,S +678,1,3,"Turja, Miss. Anna Sofia",female,18,0,0,4138,9.8417,,S +679,0,3,"Goodwin, Mrs. Frederick (Augusta Tyler)",female,43,1,6,CA 2144,46.9,,S +680,1,1,"Cardeza, Mr. Thomas Drake Martinez",male,36,0,1,PC 17755,512.3292,B51 B53 B55,C +681,0,3,"Peters, Miss. Katie",female,,0,0,330935,8.1375,,Q +682,1,1,"Hassab, Mr. Hammad",male,27,0,0,PC 17572,76.7292,D49,C +683,0,3,"Olsvigen, Mr. Thor Anderson",male,20,0,0,6563,9.225,,S +684,0,3,"Goodwin, Mr. Charles Edward",male,14,5,2,CA 2144,46.9,,S +685,0,2,"Brown, Mr. Thomas William Solomon",male,60,1,1,29750,39,,S +686,0,2,"Laroche, Mr. Joseph Philippe Lemercier",male,25,1,2,SC/Paris 2123,41.5792,,C +687,0,3,"Panula, Mr. Jaako Arnold",male,14,4,1,3101295,39.6875,,S +688,0,3,"Dakic, Mr. Branko",male,19,0,0,349228,10.1708,,S +689,0,3,"Fischer, Mr. Eberhard Thelander",male,18,0,0,350036,7.7958,,S +690,1,1,"Madill, Miss. Georgette Alexandra",female,15,0,1,24160,211.3375,B5,S +691,1,1,"Dick, Mr. Albert Adrian",male,31,1,0,17474,57,B20,S +692,1,3,"Karun, Miss. Manca",female,4,0,1,349256,13.4167,,C +693,1,3,"Lam, Mr. Ali",male,,0,0,1601,56.4958,,S +694,0,3,"Saad, Mr. Khalil",male,25,0,0,2672,7.225,,C +695,0,1,"Weir, Col. John",male,60,0,0,113800,26.55,,S +696,0,2,"Chapman, Mr. Charles Henry",male,52,0,0,248731,13.5,,S +697,0,3,"Kelly, Mr. James",male,44,0,0,363592,8.05,,S +698,1,3,"Mullens, Miss. Katherine ""Katie""",female,,0,0,35852,7.7333,,Q +699,0,1,"Thayer, Mr. John Borland",male,49,1,1,17421,110.8833,C68,C +700,0,3,"Humblen, Mr. Adolf Mathias Nicolai Olsen",male,42,0,0,348121,7.65,F G63,S +701,1,1,"Astor, Mrs. John Jacob (Madeleine Talmadge Force)",female,18,1,0,PC 17757,227.525,C62 C64,C +702,1,1,"Silverthorne, Mr. Spencer Victor",male,35,0,0,PC 17475,26.2875,E24,S +703,0,3,"Barbara, Miss. Saiide",female,18,0,1,2691,14.4542,,C +704,0,3,"Gallagher, Mr. Martin",male,25,0,0,36864,7.7417,,Q +705,0,3,"Hansen, Mr. Henrik Juul",male,26,1,0,350025,7.8542,,S +706,0,2,"Morley, Mr. Henry Samuel (""Mr Henry Marshall"")",male,39,0,0,250655,26,,S +707,1,2,"Kelly, Mrs. Florence ""Fannie""",female,45,0,0,223596,13.5,,S +708,1,1,"Calderhead, Mr. Edward Pennington",male,42,0,0,PC 17476,26.2875,E24,S +709,1,1,"Cleaver, Miss. Alice",female,22,0,0,113781,151.55,,S +710,1,3,"Moubarek, Master. Halim Gonios (""William George"")",male,,1,1,2661,15.2458,,C +711,1,1,"Mayne, Mlle. Berthe Antonine (""Mrs de Villiers"")",female,24,0,0,PC 17482,49.5042,C90,C +712,0,1,"Klaber, Mr. Herman",male,,0,0,113028,26.55,C124,S +713,1,1,"Taylor, Mr. Elmer Zebley",male,48,1,0,19996,52,C126,S +714,0,3,"Larsson, Mr. August Viktor",male,29,0,0,7545,9.4833,,S +715,0,2,"Greenberg, Mr. Samuel",male,52,0,0,250647,13,,S +716,0,3,"Soholt, Mr. Peter Andreas Lauritz Andersen",male,19,0,0,348124,7.65,F G73,S +717,1,1,"Endres, Miss. Caroline Louise",female,38,0,0,PC 17757,227.525,C45,C +718,1,2,"Troutt, Miss. Edwina Celia ""Winnie""",female,27,0,0,34218,10.5,E101,S +719,0,3,"McEvoy, Mr. Michael",male,,0,0,36568,15.5,,Q +720,0,3,"Johnson, Mr. Malkolm Joackim",male,33,0,0,347062,7.775,,S +721,1,2,"Harper, Miss. Annie Jessie ""Nina""",female,6,0,1,248727,33,,S +722,0,3,"Jensen, Mr. Svend Lauritz",male,17,1,0,350048,7.0542,,S +723,0,2,"Gillespie, Mr. William Henry",male,34,0,0,12233,13,,S +724,0,2,"Hodges, Mr. Henry Price",male,50,0,0,250643,13,,S +725,1,1,"Chambers, Mr. Norman Campbell",male,27,1,0,113806,53.1,E8,S +726,0,3,"Oreskovic, Mr. Luka",male,20,0,0,315094,8.6625,,S +727,1,2,"Renouf, Mrs. Peter Henry (Lillian Jefferys)",female,30,3,0,31027,21,,S +728,1,3,"Mannion, Miss. Margareth",female,,0,0,36866,7.7375,,Q +729,0,2,"Bryhl, Mr. Kurt Arnold Gottfrid",male,25,1,0,236853,26,,S +730,0,3,"Ilmakangas, Miss. Pieta Sofia",female,25,1,0,STON/O2. 3101271,7.925,,S +731,1,1,"Allen, Miss. Elisabeth Walton",female,29,0,0,24160,211.3375,B5,S +732,0,3,"Hassan, Mr. Houssein G N",male,11,0,0,2699,18.7875,,C +733,0,2,"Knight, Mr. Robert J",male,,0,0,239855,0,,S +734,0,2,"Berriman, Mr. William John",male,23,0,0,28425,13,,S +735,0,2,"Troupiansky, Mr. Moses Aaron",male,23,0,0,233639,13,,S +736,0,3,"Williams, Mr. Leslie",male,28.5,0,0,54636,16.1,,S +737,0,3,"Ford, Mrs. Edward (Margaret Ann Watson)",female,48,1,3,W./C. 6608,34.375,,S +738,1,1,"Lesurer, Mr. Gustave J",male,35,0,0,PC 17755,512.3292,B101,C +739,0,3,"Ivanoff, Mr. Kanio",male,,0,0,349201,7.8958,,S +740,0,3,"Nankoff, Mr. Minko",male,,0,0,349218,7.8958,,S +741,1,1,"Hawksford, Mr. Walter James",male,,0,0,16988,30,D45,S +742,0,1,"Cavendish, Mr. Tyrell William",male,36,1,0,19877,78.85,C46,S +743,1,1,"Ryerson, Miss. Susan Parker ""Suzette""",female,21,2,2,PC 17608,262.375,B57 B59 B63 B66,C +744,0,3,"McNamee, Mr. Neal",male,24,1,0,376566,16.1,,S +745,1,3,"Stranden, Mr. Juho",male,31,0,0,STON/O 2. 3101288,7.925,,S +746,0,1,"Crosby, Capt. Edward Gifford",male,70,1,1,WE/P 5735,71,B22,S +747,0,3,"Abbott, Mr. Rossmore Edward",male,16,1,1,C.A. 2673,20.25,,S +748,1,2,"Sinkkonen, Miss. Anna",female,30,0,0,250648,13,,S +749,0,1,"Marvin, Mr. Daniel Warner",male,19,1,0,113773,53.1,D30,S +750,0,3,"Connaghton, Mr. Michael",male,31,0,0,335097,7.75,,Q +751,1,2,"Wells, Miss. Joan",female,4,1,1,29103,23,,S +752,1,3,"Moor, Master. Meier",male,6,0,1,392096,12.475,E121,S +753,0,3,"Vande Velde, Mr. Johannes Joseph",male,33,0,0,345780,9.5,,S +754,0,3,"Jonkoff, Mr. Lalio",male,23,0,0,349204,7.8958,,S +755,1,2,"Herman, Mrs. Samuel (Jane Laver)",female,48,1,2,220845,65,,S +756,1,2,"Hamalainen, Master. Viljo",male,0.67,1,1,250649,14.5,,S +757,0,3,"Carlsson, Mr. August Sigfrid",male,28,0,0,350042,7.7958,,S +758,0,2,"Bailey, Mr. Percy Andrew",male,18,0,0,29108,11.5,,S +759,0,3,"Theobald, Mr. Thomas Leonard",male,34,0,0,363294,8.05,,S +760,1,1,"Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)",female,33,0,0,110152,86.5,B77,S +761,0,3,"Garfirth, Mr. John",male,,0,0,358585,14.5,,S +762,0,3,"Nirva, Mr. Iisakki Antino Aijo",male,41,0,0,SOTON/O2 3101272,7.125,,S +763,1,3,"Barah, Mr. Hanna Assi",male,20,0,0,2663,7.2292,,C +764,1,1,"Carter, Mrs. William Ernest (Lucile Polk)",female,36,1,2,113760,120,B96 B98,S +765,0,3,"Eklund, Mr. Hans Linus",male,16,0,0,347074,7.775,,S +766,1,1,"Hogeboom, Mrs. John C (Anna Andrews)",female,51,1,0,13502,77.9583,D11,S +767,0,1,"Brewe, Dr. Arthur Jackson",male,,0,0,112379,39.6,,C +768,0,3,"Mangan, Miss. Mary",female,30.5,0,0,364850,7.75,,Q +769,0,3,"Moran, Mr. Daniel J",male,,1,0,371110,24.15,,Q +770,0,3,"Gronnestad, Mr. Daniel Danielsen",male,32,0,0,8471,8.3625,,S +771,0,3,"Lievens, Mr. Rene Aime",male,24,0,0,345781,9.5,,S +772,0,3,"Jensen, Mr. Niels Peder",male,48,0,0,350047,7.8542,,S +773,0,2,"Mack, Mrs. (Mary)",female,57,0,0,S.O./P.P. 3,10.5,E77,S +774,0,3,"Elias, Mr. Dibo",male,,0,0,2674,7.225,,C +775,1,2,"Hocking, Mrs. Elizabeth (Eliza Needs)",female,54,1,3,29105,23,,S +776,0,3,"Myhrman, Mr. Pehr Fabian Oliver Malkolm",male,18,0,0,347078,7.75,,S +777,0,3,"Tobin, Mr. Roger",male,,0,0,383121,7.75,F38,Q +778,1,3,"Emanuel, Miss. Virginia Ethel",female,5,0,0,364516,12.475,,S +779,0,3,"Kilgannon, Mr. Thomas J",male,,0,0,36865,7.7375,,Q +780,1,1,"Robert, Mrs. Edward Scott (Elisabeth Walton McMillan)",female,43,0,1,24160,211.3375,B3,S +781,1,3,"Ayoub, Miss. Banoura",female,13,0,0,2687,7.2292,,C +782,1,1,"Dick, Mrs. Albert Adrian (Vera Gillespie)",female,17,1,0,17474,57,B20,S +783,0,1,"Long, Mr. Milton Clyde",male,29,0,0,113501,30,D6,S +784,0,3,"Johnston, Mr. Andrew G",male,,1,2,W./C. 6607,23.45,,S +785,0,3,"Ali, Mr. William",male,25,0,0,SOTON/O.Q. 3101312,7.05,,S +786,0,3,"Harmer, Mr. Abraham (David Lishin)",male,25,0,0,374887,7.25,,S +787,1,3,"Sjoblom, Miss. Anna Sofia",female,18,0,0,3101265,7.4958,,S +788,0,3,"Rice, Master. George Hugh",male,8,4,1,382652,29.125,,Q +789,1,3,"Dean, Master. Bertram Vere",male,1,1,2,C.A. 2315,20.575,,S +790,0,1,"Guggenheim, Mr. Benjamin",male,46,0,0,PC 17593,79.2,B82 B84,C +791,0,3,"Keane, Mr. Andrew ""Andy""",male,,0,0,12460,7.75,,Q +792,0,2,"Gaskell, Mr. Alfred",male,16,0,0,239865,26,,S +793,0,3,"Sage, Miss. Stella Anna",female,,8,2,CA. 2343,69.55,,S +794,0,1,"Hoyt, Mr. William Fisher",male,,0,0,PC 17600,30.6958,,C +795,0,3,"Dantcheff, Mr. Ristiu",male,25,0,0,349203,7.8958,,S +796,0,2,"Otter, Mr. Richard",male,39,0,0,28213,13,,S +797,1,1,"Leader, Dr. Alice (Farnham)",female,49,0,0,17465,25.9292,D17,S +798,1,3,"Osman, Mrs. Mara",female,31,0,0,349244,8.6833,,S +799,0,3,"Ibrahim Shawah, Mr. Yousseff",male,30,0,0,2685,7.2292,,C +800,0,3,"Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert)",female,30,1,1,345773,24.15,,S +801,0,2,"Ponesell, Mr. Martin",male,34,0,0,250647,13,,S +802,1,2,"Collyer, Mrs. Harvey (Charlotte Annie Tate)",female,31,1,1,C.A. 31921,26.25,,S +803,1,1,"Carter, Master. William Thornton II",male,11,1,2,113760,120,B96 B98,S +804,1,3,"Thomas, Master. Assad Alexander",male,0.42,0,1,2625,8.5167,,C +805,1,3,"Hedman, Mr. Oskar Arvid",male,27,0,0,347089,6.975,,S +806,0,3,"Johansson, Mr. Karl Johan",male,31,0,0,347063,7.775,,S +807,0,1,"Andrews, Mr. Thomas Jr",male,39,0,0,112050,0,A36,S +808,0,3,"Pettersson, Miss. Ellen Natalia",female,18,0,0,347087,7.775,,S +809,0,2,"Meyer, Mr. August",male,39,0,0,248723,13,,S +810,1,1,"Chambers, Mrs. Norman Campbell (Bertha Griggs)",female,33,1,0,113806,53.1,E8,S +811,0,3,"Alexander, Mr. William",male,26,0,0,3474,7.8875,,S +812,0,3,"Lester, Mr. James",male,39,0,0,A/4 48871,24.15,,S +813,0,2,"Slemen, Mr. Richard James",male,35,0,0,28206,10.5,,S +814,0,3,"Andersson, Miss. Ebba Iris Alfrida",female,6,4,2,347082,31.275,,S +815,0,3,"Tomlin, Mr. Ernest Portage",male,30.5,0,0,364499,8.05,,S +816,0,1,"Fry, Mr. Richard",male,,0,0,112058,0,B102,S +817,0,3,"Heininen, Miss. Wendla Maria",female,23,0,0,STON/O2. 3101290,7.925,,S +818,0,2,"Mallet, Mr. Albert",male,31,1,1,S.C./PARIS 2079,37.0042,,C +819,0,3,"Holm, Mr. John Fredrik Alexander",male,43,0,0,C 7075,6.45,,S +820,0,3,"Skoog, Master. Karl Thorsten",male,10,3,2,347088,27.9,,S +821,1,1,"Hays, Mrs. Charles Melville (Clara Jennings Gregg)",female,52,1,1,12749,93.5,B69,S +822,1,3,"Lulic, Mr. Nikola",male,27,0,0,315098,8.6625,,S +823,0,1,"Reuchlin, Jonkheer. John George",male,38,0,0,19972,0,,S +824,1,3,"Moor, Mrs. (Beila)",female,27,0,1,392096,12.475,E121,S +825,0,3,"Panula, Master. Urho Abraham",male,2,4,1,3101295,39.6875,,S +826,0,3,"Flynn, Mr. John",male,,0,0,368323,6.95,,Q +827,0,3,"Lam, Mr. Len",male,,0,0,1601,56.4958,,S +828,1,2,"Mallet, Master. Andre",male,1,0,2,S.C./PARIS 2079,37.0042,,C +829,1,3,"McCormack, Mr. Thomas Joseph",male,,0,0,367228,7.75,,Q +830,1,1,"Stone, Mrs. George Nelson (Martha Evelyn)",female,62,0,0,113572,80,B28, +831,1,3,"Yasbeck, Mrs. Antoni (Selini Alexander)",female,15,1,0,2659,14.4542,,C +832,1,2,"Richards, Master. George Sibley",male,0.83,1,1,29106,18.75,,S +833,0,3,"Saad, Mr. Amin",male,,0,0,2671,7.2292,,C +834,0,3,"Augustsson, Mr. Albert",male,23,0,0,347468,7.8542,,S +835,0,3,"Allum, Mr. Owen George",male,18,0,0,2223,8.3,,S +836,1,1,"Compton, Miss. Sara Rebecca",female,39,1,1,PC 17756,83.1583,E49,C +837,0,3,"Pasic, Mr. Jakob",male,21,0,0,315097,8.6625,,S +838,0,3,"Sirota, Mr. Maurice",male,,0,0,392092,8.05,,S +839,1,3,"Chip, Mr. Chang",male,32,0,0,1601,56.4958,,S +840,1,1,"Marechal, Mr. Pierre",male,,0,0,11774,29.7,C47,C +841,0,3,"Alhomaki, Mr. Ilmari Rudolf",male,20,0,0,SOTON/O2 3101287,7.925,,S +842,0,2,"Mudd, Mr. Thomas Charles",male,16,0,0,S.O./P.P. 3,10.5,,S +843,1,1,"Serepeca, Miss. Augusta",female,30,0,0,113798,31,,C +844,0,3,"Lemberopolous, Mr. Peter L",male,34.5,0,0,2683,6.4375,,C +845,0,3,"Culumovic, Mr. Jeso",male,17,0,0,315090,8.6625,,S +846,0,3,"Abbing, Mr. Anthony",male,42,0,0,C.A. 5547,7.55,,S +847,0,3,"Sage, Mr. Douglas Bullen",male,,8,2,CA. 2343,69.55,,S +848,0,3,"Markoff, Mr. Marin",male,35,0,0,349213,7.8958,,C +849,0,2,"Harper, Rev. John",male,28,0,1,248727,33,,S +850,1,1,"Goldenberg, Mrs. Samuel L (Edwiga Grabowska)",female,,1,0,17453,89.1042,C92,C +851,0,3,"Andersson, Master. Sigvard Harald Elias",male,4,4,2,347082,31.275,,S +852,0,3,"Svensson, Mr. Johan",male,74,0,0,347060,7.775,,S +853,0,3,"Boulos, Miss. Nourelain",female,9,1,1,2678,15.2458,,C +854,1,1,"Lines, Miss. Mary Conover",female,16,0,1,PC 17592,39.4,D28,S +855,0,2,"Carter, Mrs. Ernest Courtenay (Lilian Hughes)",female,44,1,0,244252,26,,S +856,1,3,"Aks, Mrs. Sam (Leah Rosen)",female,18,0,1,392091,9.35,,S +857,1,1,"Wick, Mrs. George Dennick (Mary Hitchcock)",female,45,1,1,36928,164.8667,,S +858,1,1,"Daly, Mr. Peter Denis ",male,51,0,0,113055,26.55,E17,S +859,1,3,"Baclini, Mrs. Solomon (Latifa Qurban)",female,24,0,3,2666,19.2583,,C +860,0,3,"Razi, Mr. Raihed",male,,0,0,2629,7.2292,,C +861,0,3,"Hansen, Mr. Claus Peter",male,41,2,0,350026,14.1083,,S +862,0,2,"Giles, Mr. Frederick Edward",male,21,1,0,28134,11.5,,S +863,1,1,"Swift, Mrs. Frederick Joel (Margaret Welles Barron)",female,48,0,0,17466,25.9292,D17,S +864,0,3,"Sage, Miss. Dorothy Edith ""Dolly""",female,,8,2,CA. 2343,69.55,,S +865,0,2,"Gill, Mr. John William",male,24,0,0,233866,13,,S +866,1,2,"Bystrom, Mrs. (Karolina)",female,42,0,0,236852,13,,S +867,1,2,"Duran y More, Miss. Asuncion",female,27,1,0,SC/PARIS 2149,13.8583,,C +868,0,1,"Roebling, Mr. Washington Augustus II",male,31,0,0,PC 17590,50.4958,A24,S +869,0,3,"van Melkebeke, Mr. Philemon",male,,0,0,345777,9.5,,S +870,1,3,"Johnson, Master. Harold Theodor",male,4,1,1,347742,11.1333,,S +871,0,3,"Balkic, Mr. Cerin",male,26,0,0,349248,7.8958,,S +872,1,1,"Beckwith, Mrs. Richard Leonard (Sallie Monypeny)",female,47,1,1,11751,52.5542,D35,S +873,0,1,"Carlsson, Mr. Frans Olof",male,33,0,0,695,5,B51 B53 B55,S +874,0,3,"Vander Cruyssen, Mr. Victor",male,47,0,0,345765,9,,S +875,1,2,"Abelson, Mrs. Samuel (Hannah Wizosky)",female,28,1,0,P/PP 3381,24,,C +876,1,3,"Najib, Miss. Adele Kiamie ""Jane""",female,15,0,0,2667,7.225,,C +877,0,3,"Gustafsson, Mr. Alfred Ossian",male,20,0,0,7534,9.8458,,S +878,0,3,"Petroff, Mr. Nedelio",male,19,0,0,349212,7.8958,,S +879,0,3,"Laleff, Mr. Kristo",male,,0,0,349217,7.8958,,S +880,1,1,"Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)",female,56,0,1,11767,83.1583,C50,C +881,1,2,"Shelley, Mrs. William (Imanita Parrish Hall)",female,25,0,1,230433,26,,S +882,0,3,"Markun, Mr. Johann",male,33,0,0,349257,7.8958,,S +883,0,3,"Dahlberg, Miss. Gerda Ulrika",female,22,0,0,7552,10.5167,,S +884,0,2,"Banfield, Mr. Frederick James",male,28,0,0,C.A./SOTON 34068,10.5,,S +885,0,3,"Sutehall, Mr. Henry Jr",male,25,0,0,SOTON/OQ 392076,7.05,,S +886,0,3,"Rice, Mrs. William (Margaret Norton)",female,39,0,5,382652,29.125,,Q +887,0,2,"Montvila, Rev. Juozas",male,27,0,0,211536,13,,S +888,1,1,"Graham, Miss. Margaret Edith",female,19,0,0,112053,30,B42,S +889,0,3,"Johnston, Miss. Catherine Helen ""Carrie""",female,,1,2,W./C. 6607,23.45,,S +890,1,1,"Behr, Mr. Karl Howell",male,26,0,0,111369,30,C148,C +891,0,3,"Dooley, Mr. Patrick",male,32,0,0,370376,7.75,,Q diff --git a/demos/kitchen_sink/files/world.mp4 b/demos/kitchen_sink/files/world.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..9bce44c33e275d6107240a1101032a7835fd8eed --- /dev/null +++ b/demos/kitchen_sink/files/world.mp4 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:71944d7430c461f0cd6e7fd10cee7eb72786352a3678fc7bc0ae3d410f72aece +size 1570024 diff --git a/demos/kitchen_sink/run.py b/demos/kitchen_sink/run.py new file mode 100755 index 0000000000000000000000000000000000000000..6b9e5147bed408a7d827f65d559545fc9a1ae596 --- /dev/null +++ b/demos/kitchen_sink/run.py @@ -0,0 +1,161 @@ +import os +import json + +import numpy as np + +import gradio as gr + +CHOICES = ["foo", "bar", "baz"] +JSONOBJ = """{"items":{"item":[{"id": "0001","type": null,"is_good": false,"ppu": 0.55,"batters":{"batter":[{ "id": "1001", "type": "Regular" },{ "id": "1002", "type": "Chocolate" },{ "id": "1003", "type": "Blueberry" },{ "id": "1004", "type": "Devil's Food" }]},"topping":[{ "id": "5001", "type": "None" },{ "id": "5002", "type": "Glazed" },{ "id": "5005", "type": "Sugar" },{ "id": "5007", "type": "Powdered Sugar" },{ "id": "5006", "type": "Chocolate with Sprinkles" },{ "id": "5003", "type": "Chocolate" },{ "id": "5004", "type": "Maple" }]}]}}""" + + +def fn( + text1, + text2, + num, + slider1, + slider2, + single_checkbox, + checkboxes, + radio, + dropdown, + im1, + im2, + im3, + im4, + video, + audio1, + audio2, + file, + df1, + df2, +): + return ( + (text1 if single_checkbox else text2) + + ", selected:" + + ", ".join(checkboxes), # Text + { + "positive": num / (num + slider1 + slider2), + "negative": slider1 / (num + slider1 + slider2), + "neutral": slider2 / (num + slider1 + slider2), + }, # Label + (audio1[0], np.flipud(audio1[1])) + if audio1 is not None + else os.path.join(os.path.dirname(__file__), "files/cantina.wav"), # Audio + np.flipud(im1) + if im1 is not None + else os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"), # Image + video + if video is not None + else os.path.join(os.path.dirname(__file__), "files/world.mp4"), # Video + [ + ("The", "art"), + ("quick brown", "adj"), + ("fox", "nn"), + ("jumped", "vrb"), + ("testing testing testing", None), + ("over", "prp"), + ("the", "art"), + ("testing", None), + ("lazy", "adj"), + ("dogs", "nn"), + (".", "punc"), + ] + + [(f"test {x}", f"test {x}") for x in range(10)], # HighlightedText + # [("The testing testing testing", None), ("quick brown", 0.2), ("fox", 1), ("jumped", -1), ("testing testing testing", 0), ("over", 0), ("the", 0), ("testing", 0), ("lazy", 1), ("dogs", 0), (".", 1)] + [(f"test {x}", x/10) for x in range(-10, 10)], # HighlightedText + [ + ("The testing testing testing", None), + ("over", 0.6), + ("the", 0.2), + ("testing", None), + ("lazy", -0.1), + ("dogs", 0.4), + (".", 0), + ] + + [(f"test", x / 10) for x in range(-10, 10)], # HighlightedText + json.loads(JSONOBJ), # JSON + "", # HTML + os.path.join(os.path.dirname(__file__), "files/titanic.csv"), + df1, # Dataframe + np.random.randint(0, 10, (4, 4)), # Dataframe + df2, # Timeseries + ) + + +demo = gr.Interface( + fn, + inputs=[ + gr.Textbox(value="Lorem ipsum", label="Textbox"), + gr.Textbox(lines=3, placeholder="Type here..", label="Textbox 2"), + gr.Number(label="Number", value=42), + gr.Slider(10, 20, value=15, label="Slider: 10 - 20"), + gr.Slider(maximum=20, step=0.04, label="Slider: step @ 0.04"), + gr.Checkbox(label="Checkbox"), + gr.CheckboxGroup( + label="CheckboxGroup", choices=CHOICES, value=CHOICES[0:2] + ), + gr.Radio(label="Radio", choices=CHOICES, value=CHOICES[2]), + gr.Dropdown(label="Dropdown", choices=CHOICES), + gr.Image(label="Image"), + gr.Image(label="Image w/ Cropper", tool="select"), + gr.Image(label="Sketchpad", source="canvas"), + gr.Image(label="Webcam", source="webcam"), + gr.Video(label="Video"), + gr.Audio(label="Audio"), + gr.Audio(label="Microphone", source="microphone"), + gr.File(label="File"), + gr.Dataframe(label="Dataframe", headers=["Name", "Age", "Gender"]), + gr.Timeseries(x="time", y=["price", "value"], colors=["pink", "purple"]), + ], + outputs=[ + gr.Textbox(label="Textbox"), + gr.Label(label="Label"), + gr.Audio(label="Audio"), + gr.Image(label="Image"), + gr.Video(label="Video"), + gr.HighlightedText( + label="HighlightedText", color_map={"punc": "pink", "test 0": "blue"} + ), + gr.HighlightedText(label="HighlightedText", show_legend=True), + gr.JSON(label="JSON"), + gr.HTML(label="HTML"), + gr.File(label="File"), + gr.Dataframe(label="Dataframe"), + gr.Dataframe(label="Numpy"), + gr.Timeseries(x="time", y=["price", "value"], label="Timeseries"), + ], + examples=[ + [ + "the quick brown fox", + "jumps over the lazy dog", + 10, + 12, + 4, + True, + ["foo", "baz"], + "baz", + "bar", + os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"), + os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"), + os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"), + os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"), + os.path.join(os.path.dirname(__file__), "files/world.mp4"), + os.path.join(os.path.dirname(__file__), "files/cantina.wav"), + os.path.join(os.path.dirname(__file__), "files/cantina.wav"), + os.path.join(os.path.dirname(__file__), "files/titanic.csv"), + [[1, 2, 3], [3, 4, 5]], + os.path.join(os.path.dirname(__file__), "files/time.csv"), + ] + ] + * 3, + theme="default", + title="Kitchen Sink", + cache_examples=False, + description="Try out all the components!", + article="Learn more about [Gradio](http://gradio.app)", +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/kitchen_sink_random/__init__.py b/demos/kitchen_sink_random/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/demos/kitchen_sink_random/constants.py b/demos/kitchen_sink_random/constants.py new file mode 100644 index 0000000000000000000000000000000000000000..5edd7b065a7e667aae918dc16107af50d30aa03e --- /dev/null +++ b/demos/kitchen_sink_random/constants.py @@ -0,0 +1,71 @@ +import numpy as np +import matplotlib + +matplotlib.use("Agg") +import matplotlib.pyplot as plt +import random +import os + + +def random_plot(): + start_year = 2020 + x = np.arange(start_year, start_year + random.randint(0, 10)) + year_count = x.shape[0] + plt_format = "-" + fig = plt.figure() + ax = fig.add_subplot(111) + series = np.arange(0, year_count, dtype=float) + series = series**2 + series += np.random.rand(year_count) + ax.plot(x, series, plt_format) + return fig + + +img_dir = os.path.join(os.path.dirname(__file__), "..", "image_classifier", "images") +file_dir = os.path.join(os.path.dirname(__file__), "..", "kitchen_sink", "files") +model3d_dir = os.path.join(os.path.dirname(__file__), "..", "model3D", "files") +highlighted_text_output_1 = [ + { + "entity": "I-LOC", + "score": 0.9988978, + "index": 2, + "word": "Chicago", + "start": 5, + "end": 12, + }, + { + "entity": "I-MISC", + "score": 0.9958592, + "index": 5, + "word": "Pakistani", + "start": 22, + "end": 31, + }, +] +highlighted_text_output_2 = [ + { + "entity": "I-LOC", + "score": 0.9988978, + "index": 2, + "word": "Chicago", + "start": 5, + "end": 12, + }, + { + "entity": "I-LOC", + "score": 0.9958592, + "index": 5, + "word": "Pakistan", + "start": 22, + "end": 30, + }, +] + +highlighted_text = "Does Chicago have any Pakistani restaurants" + + +def random_model3d(): + model_3d = random.choice( + [os.path.join(model3d_dir, model) for model in os.listdir(model3d_dir) if model != "source.txt"] + ) + return model_3d diff --git a/demos/kitchen_sink_random/run.py b/demos/kitchen_sink_random/run.py new file mode 100644 index 0000000000000000000000000000000000000000..42718218133c515b48849369f8042de9570def94 --- /dev/null +++ b/demos/kitchen_sink_random/run.py @@ -0,0 +1,98 @@ +import gradio as gr +from datetime import datetime +import random +import string +import os +import pandas as pd + +from constants import ( + file_dir, + img_dir, + highlighted_text, + highlighted_text_output_2, + highlighted_text_output_1, + random_plot, + random_model3d, +) + + +demo = gr.Interface( + lambda x: x, + inputs=[ + gr.Textbox(value=lambda: datetime.now(), label="Current Time"), + gr.Number(value=lambda: random.random(), label="Ranom Percentage"), + gr.Slider(minimum=-1, maximum=1, randomize=True, label="Slider with randomize"), + gr.Slider( + minimum=0, + maximum=1, + value=lambda: random.random(), + label="Slider with value func", + ), + gr.Checkbox(value=lambda: random.random() > 0.5, label="Random Checkbox"), + gr.CheckboxGroup( + choices=["a", "b", "c", "d"], + value=lambda: random.choice(["a", "b", "c", "d"]), + label="Random CheckboxGroup", + ), + gr.Radio( + choices=list(string.ascii_lowercase), + value=lambda: random.choice(string.ascii_lowercase), + ), + gr.Dropdown( + choices=["a", "b", "c", "d", "e"], + value=lambda: random.choice(["a", "b", "c"]), + ), + gr.Image( + value=lambda: random.choice( + [os.path.join(img_dir, img) for img in os.listdir(img_dir)] + ) + ), + gr.Video(value=lambda: os.path.join(file_dir, "world.mp4")), + gr.Audio(value=lambda: os.path.join(file_dir, "cantina.wav")), + gr.File( + value=lambda: random.choice( + [os.path.join(file_dir, img) for img in os.listdir(file_dir)] + ) + ), + gr.Dataframe( + value=lambda: pd.DataFrame( + {"random_number_rows": range(random.randint(0, 10))} + ) + ), + gr.Timeseries(value=lambda: os.path.join(file_dir, "time.csv")), + gr.Variable(value=lambda: random.choice(string.ascii_lowercase)), + gr.Button(value=lambda: random.choice(["Run", "Go", "predict"])), + gr.ColorPicker(value=lambda: random.choice(["#000000", "#ff0000", "#0000FF"])), + gr.Label(value=lambda: random.choice(["Pedestrian", "Car", "Cyclist"])), + gr.HighlightedText( + value=lambda: random.choice( + [ + {"text": highlighted_text, "entities": highlighted_text_output_1}, + {"text": highlighted_text, "entities": highlighted_text_output_2}, + ] + ), + ), + gr.JSON(value=lambda: random.choice([{"a": 1}, {"b": 2}])), + gr.HTML( + value=lambda: random.choice( + [ + 'I am red
', + 'I am blue
', + ] + ) + ), + gr.Gallery( + value=lambda: [os.path.join(img_dir, img) for img in os.listdir(img_dir)] + ), + gr.Chatbot( + value=lambda: random.choice([[("hello", "hi!")], [("bye", "goodbye!")]]) + ), + gr.Model3D(value=random_model3d), + gr.Plot(value=random_plot), + gr.Markdown(value=lambda: f"### {random.choice(['Hello', 'Hi', 'Goodbye!'])}"), + ], + outputs=None, +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/live_with_vars/run.py b/demos/live_with_vars/run.py new file mode 100644 index 0000000000000000000000000000000000000000..70c39b36ccbfa1e1ad3239c4efadcdcb8fccbf14 --- /dev/null +++ b/demos/live_with_vars/run.py @@ -0,0 +1,9 @@ +import gradio as gr + +demo = gr.Interface( + lambda x, y: (x + y if y is not None else x, x + y if y is not None else x), + ["textbox", "state"], + ["textbox", "state"], live=True) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/longest_word/run.py b/demos/longest_word/run.py new file mode 100644 index 0000000000000000000000000000000000000000..4fef82a328c6152c79a52c25ddde70db796c335e --- /dev/null +++ b/demos/longest_word/run.py @@ -0,0 +1,18 @@ +import gradio as gr + + +def longest_word(text): + words = text.split(" ") + lengths = [len(word) for word in words] + return max(lengths) + + +ex = "The quick brown fox jumped over the lazy dog." + +demo = gr.Interface( + longest_word, "textbox", "label", interpretation="default", examples=[[ex]] +) + + +if __name__ == "__main__": + demo.launch() diff --git a/demos/main_note/audio/cantina.wav b/demos/main_note/audio/cantina.wav new file mode 100644 index 0000000000000000000000000000000000000000..83651968c382d3c17ad48d84995c9b71753ba694 --- /dev/null +++ b/demos/main_note/audio/cantina.wav @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2e5f73001b324e413bdcf658fca5485057c333f4198e51e7e86bb2e772cd0973 +size 132344 diff --git a/demos/main_note/audio/recording1.wav b/demos/main_note/audio/recording1.wav new file mode 100644 index 0000000000000000000000000000000000000000..305c419a090c2c195531467ecd8a8704438fe9c8 --- /dev/null +++ b/demos/main_note/audio/recording1.wav @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1d087876795ff2bc8b6e1a872eb9a9b2cca44db1866e9c9fa00df5a2556919ff +size 639020 diff --git a/demos/main_note/requirements.txt b/demos/main_note/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..ca6034584e0ec2dde9b16b581bab6d6a8327a59a --- /dev/null +++ b/demos/main_note/requirements.txt @@ -0,0 +1,3 @@ +scipy +numpy +matplotlib \ No newline at end of file diff --git a/demos/main_note/run.py b/demos/main_note/run.py new file mode 100644 index 0000000000000000000000000000000000000000..1e02c99c753b7463d4bb8e3559b440e60872e7a7 --- /dev/null +++ b/demos/main_note/run.py @@ -0,0 +1,56 @@ +from math import log2, pow +import os + +import numpy as np +from scipy.fftpack import fft + +import gradio as gr + +A4 = 440 +C0 = A4 * pow(2, -4.75) +name = ["C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B"] + + +def get_pitch(freq): + h = round(12 * log2(freq / C0)) + n = h % 12 + return name[n] + + +def main_note(audio): + rate, y = audio + if len(y.shape) == 2: + y = y.T[0] + N = len(y) + T = 1.0 / rate + x = np.linspace(0.0, N * T, N) + yf = fft(y) + yf2 = 2.0 / N * np.abs(yf[0 : N // 2]) + xf = np.linspace(0.0, 1.0 / (2.0 * T), N // 2) + + volume_per_pitch = {} + total_volume = np.sum(yf2) + for freq, volume in zip(xf, yf2): + if freq == 0: + continue + pitch = get_pitch(freq) + if pitch not in volume_per_pitch: + volume_per_pitch[pitch] = 0 + volume_per_pitch[pitch] += 1.0 * volume / total_volume + volume_per_pitch = {k: float(v) for k, v in volume_per_pitch.items()} + return volume_per_pitch + + +demo = gr.Interface( + main_note, + gr.Audio(source="microphone"), + gr.Label(num_top_classes=4), + examples=[ + [os.path.join(os.path.dirname(__file__),"audio/recording1.wav")], + [os.path.join(os.path.dirname(__file__),"audio/cantina.wav")], + ], + interpretation="default", +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/main_note/screenshot.png b/demos/main_note/screenshot.png new file mode 100644 index 0000000000000000000000000000000000000000..8737f808157a6a8885edb770fb1f0175028030fc --- /dev/null +++ b/demos/main_note/screenshot.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:eadd6d523e8e5a5828e54b2c5981d5e95fa6e6778685933ebc2323c4213df45a +size 35164 diff --git a/demos/matrix_transpose/run.py b/demos/matrix_transpose/run.py new file mode 100644 index 0000000000000000000000000000000000000000..1fa9ed34184ec6c6063305cf71b2a662222d5207 --- /dev/null +++ b/demos/matrix_transpose/run.py @@ -0,0 +1,24 @@ +import numpy as np + +import gradio as gr + + +def transpose(matrix): + return matrix.T + + +demo = gr.Interface( + transpose, + gr.Dataframe(type="numpy", datatype="number", row_count=5, col_count=3), + "numpy", + examples=[ + [np.zeros((3, 3)).tolist()], + [np.ones((2, 2)).tolist()], + [np.random.randint(0, 10, (3, 10)).tolist()], + [np.random.randint(0, 10, (10, 3)).tolist()], + [np.random.randint(0, 10, (10, 10)).tolist()], + ], +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/matrix_transpose/screenshot.png b/demos/matrix_transpose/screenshot.png new file mode 100644 index 0000000000000000000000000000000000000000..42d75711036776a327c100f2d676491dc8f0025d --- /dev/null +++ b/demos/matrix_transpose/screenshot.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:292486e5bb355609c587f8de5c28309edaa7b1b212368a7ba01bf221ace88c81 +size 35292 diff --git a/demos/model3D/files/Bunny.obj b/demos/model3D/files/Bunny.obj new file mode 100644 index 0000000000000000000000000000000000000000..9baeb363cce8feb5dd62ecaf8d64a14b6c50ce37 --- /dev/null +++ b/demos/model3D/files/Bunny.obj @@ -0,0 +1,7474 @@ +# OBJ file format with ext .obj +# vertex count = 2503 +# face count = 4968 +v -3.4101800e-003 1.3031957e-001 2.1754370e-002 +v -8.1719160e-002 1.5250145e-001 2.9656090e-002 +v -3.0543480e-002 1.2477885e-001 1.0983400e-003 +v -2.4901590e-002 1.1211138e-001 3.7560240e-002 +v -1.8405680e-002 1.7843055e-001 -2.4219580e-002 +v 1.9067940e-002 1.2144925e-001 3.1968440e-002 +v 6.0412000e-003 1.2494359e-001 3.2652890e-002 +v -1.3469030e-002 1.6299355e-001 -1.2000020e-002 +v -3.4393240e-002 1.7236688e-001 -9.8213000e-004 +v -8.4314160e-002 1.0957263e-001 3.7097300e-003 +v -4.2233540e-002 1.7211574e-001 -4.1799800e-003 +v -6.3308390e-002 1.5660615e-001 -1.3838790e-002 +v -7.6903950e-002 1.6708033e-001 -2.6931360e-002 +v -7.2253920e-002 1.1539550e-001 5.1670300e-002 +v 1.2981330e-002 1.1366375e-001 3.8302950e-002 +v -3.7857280e-002 1.7010102e-001 1.4236000e-003 +v 4.8689400e-003 3.7962370e-002 4.5867630e-002 +v -5.7180550e-002 4.0918830e-002 4.6301340e-002 +v -4.5209070e-002 3.8839100e-002 4.4503770e-002 +v -3.3761490e-002 1.2617876e-001 1.7132300e-003 +v -5.0242270e-002 1.5773747e-001 9.3944500e-003 +v -2.1216950e-002 1.5887938e-001 -4.6923700e-003 +v -5.6472950e-002 1.5778406e-001 8.1786500e-003 +v -5.2802060e-002 4.1319860e-002 4.6169800e-002 +v -4.9960340e-002 4.3101950e-002 4.4462650e-002 +v -2.9748750e-002 3.6539860e-002 5.2493310e-002 +v -3.5438900e-003 4.2659770e-002 4.7541530e-002 +v 4.9304900e-003 4.1982660e-002 4.5723390e-002 +v -3.9088180e-002 1.6872020e-001 -1.1924680e-002 +v -5.6901000e-002 4.5437000e-002 4.3236960e-002 +v -4.1244880e-002 4.3098890e-002 4.2129560e-002 +v -2.6471980e-002 4.5034530e-002 5.1219460e-002 +v -2.1866970e-002 4.4022930e-002 5.3243800e-002 +v -3.6996250e-002 1.6899301e-001 1.3256300e-003 +v -6.7216590e-002 1.6171340e-001 -1.3733710e-002 +v 4.9760060e-002 7.0235220e-002 2.3732020e-002 +v -4.9186640e-002 4.6411230e-002 4.1170040e-002 +v -4.4590380e-002 4.3797990e-002 4.2685460e-002 +v -4.3686470e-002 4.7154500e-002 4.0286310e-002 +v -2.2491950e-002 4.6513620e-002 5.1885310e-002 +v -6.5174200e-003 4.5036200e-002 4.7502780e-002 +v 3.7699000e-004 4.4935790e-002 4.6519930e-002 +v 3.4023920e-002 1.1353879e-001 2.4595280e-002 +v -2.6467900e-002 1.8104250e-001 -8.0811700e-003 +v -1.7533470e-002 4.7964250e-002 4.8829630e-002 +v -7.0012600e-003 4.6416520e-002 4.7485540e-002 +v 5.9862300e-003 4.6689140e-002 4.9073620e-002 +v 9.1007200e-003 4.8474490e-002 4.9353190e-002 +v -3.5453700e-002 1.1244769e-001 3.5055410e-002 +v -7.5983200e-002 1.3820800e-001 4.9216580e-002 +v 3.4838440e-002 4.3153410e-002 2.8954310e-002 +v -5.2655550e-002 4.8494220e-002 3.8731190e-002 +v -4.7378940e-002 4.8456670e-002 3.9126790e-002 +v -3.8933750e-002 4.6364270e-002 4.0364780e-002 +v -2.6468940e-002 4.7816430e-002 4.9322590e-002 +v -2.2365790e-002 4.8073650e-002 5.0126500e-002 +v -1.3373430e-002 4.7892410e-002 4.7883850e-002 +v -1.2193490e-002 4.9470300e-002 4.9484490e-002 +v -6.3364000e-004 4.7193060e-002 4.9136900e-002 +v 2.0656800e-003 5.0104680e-002 5.2290220e-002 +v -2.2749270e-002 4.9883880e-002 4.6605520e-002 +v -1.8002080e-002 4.9917850e-002 4.6947970e-002 +v -7.8036800e-003 5.0169310e-002 5.0988650e-002 +v -2.6843800e-003 5.1247420e-002 5.3186790e-002 +v -6.3875650e-002 1.6140094e-001 -2.0064210e-002 +v 3.2434000e-002 4.5333970e-002 3.0316760e-002 +v -8.8064570e-002 1.2496764e-001 5.7412000e-004 +v -4.1503710e-002 1.6748512e-001 3.2765900e-003 +v -6.4457010e-002 1.5342891e-001 -5.1180400e-003 +v -3.4303190e-002 5.0520150e-002 3.8286020e-002 +v -2.2949400e-002 5.1020650e-002 4.3926450e-002 +v -1.4354710e-002 5.4428200e-002 5.0710310e-002 +v 1.3773100e-003 5.2302710e-002 5.3149010e-002 +v 3.6285000e-003 5.3198640e-002 5.3422710e-002 +v 8.0723800e-003 5.1574140e-002 5.1773560e-002 +v -7.2665890e-002 1.3005582e-001 5.1668200e-002 +v 3.7992780e-002 4.9793200e-002 3.1902020e-002 +v 3.8497260e-002 4.8062400e-002 3.1737450e-002 +v 2.1503510e-002 1.2563988e-001 2.1252620e-002 +v -7.6481330e-002 1.4827412e-001 -8.9376200e-003 +v -8.7240410e-002 1.1967213e-001 -1.7813000e-004 +v -4.3719960e-002 1.6822738e-001 2.3425000e-003 +v -4.0652200e-002 1.2266506e-001 2.6290300e-002 +v -4.6686180e-002 5.4570720e-002 3.7587370e-002 +v -4.4071750e-002 5.1058250e-002 3.8977810e-002 +v -3.8144110e-002 5.0599600e-002 3.9302160e-002 +v -1.9875770e-002 5.1607710e-002 4.6142000e-002 +v -1.6911250e-002 5.1843550e-002 4.8459320e-002 +v -1.6249190e-002 5.4292110e-002 5.0306940e-002 +v -1.0446540e-002 5.3685970e-002 5.1958610e-002 +v -4.3090900e-003 5.4467500e-002 5.3908250e-002 +v 7.8152700e-003 5.5050680e-002 5.2750250e-002 +v 3.7955090e-002 1.0488710e-001 -3.2031800e-003 +v -7.9003790e-002 1.2850550e-001 5.3149340e-002 +v -7.9778990e-002 1.3448894e-001 5.0990290e-002 +v -5.9129700e-002 1.5039712e-001 3.4489540e-002 +v -6.5691790e-002 1.4961818e-001 3.8160980e-002 +v -3.1951660e-002 1.2518394e-001 1.9400580e-002 +v -6.9372590e-002 1.6061775e-001 -9.1905000e-003 +v -4.5225500e-002 1.2935459e-001 2.0377520e-002 +v -4.1879110e-002 5.6164390e-002 3.9796700e-002 +v -3.0614840e-002 5.4412650e-002 3.6694290e-002 +v -2.4787600e-002 5.2606220e-002 4.0839760e-002 +v -2.1588860e-002 5.6836920e-002 4.5467040e-002 +v -2.4264000e-004 5.4536020e-002 5.4641200e-002 +v -8.0900510e-002 1.2558713e-001 5.2155370e-002 +v -2.9996210e-002 1.7811137e-001 -5.2358200e-003 +v 3.5515390e-002 5.0449570e-002 3.1439830e-002 +v 4.3315550e-002 5.2145550e-002 3.2492110e-002 +v -6.3938540e-002 1.5262699e-001 3.4481070e-002 +v -4.4489440e-002 6.1077710e-002 3.9545320e-002 +v -3.8979900e-002 5.7996270e-002 4.0151390e-002 +v -7.9087730e-002 1.7044488e-001 -4.1373170e-002 +v -4.6247300e-003 5.7759650e-002 5.3990710e-002 +v -1.4985500e-003 5.5925480e-002 5.4630800e-002 +v 5.1981700e-003 5.7017990e-002 5.3423530e-002 +v 3.0920000e-005 1.2315746e-001 3.4749660e-002 +v 3.3568300e-002 1.1523716e-001 2.1798410e-002 +v 3.8686300e-002 5.6450590e-002 3.1188930e-002 +v -3.4385780e-002 5.4096000e-002 3.8060290e-002 +v -8.5308300e-003 6.0159420e-002 5.5308950e-002 +v -4.4024000e-004 5.8343410e-002 5.4483410e-002 +v -9.1078730e-002 1.1506037e-001 4.0141810e-002 +v 4.0775480e-002 5.4557490e-002 3.2014740e-002 +v 4.5636880e-002 5.7402620e-002 3.1992220e-002 +v 2.0358850e-002 1.2448747e-001 2.5906340e-002 +v -1.4169700e-002 1.2767892e-001 1.3080500e-003 +v -1.1987590e-002 5.7493210e-002 5.2752420e-002 +v 3.2514500e-003 5.9828640e-002 5.5464300e-002 +v -1.2395240e-002 1.2264726e-001 3.3588280e-002 +v 1.3813780e-002 1.2322188e-001 3.2502590e-002 +v -7.7004310e-002 1.5521281e-001 2.4534770e-002 +v -2.8001360e-002 6.1075420e-002 3.7471210e-002 +v -8.5480000e-004 6.0593520e-002 5.5824810e-002 +v -3.8050200e-002 1.1527068e-001 3.3178540e-002 +v -1.6231340e-002 1.2382942e-001 2.9576990e-002 +v -2.5373550e-002 1.5840012e-001 -1.4801300e-003 +v -6.7818590e-002 1.5454353e-001 3.0233720e-002 +v -4.3082600e-003 6.1418570e-002 5.5688490e-002 +v -3.1958900e-003 1.1912518e-001 3.8349580e-002 +v -6.4292400e-003 1.2201090e-001 3.5740890e-002 +v 4.2312960e-002 5.9099150e-002 3.0848420e-002 +v 4.8510010e-002 6.1780760e-002 3.0347250e-002 +v 5.0412290e-002 6.0312610e-002 3.0245060e-002 +v -3.9185590e-002 6.3074530e-002 4.1382890e-002 +v -3.4448660e-002 6.0780500e-002 3.9543990e-002 +v -1.4746030e-002 6.5583910e-002 5.3730860e-002 +v 2.6645200e-003 6.2700010e-002 5.6525210e-002 +v -1.3991610e-002 1.1962575e-001 3.6251540e-002 +v 1.9659170e-002 1.1236219e-001 3.7545270e-002 +v -3.2597160e-002 1.7498725e-001 -2.5953100e-003 +v -2.1513900e-003 9.9437380e-002 4.9849750e-002 +v -5.6001390e-002 6.1830670e-002 2.7931150e-002 +v -5.4707260e-002 6.3461570e-002 3.1670590e-002 +v -5.1307940e-002 6.0521660e-002 3.1434930e-002 +v -4.1979320e-002 6.9629980e-002 4.1824930e-002 +v -3.0272490e-002 6.2474660e-002 3.7982220e-002 +v -1.1387860e-002 6.4742460e-002 5.4918000e-002 +v 6.9544900e-003 6.4700130e-002 5.5599150e-002 +v 4.3015090e-002 9.7690960e-002 1.0258300e-003 +v 4.0635900e-002 6.1574860e-002 2.9841250e-002 +v 4.6183560e-002 6.1910110e-002 3.0223400e-002 +v 3.7552960e-002 1.0685291e-001 2.6303470e-002 +v -7.8640730e-002 1.6387238e-001 -2.8387790e-002 +v -6.1996240e-002 1.4761484e-001 -4.3256800e-003 +v -5.7499800e-003 6.5488980e-002 5.6173390e-002 +v 2.5369000e-004 6.5741170e-002 5.6569260e-002 +v -2.0542550e-002 1.1979518e-001 3.3003670e-002 +v 4.3155900e-003 1.2782561e-001 2.8646880e-002 +v -4.6549580e-002 6.7652130e-002 3.9635790e-002 +v -1.7420580e-002 6.9659490e-002 5.4089530e-002 +v -1.5242190e-002 7.0909900e-002 5.5004790e-002 +v -1.0282890e-002 6.8926360e-002 5.5289610e-002 +v -1.1289000e-004 6.9288200e-002 5.6579790e-002 +v -3.6309330e-002 1.1876943e-001 3.0674020e-002 +v -7.0325800e-002 6.3367770e-002 1.9809180e-002 +v 4.3023100e-002 6.3795810e-002 2.8039210e-002 +v 4.2831110e-002 8.5556040e-002 2.7873760e-002 +v 1.6981600e-002 1.2715003e-001 2.2931490e-002 +v -4.2121490e-002 1.2825104e-001 1.0751500e-003 +v 1.6329230e-002 1.2251895e-001 3.1375390e-002 +v -8.1264160e-002 1.5381172e-001 2.5897830e-002 +v -3.2257870e-002 8.8192600e-002 -2.5130960e-002 +v -1.3774950e-002 7.0887950e-002 5.4695630e-002 +v 5.2929600e-003 6.8006030e-002 5.5670490e-002 +v 7.6962500e-003 7.2375600e-002 5.6062150e-002 +v 3.4830600e-003 1.2002635e-001 3.6911950e-002 +v 6.6532500e-003 1.1673563e-001 3.8716340e-002 +v 4.6086570e-002 6.6473930e-002 2.6808990e-002 +v 5.2327290e-002 6.4327070e-002 2.8281890e-002 +v -6.1897630e-002 1.2297065e-001 -8.7725500e-003 +v -6.3934700e-003 1.0524472e-001 -2.2841900e-002 +v -3.5218330e-002 6.8559830e-002 4.1381470e-002 +v -3.2689880e-002 6.7729720e-002 4.0124390e-002 +v -2.9245440e-002 6.9551520e-002 3.9369010e-002 +v -5.0024500e-003 6.9655000e-002 5.6892510e-002 +v 1.6573960e-002 1.1890153e-001 3.5042300e-002 +v -8.9385100e-002 9.9024040e-002 1.7521830e-002 +v 4.5719230e-002 6.9489400e-002 2.3549340e-002 +v 5.4537210e-002 6.8796720e-002 2.4517690e-002 +v -4.4989450e-002 7.1577330e-002 4.1929250e-002 +v -4.2439400e-003 1.2914902e-001 2.5829230e-002 +v -7.3880090e-002 1.2091638e-001 5.3395800e-002 +v -7.4033870e-002 1.4406894e-001 4.4994970e-002 +v 5.0400010e-002 6.7292480e-002 2.6851470e-002 +v -5.4056890e-002 1.5671602e-001 -2.4865900e-003 +v 2.6148110e-002 1.2014725e-001 2.7308010e-002 +v -1.0736490e-002 1.2990285e-001 1.0993790e-002 +v -4.5078840e-002 8.7261130e-002 -2.1865520e-002 +v -3.8340900e-002 6.8843770e-002 4.1846470e-002 +v -2.9255580e-002 7.5169210e-002 4.1186430e-002 +v -4.7311210e-002 1.6296037e-001 6.0740300e-003 +v -1.1866030e-002 7.3183750e-002 5.6250050e-002 +v -6.3734600e-003 7.2184340e-002 5.7972980e-002 +v -2.9935300e-003 7.2186440e-002 5.8167190e-002 +v -2.5781060e-002 9.3778180e-002 -2.8388220e-002 +v -1.6692560e-002 1.1568553e-001 3.7853150e-002 +v -8.4123410e-002 1.0832050e-001 2.4730980e-002 +v -7.4294080e-002 1.6356850e-001 -1.5534220e-002 +v -9.4297150e-002 1.2617744e-001 1.9224650e-002 +v -3.5207090e-002 1.2505219e-001 2.1635690e-002 +v -4.9495940e-002 7.3436340e-002 4.1673570e-002 +v -3.3064160e-002 7.6654840e-002 4.1277900e-002 +v -7.3157300e-003 7.3919590e-002 5.7971690e-002 +v 2.1850000e-005 7.3496040e-002 5.7696650e-002 +v 4.1934400e-003 7.2915170e-002 5.6298730e-002 +v -7.7256080e-002 1.4565854e-001 4.3122930e-002 +v 4.1073260e-002 8.8724320e-002 -9.7879400e-003 +v 3.7418710e-002 1.0850822e-001 3.3973000e-004 +v -5.5111380e-002 7.4687840e-002 4.1939740e-002 +v -4.2740230e-002 7.6995340e-002 4.2804080e-002 +v -6.8531190e-002 1.5630045e-001 2.0997710e-002 +v -9.9440200e-003 7.6343100e-002 5.7388560e-002 +v -3.2479200e-003 7.5710690e-002 5.8714640e-002 +v 1.3414380e-002 9.3073740e-002 5.1467750e-002 +v -7.3504440e-002 9.3883340e-002 -1.4751720e-002 +v -7.4471830e-002 1.3507476e-001 5.0688900e-002 +v -2.5851310e-002 1.2182948e-001 2.6079670e-002 +v -3.4022940e-002 1.7597076e-001 -3.7271600e-003 +v -7.5405850e-002 1.6839072e-001 -2.6792980e-002 +v -3.6658410e-002 7.5087300e-002 4.2006940e-002 +v -1.7795480e-002 7.7486190e-002 5.6087240e-002 +v -1.1378660e-002 7.9877150e-002 5.7698880e-002 +v -1.0415000e-004 7.6881950e-002 5.8190740e-002 +v 2.7381400e-003 7.9105680e-002 5.6719190e-002 +v 5.5681200e-003 7.6397140e-002 5.6327220e-002 +v -6.1895860e-002 1.5424247e-001 -1.9018600e-002 +v -7.2646960e-002 1.4098943e-001 4.6976640e-002 +v 1.5799740e-002 1.2901416e-001 1.3236870e-002 +v -1.1703420e-002 9.7355720e-002 5.1592080e-002 +v -5.8922160e-002 7.7545490e-002 4.2961390e-002 +v -5.3121320e-002 7.7912430e-002 4.3334920e-002 +v -5.0745740e-002 7.6148400e-002 4.3137630e-002 +v -4.7401820e-002 7.5550340e-002 4.2630140e-002 +v -4.5055620e-002 7.8796280e-002 4.2341310e-002 +v -3.9517650e-002 7.8127780e-002 4.2918620e-002 +v -1.5245570e-002 8.2940770e-002 5.6934590e-002 +v -1.4557790e-002 7.6582160e-002 5.6493250e-002 +v -5.9406000e-003 7.9038240e-002 5.7969830e-002 +v 3.7176540e-002 1.1064404e-001 1.8811330e-002 +v 2.3929700e-003 1.3162713e-001 1.1955100e-002 +v -9.3644210e-002 1.1789378e-001 1.8662080e-002 +v -6.3939810e-002 7.8621830e-002 4.2083520e-002 +v -4.5376460e-002 8.2383550e-002 4.3282120e-002 +v -3.6505460e-002 8.1152260e-002 4.3162320e-002 +v -3.3244340e-002 8.2266590e-002 4.1852180e-002 +v -3.0800650e-002 8.0068420e-002 4.1798070e-002 +v -2.0578500e-003 8.0998290e-002 5.7553840e-002 +v 8.1848100e-003 8.0756170e-002 5.5374510e-002 +v -1.2953370e-002 1.1593580e-001 3.8920230e-002 +v -7.8081470e-002 1.2351940e-001 5.2136990e-002 +v -2.6580930e-002 1.5567694e-001 -4.1963400e-003 +v -8.2471600e-002 1.1624130e-001 -2.3236300e-003 +v -2.7538480e-002 7.9964780e-002 4.7697210e-002 +v 1.2556400e-003 8.3845570e-002 5.7446440e-002 +v 6.1508300e-003 8.3406240e-002 5.6463500e-002 +v -6.2433240e-002 8.4035270e-002 4.4203120e-002 +v -5.9867170e-002 8.0540510e-002 4.3277090e-002 +v -5.5238340e-002 8.1999450e-002 4.4984770e-002 +v -5.4000400e-002 8.0568410e-002 4.4601460e-002 +v -5.0027020e-002 8.1311330e-002 4.4264180e-002 +v -4.1996120e-002 8.1083670e-002 4.2456150e-002 +v -3.9357940e-002 8.3631380e-002 4.3502350e-002 +v -8.6161480e-002 1.0838594e-001 1.8244920e-002 +v -8.6723010e-002 9.9917250e-002 3.5537100e-003 +v -2.2413700e-002 8.3283520e-002 5.5590700e-002 +v -1.6993180e-002 8.2555820e-002 5.7523880e-002 +v -1.2406010e-002 8.5222570e-002 5.7267780e-002 +v -7.4442100e-003 1.1693417e-001 3.9283850e-002 +v -2.1452000e-003 1.1143287e-001 4.2436620e-002 +v -7.5718220e-002 1.2522734e-001 5.3087330e-002 +v -7.7056660e-002 1.3193469e-001 5.2462430e-002 +v -6.1121040e-002 1.5569660e-001 2.2517050e-002 +v -3.7538540e-002 1.2744127e-001 1.5320870e-002 +v -2.0516700e-003 1.0093469e-001 4.5625920e-002 +v -6.4992150e-002 8.4550900e-002 4.4120060e-002 +v -5.7861950e-002 8.3944360e-002 4.4186030e-002 +v -4.5681080e-002 8.4988010e-002 4.4159500e-002 +v -3.5022640e-002 8.2888160e-002 4.2912760e-002 +v -2.9982010e-002 8.5402300e-002 4.3745080e-002 +v -8.8892260e-002 9.9209100e-002 9.5703200e-003 +v -1.9135300e-002 8.3474800e-002 5.7217390e-002 +v -8.3489710e-002 1.0724729e-001 7.5790000e-004 +v -7.0112800e-002 1.1790350e-001 5.2714160e-002 +v -3.5526320e-002 1.7595563e-001 -4.8676200e-003 +v -7.0831390e-002 1.2254425e-001 5.3274880e-002 +v 4.5133810e-002 9.3630690e-002 6.2336800e-003 +v -5.3616700e-002 8.5346850e-002 4.5332470e-002 +v -4.9000840e-002 8.6221680e-002 4.5352040e-002 +v -3.6744880e-002 8.6083690e-002 4.3612890e-002 +v -1.0872600e-002 8.8826770e-002 5.6665490e-002 +v -3.8450200e-003 8.4787810e-002 5.7197980e-002 +v -4.9020070e-002 1.1771293e-001 3.1581430e-002 +v -4.2914400e-002 1.1835991e-001 3.0645040e-002 +v -5.7684530e-002 1.5561695e-001 1.2983110e-002 +v -2.5411730e-002 1.2472533e-001 1.2886000e-004 +v 1.9012230e-002 1.2736197e-001 1.7786580e-002 +v -5.9498600e-002 8.8845470e-002 4.5109290e-002 +v -5.6931050e-002 8.8101500e-002 4.4692930e-002 +v 3.5765600e-003 1.3138981e-001 7.2086000e-003 +v -1.6683350e-002 8.7266690e-002 5.6741190e-002 +v -8.4980800e-003 8.3990470e-002 5.7605220e-002 +v 3.5078200e-003 8.6339520e-002 5.7048320e-002 +v -2.8398700e-002 1.8070650e-001 -7.8469500e-003 +v -7.6565830e-002 1.1674037e-001 5.1489350e-002 +v 1.7869430e-002 9.0898610e-002 4.8712940e-002 +v -4.0342100e-002 1.1669551e-001 3.2460200e-002 +v 5.9105700e-003 1.3140929e-001 1.6823750e-002 +v -8.5777550e-002 9.1701370e-002 -4.6970000e-005 +v -5.0372230e-002 8.8844660e-002 4.5188000e-002 +v -4.4434130e-002 8.7654530e-002 4.3477620e-002 +v -4.2056390e-002 8.6711520e-002 4.2534630e-002 +v -3.3058460e-002 8.6185500e-002 4.2560350e-002 +v -2.9241910e-002 9.0453360e-002 4.4236610e-002 +v -6.8964100e-003 8.4432910e-002 5.7168580e-002 +v -6.6210600e-003 9.0415250e-002 5.6879750e-002 +v -1.2439100e-003 8.9093200e-002 5.6552120e-002 +v 9.4076000e-003 9.0328050e-002 5.4214140e-002 +v 4.0194810e-002 1.0231597e-001 -2.0048600e-003 +v -8.6227130e-002 1.1466841e-001 2.2102000e-003 +v -8.9495490e-002 9.5632430e-002 1.4234810e-002 +v -6.7132160e-002 1.5709447e-001 -6.2032000e-003 +v -5.2935640e-002 9.0913520e-002 4.4568870e-002 +v -3.6744910e-002 8.8886950e-002 4.3312050e-002 +v -1.3626110e-002 8.9787930e-002 5.6674380e-002 +v 2.3337130e-002 1.2353449e-001 2.4874140e-002 +v -3.7053790e-002 1.2715094e-001 3.5474000e-004 +v -7.3696690e-002 1.5613015e-001 1.4359790e-002 +v -6.5592380e-002 9.1042400e-002 4.4092080e-002 +v -5.8997380e-002 9.2030670e-002 4.5335270e-002 +v -3.3238910e-002 8.8573580e-002 4.3697040e-002 +v -3.1834990e-002 9.0722970e-002 4.4173460e-002 +v -2.0022170e-002 8.8032110e-002 5.5589350e-002 +v -1.1213830e-002 9.2366370e-002 5.6105260e-002 +v 3.9108440e-002 1.0829072e-001 1.3142330e-002 +v 2.8675700e-002 1.1959600e-001 2.4545910e-002 +v -6.8940210e-002 1.5652777e-001 -1.9716000e-003 +v -6.2615110e-002 9.1126880e-002 4.5090730e-002 +v 3.0444560e-002 1.1886441e-001 2.0821750e-002 +v -1.5241090e-002 9.1821720e-002 5.5817230e-002 +v -5.6221700e-003 9.3235010e-002 5.5893630e-002 +v 4.7989900e-003 9.1654840e-002 5.4715170e-002 +v -6.8282400e-002 9.2376840e-002 4.2388730e-002 +v -5.5623730e-002 9.2187420e-002 4.5054970e-002 +v -5.1901030e-002 9.5457620e-002 4.3937650e-002 +v -4.8809030e-002 9.1083890e-002 4.4456690e-002 +v -4.5411560e-002 9.1002130e-002 4.3252770e-002 +v -4.4514550e-002 9.4860420e-002 4.2972490e-002 +v -3.9430320e-002 8.9597620e-002 4.3177890e-002 +v -3.5642240e-002 9.2617410e-002 4.4238490e-002 +v -1.2246000e-004 9.3201160e-002 5.5398380e-002 +v 9.5104600e-003 9.5483870e-002 5.0910600e-002 +v 2.1441660e-002 9.1354960e-002 4.8043360e-002 +v -8.9830300e-003 1.6926449e-001 -2.2683480e-002 +v -7.3019050e-002 1.5602104e-001 2.2419340e-002 +v -6.4760430e-002 1.5311588e-001 -2.0371200e-003 +v -6.9368510e-002 9.5242790e-002 4.2129000e-002 +v -6.0117140e-002 9.5552910e-002 4.4183820e-002 +v -2.9241690e-002 9.4290440e-002 4.4821190e-002 +v -2.6561430e-002 9.3289510e-002 4.4975420e-002 +v -1.4394030e-002 9.4587640e-002 5.3993500e-002 +v -8.8691600e-003 9.5400260e-002 5.4445980e-002 +v -1.2188700e-003 9.6201750e-002 5.3815910e-002 +v 4.0479000e-003 9.5817360e-002 5.2936770e-002 +v -4.6019400e-003 1.2428544e-001 3.3471960e-002 +v -7.8436460e-002 1.3928013e-001 4.8329360e-002 +v 1.0774610e-002 1.3079162e-001 1.4341740e-002 +v -5.6623730e-002 9.6322170e-002 4.3667910e-002 +v -3.6298870e-002 9.5695620e-002 4.3580310e-002 +v -2.4379930e-002 9.5866450e-002 4.4434530e-002 +v 1.0915500e-002 1.2633629e-001 2.9857020e-002 +v -5.8622700e-003 9.7350210e-002 5.2743650e-002 +v 1.6973450e-002 9.7106620e-002 4.7440920e-002 +v -6.7231980e-002 9.9173950e-002 4.1593880e-002 +v -5.4994210e-002 9.9640820e-002 4.2955230e-002 +v -4.8617990e-002 9.6452700e-002 4.4183060e-002 +v -5.5369000e-002 1.5442476e-001 1.6160650e-002 +v -9.4243550e-002 1.2207432e-001 2.3568470e-002 +v 1.3242990e-002 9.6738240e-002 4.8750160e-002 +v 2.0639290e-002 9.6602480e-002 4.6971000e-002 +v 7.3429700e-003 1.2098188e-001 3.5973430e-002 +v -1.3493870e-002 1.2882438e-001 5.9690700e-003 +v -2.0110640e-002 1.2504545e-001 2.3588310e-002 +v -6.9438450e-002 1.6479930e-001 -1.7218700e-002 +v -6.4028050e-002 9.7838670e-002 4.2565330e-002 +v -5.1996350e-002 9.9707850e-002 4.2716590e-002 +v -4.3990880e-002 9.9425460e-002 4.2383430e-002 +v -3.9738250e-002 1.0215357e-001 4.0574410e-002 +v -3.5931490e-002 9.9809950e-002 4.2335800e-002 +v -3.0867600e-002 9.6914680e-002 4.4651400e-002 +v -2.8342070e-002 9.7782680e-002 4.3761280e-002 +v -2.5622580e-002 9.8713420e-002 4.4210890e-002 +v -8.5236620e-002 1.1077356e-001 2.4537670e-002 +v 7.1936000e-003 9.8859470e-002 4.8419510e-002 +v 9.6509200e-003 1.0108782e-001 4.7373080e-002 +v 1.3487100e-002 1.0076420e-001 4.7454290e-002 +v 7.7389800e-003 1.3147500e-001 1.1682970e-002 +v 8.0905000e-004 1.1633319e-001 4.0167560e-002 +v -7.2652570e-002 1.6567918e-001 -1.8212480e-002 +v -5.6009400e-003 1.3076674e-001 1.0516060e-002 +v -2.6303720e-002 1.2518875e-001 1.7392980e-002 +v -4.7590430e-002 1.0081180e-001 4.2349150e-002 +v -4.1460830e-002 9.8544800e-002 4.1778620e-002 +v -3.3582070e-002 1.0383908e-001 4.0737990e-002 +v -2.2870240e-002 1.0284737e-001 4.3544750e-002 +v -2.2361970e-002 9.8207610e-002 4.4765940e-002 +v -1.8870510e-002 9.8973200e-002 4.4489280e-002 +v -7.1433690e-002 7.7573520e-002 3.8060760e-002 +v -7.3001150e-002 1.1826712e-001 5.3034590e-002 +v -6.8466430e-002 1.3498146e-001 -8.3359800e-003 +v -7.4683810e-002 1.0786100e-001 -9.0477100e-003 +v -6.4958960e-002 1.5852021e-001 -1.2595320e-002 +v -7.8931700e-002 1.5093057e-001 3.5151900e-002 +v -7.4113550e-002 9.9442520e-002 3.8337710e-002 +v -7.0456930e-002 1.0098777e-001 3.9794060e-002 +v -5.9058760e-002 1.0041260e-001 4.2725130e-002 +v -4.9187330e-002 1.0452012e-001 4.0301390e-002 +v -2.9151180e-002 1.0197369e-001 4.2633060e-002 +v -1.1599720e-002 1.0107813e-001 4.4191660e-002 +v 5.1450400e-003 1.0163906e-001 4.5423010e-002 +v -5.1495700e-002 1.0496738e-001 4.0347210e-002 +v -2.0218210e-002 1.0214391e-001 4.3701160e-002 +v 4.2515900e-003 1.0523743e-001 4.2563550e-002 +v 1.6832800e-002 1.0337487e-001 4.5287270e-002 +v -2.5661080e-002 1.2562669e-001 4.5537500e-003 +v -7.2141950e-002 1.0536685e-001 3.7523210e-002 +v -6.4984570e-002 1.0371550e-001 4.0647810e-002 +v -6.0652480e-002 1.0467197e-001 4.0906390e-002 +v -5.5308980e-002 1.0365394e-001 4.1516690e-002 +v -4.4243240e-002 1.0431726e-001 4.1339990e-002 +v -1.5513340e-002 1.0436131e-001 4.2919420e-002 +v -7.6323200e-003 1.0304531e-001 4.3710640e-002 +v -7.8046900e-003 1.0516619e-001 4.3825460e-002 +v 9.7163200e-003 1.0523506e-001 4.3603830e-002 +v 3.0300390e-002 1.1553645e-001 2.8685010e-002 +v -4.7496910e-002 1.0635662e-001 4.0165640e-002 +v -3.8978950e-002 1.0683037e-001 3.8247660e-002 +v -2.5869310e-002 1.0426705e-001 4.2207540e-002 +v -1.8057930e-002 1.0503919e-001 4.2802830e-002 +v -1.5180030e-002 1.0807750e-001 4.2350430e-002 +v -3.8981500e-003 1.0566175e-001 4.4047190e-002 +v 2.6820000e-005 1.0446731e-001 4.3775910e-002 +v 1.1978350e-002 1.0403629e-001 4.5396310e-002 +v 1.5004970e-002 1.0726898e-001 4.1811990e-002 +v 2.6488060e-002 1.2230287e-001 2.0398110e-002 +v -3.6225630e-002 1.0634244e-001 3.8644860e-002 +v -2.1126780e-002 1.0932290e-001 4.0715320e-002 +v -1.2819810e-002 1.0457100e-001 4.3465690e-002 +v 5.2847900e-003 1.0943666e-001 4.1674980e-002 +v 8.9403700e-003 1.0710645e-001 4.1243400e-002 +v -5.1839670e-002 1.6062039e-001 7.1421300e-003 +v -5.4201370e-002 1.1451730e-001 3.4843990e-002 +v 1.3226250e-002 1.2958070e-001 1.9689610e-002 +v -6.9382410e-002 1.0865787e-001 3.7507800e-002 +v -6.7691040e-002 1.0734145e-001 3.8018440e-002 +v -6.3782400e-002 1.1037270e-001 3.7579790e-002 +v -5.0749390e-002 1.0928682e-001 3.8297580e-002 +v -9.3936200e-003 1.0742813e-001 4.3454570e-002 +v 1.1760100e-003 1.0932531e-001 4.2662800e-002 +v 9.8020300e-003 1.1003994e-001 3.9945400e-002 +v 2.0131290e-002 1.0732778e-001 4.0323840e-002 +v -2.7872800e-003 1.0577531e-001 -2.2459030e-002 +v -5.4996890e-002 1.0774199e-001 3.9424590e-002 +v -4.5966740e-002 1.0905146e-001 3.8754110e-002 +v -4.2324540e-002 1.0737278e-001 3.9456440e-002 +v -3.2161240e-002 1.0896504e-001 3.8102720e-002 +v -3.0770180e-002 1.1597313e-001 3.2858800e-002 +v -1.1608610e-002 1.0983707e-001 4.2475330e-002 +v -2.9428320e-002 9.3166620e-002 -2.4931860e-002 +v -8.0043570e-002 9.2080160e-002 -9.4198200e-003 +v -4.9797430e-002 1.1342104e-001 3.5117920e-002 +v -4.3723850e-002 1.6191369e-001 5.7713400e-003 +v -5.7981740e-002 1.0943152e-001 3.7997640e-002 +v -4.1491180e-002 1.1224766e-001 3.5873450e-002 +v -2.4929830e-002 1.1592775e-001 3.4094730e-002 +v -2.0881690e-002 1.1409528e-001 3.7872990e-002 +v -7.5519700e-003 1.1183813e-001 4.2039690e-002 +v 3.7667200e-003 1.1240547e-001 4.1494710e-002 +v -6.2829620e-002 1.5189480e-001 -9.2373400e-003 +v -5.9195950e-002 1.1320797e-001 3.6234680e-002 +v -5.1079080e-002 9.3892810e-002 -2.1761690e-002 +v -7.3945370e-002 8.4374880e-002 -1.5154490e-002 +v -7.2146240e-002 1.3486431e-001 -7.7592200e-003 +v -1.9408870e-002 1.7041104e-001 -2.0994830e-002 +v -5.5530450e-002 1.4905531e-001 -1.9602100e-003 +v 1.6688460e-002 3.6976600e-002 4.3000600e-002 +v -5.2277330e-002 1.1775075e-001 3.3769460e-002 +v -6.9201380e-002 9.3039200e-002 -1.6486120e-002 +v 2.6579210e-002 1.1702438e-001 3.0867940e-002 +v -2.3574310e-002 3.7036910e-002 5.4144750e-002 +v -7.3775100e-003 3.8988430e-002 4.8929450e-002 +v 1.3234660e-002 3.8453060e-002 4.4501470e-002 +v 1.9487350e-002 4.0809290e-002 4.2641060e-002 +v -6.3953930e-002 1.4694729e-001 3.8484200e-002 +v -4.9579470e-002 3.6096540e-002 4.5955360e-002 +v -4.3323650e-002 3.6286400e-002 4.4042360e-002 +v -2.9047200e-002 1.2556338e-001 7.7617700e-003 +v -1.7343100e-003 3.9476800e-002 4.7262900e-002 +v -3.1358130e-002 1.5362199e-001 -4.6738900e-003 +v 2.5822000e-003 1.0747582e-001 -2.0606030e-002 +v -5.6802300e-002 1.4514674e-001 3.1740300e-002 +v -5.6464330e-002 3.7683110e-002 4.6819640e-002 +v -5.0964750e-002 3.8312290e-002 4.6286140e-002 +v -5.0980410e-002 1.3486613e-001 2.7585000e-002 +v -2.5647410e-002 3.8860730e-002 5.4161390e-002 +v -2.2542110e-002 4.0615780e-002 5.3986030e-002 +v -1.7618010e-002 3.8911170e-002 5.2403440e-002 +v -1.9711750e-002 1.6829145e-001 -1.3020960e-002 +v 2.3780070e-002 9.5222940e-002 4.6347330e-002 +v 1.4744290e-002 4.2716950e-002 4.4510310e-002 +v 2.1691360e-002 4.0161530e-002 4.0846450e-002 +v -6.4067240e-002 9.0172190e-002 -1.8855520e-002 +v 2.0319150e-002 1.0041961e-001 4.5760520e-002 +v -3.6425000e-002 9.3630690e-002 -2.3534630e-002 +v -1.4981170e-002 4.2571420e-002 5.1404530e-002 +v -5.7335340e-002 1.2340101e-001 4.0231470e-002 +v -5.4172560e-002 1.2337919e-001 3.7576440e-002 +v 2.2625210e-002 4.3621680e-002 4.0904580e-002 +v 2.8810520e-002 4.3352290e-002 3.2157720e-002 +v -4.2764160e-002 1.5727487e-001 5.2016200e-003 +v 9.2231900e-003 4.4125090e-002 4.5057440e-002 +v 1.5048210e-002 4.5755840e-002 4.3793870e-002 +v -6.3757290e-002 1.0251144e-001 -1.7484400e-002 +v -3.4070430e-002 1.6148975e-001 -1.3786960e-002 +v -8.2191500e-002 7.5610200e-002 1.6542620e-002 +v -6.6299420e-002 1.2337119e-001 5.0615920e-002 +v -1.5510100e-002 4.5283110e-002 5.0653040e-002 +v 1.8928020e-002 4.4249610e-002 4.3009830e-002 +v 2.5821800e-002 4.6326610e-002 3.8277230e-002 +v 2.7268700e-002 4.4547790e-002 3.6152520e-002 +v -4.5301340e-002 1.5695057e-001 7.2036900e-003 +v 2.3855760e-002 1.0616625e-001 3.9378080e-002 +v 2.1632670e-002 4.8127270e-002 4.0694430e-002 +v 4.3785360e-002 4.8803700e-002 3.1343420e-002 +v 4.8074790e-002 4.8969960e-002 2.8165490e-002 +v 5.2663090e-002 4.7673620e-002 2.1201270e-002 +v -5.2722450e-002 4.4722850e-002 4.4143250e-002 +v -3.0071610e-002 1.7258324e-001 -6.3597700e-003 +v -3.4508050e-002 1.5447469e-001 1.6504600e-003 +v 1.0629710e-002 4.6711810e-002 4.6472020e-002 +v 1.6743440e-002 4.8439000e-002 4.3678630e-002 +v 2.8827050e-002 9.2133370e-002 4.3920090e-002 +v -5.9937100e-002 1.2726188e-001 4.0771270e-002 +v -3.6752090e-002 1.5802075e-001 4.1862000e-003 +v -3.7885390e-002 1.6199719e-001 2.4686000e-004 +v -2.2047790e-002 1.8348586e-001 -1.2094990e-002 +v -2.4364620e-002 1.8096836e-001 -9.8312000e-003 +v -4.4882280e-002 1.5052959e-001 7.6451700e-003 +v 2.6996760e-002 5.1317780e-002 3.8752040e-002 +v 4.7735750e-002 5.2751040e-002 3.0797290e-002 +v 5.1703790e-002 4.8857380e-002 2.4147970e-002 +v -6.7504360e-002 1.1424088e-001 4.8036050e-002 +v -1.6257520e-002 1.6031250e-001 -9.6926000e-003 +v -6.3926300e-002 1.6792441e-001 -4.0730420e-002 +v -4.1665290e-002 1.4996141e-001 4.5405000e-003 +v -3.5203230e-002 1.6493551e-001 -2.6810000e-003 +v 4.1318770e-002 9.9496740e-002 2.4275750e-002 +v 1.4055220e-002 5.2523910e-002 4.8593880e-002 +v 1.9421220e-002 5.1321300e-002 4.4798910e-002 +v 2.3677990e-002 5.1474390e-002 4.1053270e-002 +v 3.4258130e-002 5.1930810e-002 3.2757880e-002 +v 5.5957340e-002 5.3147410e-002 2.3197720e-002 +v -3.9937960e-002 1.4922850e-001 1.6017200e-003 +v -4.6988800e-002 1.2600802e-001 2.6985500e-002 +v -2.7708370e-002 9.0081290e-002 -3.1911460e-002 +v 1.9204630e-002 5.5166510e-002 4.7722150e-002 +v 2.1886000e-002 5.3927560e-002 4.5102460e-002 +v 3.1286270e-002 5.2863840e-002 3.6913620e-002 +v 4.6661160e-002 5.4719230e-002 3.1976810e-002 +v 5.1823730e-002 5.3276700e-002 2.7927010e-002 +v -2.9264880e-002 1.6140418e-001 -2.1039500e-003 +v -6.8700770e-002 1.4463537e-001 4.3041630e-002 +v -5.6070060e-002 1.5000706e-001 2.9867640e-002 +v 4.4717850e-002 9.4802660e-002 1.2024710e-002 +v -4.1804090e-002 1.5582081e-001 6.4548200e-003 +v -6.8369340e-002 1.2289287e-001 5.2437860e-002 +v -6.4114810e-002 9.5509880e-002 -1.8114610e-002 +v -1.8383130e-002 1.8543664e-001 -1.7136370e-002 +v 1.1745400e-002 5.6678340e-002 5.1914060e-002 +v -5.9375360e-002 1.1998238e-001 4.0548240e-002 +v 5.9092080e-002 5.7956980e-002 2.0270120e-002 +v 4.3547740e-002 9.7389400e-002 1.7314650e-002 +v -2.6291780e-002 1.5963381e-001 -5.1845000e-004 +v 1.4904780e-002 5.6350380e-002 4.9522780e-002 +v 2.4286200e-002 5.4958580e-002 4.3086850e-002 +v 2.8952610e-002 5.6125250e-002 4.0388970e-002 +v -4.9507770e-002 1.2949500e-001 3.0259270e-002 +v 4.0824790e-002 9.5170220e-002 2.8657920e-002 +v 1.7774800e-002 5.8243780e-002 4.8864720e-002 +v 3.3573840e-002 5.8515260e-002 3.8310990e-002 +v 3.6385040e-002 5.6996480e-002 3.3601460e-002 +v -6.4205010e-002 1.2243894e-001 4.8008340e-002 +v -6.5424500e-002 1.4011279e-001 4.1308960e-002 +v 5.0801340e-002 5.7308080e-002 3.0001390e-002 +v 5.6671750e-002 5.6970820e-002 2.4291920e-002 +v -4.9349930e-002 1.4913519e-001 1.1274060e-002 +v -6.9760570e-002 1.3442855e-001 4.8265220e-002 +v 1.9537060e-002 6.0003780e-002 4.8576140e-002 +v 2.7013910e-002 5.9952790e-002 4.3454420e-002 +v 5.7679430e-002 6.1392970e-002 2.4201790e-002 +v -5.6916540e-002 1.2623512e-001 3.9426610e-002 +v 2.3469280e-002 1.1656262e-001 3.3537270e-002 +v -5.8298640e-002 1.3885500e-001 3.2937460e-002 +v 6.4598400e-003 6.0297430e-002 5.4780030e-002 +v 1.0406020e-002 5.9162400e-002 5.2484370e-002 +v 2.3183950e-002 5.8654360e-002 4.5871060e-002 +v 3.3040360e-002 6.1773840e-002 3.9781440e-002 +v -6.4348220e-002 1.2628088e-001 4.6650200e-002 +v -5.7031440e-002 1.1562007e-001 3.6494880e-002 +v 5.4451560e-002 5.8342890e-002 2.7653010e-002 +v -3.0134400e-002 1.7011322e-001 -7.3591600e-003 +v -3.7077100e-002 1.5986369e-001 1.6096500e-003 +v -5.6032760e-002 1.3731083e-001 3.1970590e-002 +v -6.7676470e-002 1.4150325e-001 4.3868140e-002 +v 9.9911700e-003 6.2735270e-002 5.4009240e-002 +v 1.4521510e-002 6.1382890e-002 5.0500900e-002 +v 3.0051740e-002 6.2169610e-002 4.1545810e-002 +v 3.7519170e-002 6.1062710e-002 3.4366020e-002 +v 5.3944010e-002 6.1391550e-002 2.8268530e-002 +v 5.9119900e-002 6.3128810e-002 2.1561830e-002 +v -2.4366390e-002 1.7693266e-001 -1.1719630e-002 +v -1.3253420e-002 1.6627152e-001 -1.4120370e-002 +v 3.9218740e-002 1.0669250e-001 2.0450190e-002 +v -1.7968980e-002 1.8078031e-001 -1.8103430e-002 +v 2.1902390e-002 6.0875970e-002 4.7282360e-002 +v 3.5341750e-002 6.1630030e-002 3.7606020e-002 +v -6.2145620e-002 1.3599775e-001 3.6700970e-002 +v 5.6820620e-002 6.3691150e-002 2.5286090e-002 +v -3.2800040e-002 1.5948699e-001 2.1962800e-003 +v 1.1212140e-002 6.6584120e-002 5.3982180e-002 +v 1.2919590e-002 6.4203580e-002 5.2441150e-002 +v 2.0126950e-002 6.3851330e-002 4.7919660e-002 +v 3.5971760e-002 6.6669610e-002 3.7781400e-002 +v 3.9906940e-002 6.4361260e-002 3.1686660e-002 +v -6.6702350e-002 1.3210600e-001 4.5480940e-002 +v -4.1601430e-002 1.5978000e-001 3.5374700e-003 +v 3.3044580e-002 1.0766252e-001 3.1916150e-002 +v 2.4672100e-002 6.3694500e-002 4.5204640e-002 +v 2.6108660e-002 6.8007640e-002 4.3902690e-002 +v 3.3363940e-002 6.7054760e-002 3.9729480e-002 +v 4.2915790e-002 6.6707700e-002 2.6994720e-002 +v 5.4714960e-002 6.4697160e-002 2.6979680e-002 +v -1.6530940e-002 1.6325000e-001 -9.2475200e-003 +v -1.7891600e-002 1.6113800e-001 -6.7072700e-003 +v 4.1118120e-002 9.7491260e-002 -3.9756700e-003 +v 2.3386770e-002 7.0075990e-002 4.7012620e-002 +v 3.8102900e-002 6.5678440e-002 3.5132520e-002 +v 1.0145240e-002 1.2221678e-001 3.4718950e-002 +v 5.8392410e-002 6.6741240e-002 2.1979460e-002 +v 3.8302050e-002 8.4549140e-002 -1.4478830e-002 +v 3.4126440e-002 9.7053980e-002 3.7590390e-002 +v -3.1355740e-002 1.5809888e-001 1.9128800e-003 +v -5.8259510e-002 1.4099493e-001 3.2440640e-002 +v -6.6817230e-002 1.1951525e-001 5.1490220e-002 +v -6.8090040e-002 1.1647050e-001 5.1151230e-002 +v 1.6568300e-002 6.6269890e-002 5.1009890e-002 +v 2.9362870e-002 6.6509780e-002 4.2289380e-002 +v 3.7027180e-002 9.3949630e-002 -1.1674040e-002 +v 5.6412730e-002 6.7659930e-002 2.3969320e-002 +v -6.1295740e-002 1.4519988e-001 3.7137830e-002 +v 8.3873000e-003 1.1336223e-001 3.9792610e-002 +v 1.1807030e-002 7.0920980e-002 5.4240490e-002 +v 2.9741730e-002 7.0647100e-002 4.1653890e-002 +v 3.6294410e-002 7.1220700e-002 3.7114610e-002 +v 3.9899680e-002 7.0294820e-002 3.2720020e-002 +v -6.2763130e-002 1.3778012e-001 3.6678590e-002 +v -1.5815440e-002 1.7504938e-001 -1.8654160e-002 +v -9.2268990e-002 1.1475156e-001 1.7017380e-002 +v -9.4964000e-004 1.0141111e-001 4.4290070e-002 +v -6.3712920e-002 1.1274250e-001 3.8006760e-002 +v -6.1096020e-002 1.1701650e-001 3.9654020e-002 +v 2.0991870e-002 6.9335450e-002 4.9003540e-002 +v 2.5658530e-002 7.0550460e-002 4.4539930e-002 +v 3.2978560e-002 7.3500690e-002 4.0486510e-002 +v 4.2156130e-002 6.9717580e-002 2.8318230e-002 +v -5.5516860e-002 1.2956070e-001 3.6598450e-002 +v -4.0802290e-002 1.6436059e-001 3.7448800e-003 +v -6.2546500e-003 1.0121650e-001 4.4322030e-002 +v -1.0986820e-002 1.6621199e-001 -1.6047550e-002 +v -3.0351420e-002 1.6448158e-001 -5.3291400e-003 +v 2.6110920e-002 1.0088990e-001 4.1733260e-002 +v -6.5599940e-002 1.1329504e-001 4.2318710e-002 +v 2.8814660e-002 9.6712680e-002 4.2257700e-002 +v 1.5263280e-002 7.1571940e-002 5.2717390e-002 +v 2.8982400e-002 7.4088480e-002 4.3447240e-002 +v 4.4872540e-002 7.5516710e-002 2.3155250e-002 +v -7.8225230e-002 1.4962481e-001 -2.5019400e-003 +v -4.6094940e-002 1.5296850e-001 9.0029700e-003 +v -5.2369030e-002 1.4682913e-001 1.8934650e-002 +v -2.1592100e-002 1.5763440e-001 -6.8623600e-003 +v 1.7176770e-002 7.3066230e-002 5.1826600e-002 +v 2.2687500e-002 7.5149180e-002 4.9312500e-002 +v 3.5472040e-002 7.3076670e-002 3.8482270e-002 +v -8.9480840e-002 1.3839976e-001 2.5061450e-002 +v -5.3216730e-002 1.3221978e-001 3.2978380e-002 +v -3.7776780e-002 1.5551947e-001 4.3700800e-003 +v -9.0549380e-002 1.3511875e-001 2.1680550e-002 +v -6.3366580e-002 1.3037076e-001 4.1669940e-002 +v 1.4074270e-002 7.6651720e-002 5.4221350e-002 +v 1.8109790e-002 7.5806590e-002 5.2488260e-002 +v 4.2209940e-002 7.8861480e-002 2.9187200e-002 +v -5.2115930e-002 1.4179906e-001 2.0510310e-002 +v 2.9063090e-002 1.1149602e-001 3.3805790e-002 +v -5.4731460e-002 1.4267229e-001 2.8980480e-002 +v 2.5903640e-002 7.5536040e-002 4.6416650e-002 +v 3.1298760e-002 7.5907440e-002 4.2699060e-002 +v 3.8446170e-002 7.5649430e-002 3.5050640e-002 +v 4.6351670e-002 7.4079520e-002 1.8354320e-002 +v -4.7656560e-002 1.3077525e-001 2.5523570e-002 +v -1.1447430e-002 1.7131059e-001 -1.9602980e-002 +v -3.6647240e-002 1.6640131e-001 -2.8167000e-004 +v -4.6653530e-002 1.5917824e-001 7.8019000e-003 +v -4.5569890e-002 1.4663612e-001 5.6514200e-003 +v 4.1438880e-002 9.2365100e-002 -7.4587000e-003 +v -6.4287420e-002 1.3463625e-001 3.9945640e-002 +v -6.1128890e-002 1.3178328e-001 3.8915910e-002 +v -4.7843540e-002 1.2215063e-001 2.8833160e-002 +v -4.9536830e-002 1.2491344e-001 3.1778440e-002 +v -7.1135380e-002 1.3817656e-001 4.7853960e-002 +v 1.0113870e-002 7.6468110e-002 5.5256790e-002 +v 1.7897450e-002 7.9516550e-002 5.2759530e-002 +v 2.1740850e-002 8.0250650e-002 5.0425390e-002 +v 2.5271590e-002 7.8724920e-002 4.8026570e-002 +v 3.0885040e-002 7.8999480e-002 4.3388770e-002 +v -6.2441930e-002 1.4084781e-001 3.6965840e-002 +v -6.2165060e-002 1.5666850e-001 -1.7837760e-002 +v 2.0657260e-002 1.0416830e-001 4.3004680e-002 +v -6.3602800e-002 1.1571453e-001 4.2572290e-002 +v 1.4424020e-002 8.0085500e-002 5.3755600e-002 +v 2.8779340e-002 8.2553250e-002 4.4527350e-002 +v 4.4450130e-002 8.1846900e-002 2.4552920e-002 +v 4.5541990e-002 8.3338380e-002 1.9700850e-002 +v -4.9665810e-002 1.2063801e-001 3.2163270e-002 +v -2.9177290e-002 1.7619959e-001 -5.6241100e-003 +v -5.8203130e-002 1.3270975e-001 3.6918680e-002 +v 3.8997050e-002 9.7088220e-002 -7.7799300e-003 +v -5.4725800e-002 1.2071262e-001 3.7451450e-002 +v 1.3189120e-002 8.4211180e-002 5.3065830e-002 +v -1.9926300e-002 1.6489742e-001 -9.9900200e-003 +v 2.0153130e-002 1.1849719e-001 3.4271250e-002 +v -5.5859940e-002 1.1774313e-001 3.7253480e-002 +v 1.8045260e-002 8.3623160e-002 5.1285840e-002 +v -6.3757130e-002 1.5912175e-001 -5.0155730e-002 +v -1.8527620e-002 1.7653197e-001 -1.7043540e-002 +v 2.8734400e-002 1.0360053e-001 3.8035240e-002 +v 4.1414010e-002 1.0284216e-001 1.6578920e-002 +v 2.4411730e-002 9.8016880e-002 4.4687400e-002 +v 2.0925180e-002 8.6311430e-002 4.9433120e-002 +v 3.0445010e-002 8.4959560e-002 4.3011090e-002 +v 3.3030090e-002 8.3781640e-002 4.1636930e-002 +v 3.6975090e-002 7.9876480e-002 3.7198390e-002 +v -7.7721460e-002 1.1355888e-001 4.8155990e-002 +v 2.9250000e-002 1.0651935e-001 3.6590330e-002 +v -5.3078180e-002 1.3754688e-001 2.8266470e-002 +v -6.2990590e-002 1.1999459e-001 4.5235530e-002 +v -6.5398320e-002 1.1751956e-001 4.8735570e-002 +v 3.3373910e-002 1.1227890e-001 2.7788130e-002 +v 3.8413590e-002 8.7489930e-002 3.5185850e-002 +v -6.1945930e-002 1.6479234e-001 -5.6647670e-002 +v -2.2876480e-002 1.7392813e-001 -1.3431140e-002 +v 4.3766230e-002 8.8390020e-002 -3.5708800e-003 +v 3.9291530e-002 1.0125969e-001 2.7550520e-002 +v 1.0936230e-002 8.6027290e-002 5.4732670e-002 +v 2.4108720e-002 8.4492600e-002 4.8292310e-002 +v 3.6758390e-002 9.9195470e-002 3.2837670e-002 +v -5.1941640e-002 1.2565987e-001 3.4587860e-002 +v -3.1582110e-002 1.6641850e-001 -5.7320000e-003 +v 7.6405900e-003 8.6427230e-002 5.6117850e-002 +v 1.6771020e-002 8.8644690e-002 5.0522960e-002 +v 3.4404610e-002 8.6932850e-002 4.0574270e-002 +v 3.6143820e-002 8.4439200e-002 3.7936930e-002 +v 4.1258830e-002 1.0361081e-001 2.6760600e-003 +v 2.4766140e-002 1.1081111e-001 3.6728360e-002 +v -2.2601590e-002 1.6250449e-001 -6.0717000e-003 +v -1.2893670e-002 1.7879041e-001 -2.2624750e-002 +v -2.4939150e-002 1.7031135e-001 -1.1329700e-002 +v -4.8468630e-002 1.4559606e-001 8.3661500e-003 +v 1.2534490e-002 8.9593930e-002 5.3394630e-002 +v 2.5872860e-002 8.8482290e-002 4.6655260e-002 +v 3.2756470e-002 8.8969130e-002 4.2215450e-002 +v -2.3343620e-002 1.6103450e-001 -3.1862400e-003 +v -9.2594970e-002 1.1943826e-001 2.6802950e-002 +v -7.4314840e-002 1.3761738e-001 -6.6698800e-003 +v -9.2499230e-002 1.2131500e-001 2.9256200e-002 +v -7.7378260e-002 1.5764266e-001 -1.4133650e-002 +v -9.2907340e-002 1.2307021e-001 3.6523230e-002 +v 2.8423340e-002 8.8011080e-002 4.4234200e-002 +v 3.5251680e-002 9.0836820e-002 3.9183920e-002 +v 1.5760560e-002 9.3203560e-002 4.9939310e-002 +v 3.8785530e-002 9.4954300e-002 3.2520220e-002 +v -6.1511220e-002 1.2373565e-001 4.3062680e-002 +v -6.8145120e-002 1.2748676e-001 5.0148970e-002 +v -2.0616710e-002 1.8237588e-001 -1.4299100e-002 +v 1.5137190e-002 1.1571495e-001 3.7031980e-002 +v -5.0718270e-002 1.5276300e-001 1.1816680e-002 +v 3.0168690e-002 1.0048686e-001 3.9404710e-002 +v -8.7426500e-002 9.5469530e-002 4.0312400e-003 +v -6.0010390e-002 1.4284463e-001 3.5449690e-002 +v -5.8603310e-002 1.4637237e-001 3.3808800e-002 +v 3.2411650e-002 9.3736150e-002 4.0890240e-002 +v -7.5917780e-002 1.4997690e-001 -1.6842050e-002 +v 1.8596570e-002 3.5293940e-002 -8.6782200e-003 +v 1.7209800e-002 3.5259400e-002 -1.4685160e-002 +v 4.4326540e-002 9.0818120e-002 2.2097520e-002 +v 3.8335910e-002 3.8830830e-002 3.0938100e-003 +v 2.2192920e-002 3.6775320e-002 -2.0919300e-003 +v 1.9636020e-002 3.8234010e-002 -1.2507670e-002 +v 2.3682120e-002 3.9762540e-002 3.7148760e-002 +v 4.6693280e-002 4.2465320e-002 6.5649500e-003 +v 2.1621110e-002 3.7657240e-002 -4.7021600e-003 +v 1.6638610e-002 3.8196090e-002 -1.9884930e-002 +v -9.0253980e-002 1.1366307e-001 3.7720210e-002 +v -9.0593870e-002 1.1373094e-001 1.0276770e-002 +v -6.2541690e-002 1.7679461e-001 -5.7821820e-002 +v -1.1091940e-002 1.7992082e-001 -2.5996430e-002 +v -6.2263130e-002 1.5219935e-001 -2.2578880e-002 +v -4.2276760e-002 9.4982570e-002 -2.2562420e-002 +v 4.3293410e-002 4.1864140e-002 2.0634400e-003 +v 4.3779590e-002 4.4530720e-002 -1.2622500e-003 +v 2.1696990e-002 4.0427270e-002 -9.4629500e-003 +v -1.1183700e-002 1.6450000e-001 -1.6151690e-002 +v -6.2372570e-002 1.5313041e-001 -2.8997120e-002 +v -9.2489300e-003 1.7725850e-001 -2.8270200e-002 +v 4.1477400e-002 8.5509410e-002 -9.1575000e-003 +v -8.1268710e-002 1.0879438e-001 2.9440660e-002 +v 4.9575680e-002 4.3815900e-002 1.4582960e-002 +v 5.2987960e-002 4.7747690e-002 5.0420000e-003 +v 2.1977540e-002 4.2855330e-002 -1.4536230e-002 +v 1.8505700e-002 3.8294100e-002 -1.7136500e-002 +v -3.5100500e-002 1.5203437e-001 -1.3279000e-004 +v 4.8749130e-002 4.5265000e-002 2.3023500e-003 +v 3.1912900e-002 9.9870060e-002 -1.4620980e-002 +v -1.4222520e-002 1.6167426e-001 -1.3349060e-002 +v -4.8663640e-002 1.3638523e-001 6.8063900e-003 +v -9.5837200e-003 1.7426102e-001 -2.8390760e-002 +v 5.2801850e-002 4.6539940e-002 1.0427720e-002 +v 5.1433800e-002 4.8485200e-002 1.0401000e-003 +v 2.3911240e-002 9.8021670e-002 -2.0807290e-002 +v 2.4567060e-002 4.4130110e-002 -1.0820840e-002 +v 2.0356810e-002 4.3662400e-002 -2.0456280e-002 +v -2.1882420e-002 1.1087418e-001 -1.9695320e-002 +v -5.3831800e-002 1.4981693e-001 2.5066610e-002 +v 5.4114210e-002 4.7773090e-002 1.7484000e-002 +v 5.6730570e-002 5.0515740e-002 1.0627080e-002 +v 4.5941820e-002 4.8138820e-002 -3.8715700e-003 +v -8.3817760e-002 1.1109094e-001 2.8524490e-002 +v 2.9207770e-002 4.7450250e-002 -8.5081800e-003 +v 2.8454920e-002 4.8067390e-002 -1.2847240e-002 +v 2.6637260e-002 4.7607100e-002 -1.6427740e-002 +v 2.2040110e-002 4.4992500e-002 -1.7528500e-002 +v 1.9120080e-002 4.7167750e-002 -2.2114680e-002 +v -1.5782200e-002 1.0072957e-001 -2.3724130e-002 +v -6.2514170e-002 1.7213119e-001 -5.2788100e-002 +v -6.2345600e-002 1.4745498e-001 -7.6600200e-003 +v 4.5598180e-002 8.8151720e-002 1.3124070e-002 +v -4.9422610e-002 1.4283525e-001 8.9728300e-003 +v -8.2761860e-002 1.1162341e-001 4.4221460e-002 +v -5.2166220e-002 1.5013661e-001 1.7448750e-002 +v -6.3616740e-002 1.4801371e-001 -2.0170260e-002 +v -5.1492690e-002 1.3796388e-001 2.3662180e-002 +v -6.1517580e-002 1.7517449e-001 -6.0631700e-002 +v 5.6524870e-002 5.0125660e-002 1.5564490e-002 +v 5.5257900e-002 5.1416260e-002 3.2062600e-003 +v 5.0318130e-002 5.2786370e-002 -3.4166300e-003 +v -6.2681950e-002 1.6744086e-001 -4.5713890e-002 +v 5.6520150e-002 5.1179900e-002 1.9940560e-002 +v 5.6907980e-002 5.1578130e-002 7.2538300e-003 +v 5.2854160e-002 5.1898670e-002 -6.2070000e-004 +v -3.8921140e-002 3.3767390e-002 -2.9042560e-002 +v 2.9740700e-002 5.0324690e-002 -1.3990860e-002 +v -6.8796190e-002 3.5117720e-002 -5.2067400e-003 +v 5.8826020e-002 5.5503780e-002 1.8647920e-002 +v -2.6160570e-002 1.2309988e-001 -4.4735500e-003 +v -5.3341960e-002 1.4401200e-001 2.4261390e-002 +v 5.8177390e-002 5.2821320e-002 1.5182420e-002 +v 5.9798140e-002 5.6840180e-002 1.3342730e-002 +v 5.4549870e-002 5.6044630e-002 -6.6158000e-004 +v 2.6775460e-002 5.1423450e-002 -2.0234060e-002 +v -8.6960400e-003 1.7291588e-001 -2.6708770e-002 +v -7.7039560e-002 7.1967020e-002 2.6405070e-002 +v -6.3069890e-002 1.5897471e-001 -4.2951850e-002 +v 3.5706690e-002 5.6083040e-002 -8.9993300e-003 +v 3.2600380e-002 5.3707520e-002 -1.1006150e-002 +v 2.9739960e-002 5.2538430e-002 -1.6224950e-002 +v 5.9238530e-002 5.6362780e-002 9.4530800e-003 +v 5.7421750e-002 5.6012210e-002 4.0245600e-003 +v 2.9062990e-002 5.5210580e-002 -1.8042060e-002 +v -1.7224410e-002 9.5214090e-002 -3.2085300e-002 +v -8.5911380e-002 1.0968787e-001 7.6582400e-003 +v 6.0594930e-002 6.1677210e-002 1.5591560e-002 +v 5.9531640e-002 6.0504600e-002 5.8397000e-003 +v 5.7306470e-002 5.9944620e-002 1.8886400e-003 +v 3.8829380e-002 5.9839830e-002 -6.4252500e-003 +v 3.0662770e-002 5.7300390e-002 -1.6518370e-002 +v -2.7762070e-002 1.2068537e-001 -9.0152900e-003 +v -8.8194590e-002 1.0314633e-001 1.7509020e-002 +v 6.0778800e-002 6.1646560e-002 1.0463990e-002 +v 3.5915080e-002 5.9916380e-002 -1.1966510e-002 +v 2.4251860e-002 5.6457470e-002 -2.4254800e-002 +v -6.1954390e-002 1.6865320e-001 -5.2621160e-002 +v -9.0557930e-002 1.1275994e-001 1.6141030e-002 +v -8.8469220e-002 1.1124294e-001 1.2679160e-002 +v 5.9558010e-002 6.3099260e-002 5.9471000e-003 +v 3.0940440e-002 6.0518080e-002 -1.8132720e-002 +v -9.3575750e-002 1.2474629e-001 2.6213300e-002 +v -9.3189820e-002 1.2019919e-001 3.7913720e-002 +v -9.2296100e-003 1.7314463e-001 -2.4197660e-002 +v -8.1739460e-002 7.6861340e-002 2.3313610e-002 +v -3.6992750e-002 1.5063932e-001 -2.0372300e-003 +v 6.0093570e-002 6.5693450e-002 1.8533320e-002 +v 5.9837240e-002 6.6423180e-002 8.5139400e-003 +v 4.0706180e-002 6.4475310e-002 -5.5920300e-003 +v 3.4745940e-002 6.3261340e-002 -1.4646740e-002 +v -6.1879660e-002 1.6000450e-001 -2.5806250e-002 +v -7.6537810e-002 1.5344875e-001 -1.2898750e-002 +v 3.8111070e-002 6.4811810e-002 -1.1142000e-002 +v 3.1909340e-002 6.4657050e-002 -1.8473410e-002 +v -8.3159350e-002 1.4674277e-001 3.0757900e-003 +v -8.7055900e-002 1.0562761e-001 9.7651100e-003 +v -7.1448330e-002 1.8105301e-001 -5.5478550e-002 +v -8.5632110e-002 1.2461094e-001 -2.7335800e-003 +v 6.0728970e-002 6.5806600e-002 1.3974830e-002 +v 3.9909650e-002 6.8171740e-002 -9.5698200e-003 +v 3.4981790e-002 6.7740790e-002 -1.5683210e-002 +v -9.1822030e-002 1.2747346e-001 3.6458650e-002 +v -6.2425420e-002 1.6366637e-001 -4.9667290e-002 +v -7.1168950e-002 1.4740156e-001 -2.7590940e-002 +v -5.0364760e-002 1.3715763e-001 1.9526100e-003 +v -5.0492650e-002 1.4159899e-001 1.6291740e-002 +v 5.9886670e-002 6.8513050e-002 1.6171610e-002 +v -6.1406990e-002 1.7268822e-001 -5.8265750e-002 +v 2.4990740e-002 6.5897320e-002 -2.3568270e-002 +v -7.4852750e-002 1.4993112e-001 -2.7752940e-002 +v -6.2225690e-002 6.0265200e-002 2.0449290e-002 +v -6.2001940e-002 3.6435020e-002 4.3918940e-002 +v 5.8374570e-002 7.1186410e-002 1.3072740e-002 +v -3.6125040e-002 1.2286688e-001 -8.2927900e-003 +v 2.9216510e-002 6.7850250e-002 -2.0418570e-002 +v -4.1681700e-002 1.2575112e-001 -7.0193300e-003 +v -7.4226550e-002 1.6437012e-001 -3.8240340e-002 +v -9.7845700e-003 1.6928488e-001 -2.4756660e-002 +v -8.9577950e-002 1.2078310e-001 3.5229100e-003 +v -6.2311930e-002 1.6371109e-001 -4.0623990e-002 +v 4.3514770e-002 9.1519890e-002 -2.6468100e-003 +v -4.8434350e-002 1.3754973e-001 1.3244980e-002 +v -8.9313160e-002 1.3653006e-001 3.0458750e-002 +v -7.4230190e-002 1.5652681e-001 -2.5167090e-002 +v 3.7378600e-002 7.3093410e-002 -1.2635370e-002 +v 2.6321810e-002 7.0240650e-002 -2.3878680e-002 +v -4.8023620e-002 1.4426649e-001 4.2498600e-003 +v -9.2019580e-002 1.1611534e-001 3.5842730e-002 +v -7.1305510e-002 7.3899020e-002 3.5969780e-002 +v -6.2059290e-002 1.5697807e-001 -3.3784580e-002 +v -9.7015300e-003 1.6738863e-001 -1.9360250e-002 +v 4.3342140e-002 7.1676120e-002 -2.2304600e-003 +v 4.1772460e-002 6.9568020e-002 -6.1596000e-003 +v 3.3505410e-002 7.2809860e-002 -1.7034800e-002 +v 2.9665000e-002 7.1506830e-002 -2.1282340e-002 +v -2.9460160e-002 1.5550263e-001 -1.1914700e-003 +v -8.6396440e-002 1.0479356e-001 5.9820600e-003 +v -5.4910700e-002 1.4662313e-001 2.8438970e-002 +v 4.4203810e-002 8.5204260e-002 -2.1170500e-003 +v 4.3264350e-002 7.5810540e-002 -3.8843900e-003 +v 1.3096990e-002 9.1126480e-002 -2.9269770e-002 +v -6.7069210e-002 9.1144610e-002 -1.7425950e-002 +v -9.0821680e-002 1.2276896e-001 6.0998500e-003 +v 4.5620000e-002 7.4684430e-002 2.6073900e-003 +v -9.3039800e-002 1.2026416e-001 1.1216820e-002 +v 4.4635590e-002 9.2794290e-002 1.7832070e-002 +v -1.1243390e-002 1.6457514e-001 -1.8240780e-002 +v 4.5511190e-002 8.6953050e-002 3.8865500e-003 +v 4.6252720e-002 7.7373870e-002 6.9140800e-003 +v 4.0281640e-002 7.2637130e-002 -9.2881000e-003 +v 4.3218200e-002 9.9486740e-002 5.0153300e-003 +v -5.1108270e-002 1.4520219e-001 1.4279480e-002 +v 4.4692980e-002 9.2688550e-002 2.2466700e-003 +v 4.3422540e-002 9.1860370e-002 2.4538450e-002 +v 4.0751360e-002 1.0554729e-001 7.5074100e-003 +v -8.5613030e-002 9.6277110e-002 -6.6514000e-004 +v 4.0721470e-002 7.8475530e-002 -8.2130000e-003 +v 3.5538080e-002 7.6062960e-002 -1.4434750e-002 +v -9.2736510e-002 1.2073095e-001 3.2692730e-002 +v -6.2278520e-002 1.5166598e-001 -1.4672730e-002 +v 4.4960220e-002 8.0942630e-002 6.1119000e-004 +v 3.7814740e-002 7.9698150e-002 -1.3289630e-002 +v 3.3864490e-002 7.8656690e-002 -1.7632490e-002 +v -9.1044280e-002 1.4199862e-001 2.1729630e-002 +v -7.4004450e-002 1.7818523e-001 -5.3916320e-002 +v -6.1768650e-002 1.6067957e-001 -3.4046350e-002 +v -4.9747450e-002 1.4112519e-001 5.2937500e-003 +v 4.1065440e-002 9.0460700e-002 2.9888620e-002 +v -7.2916360e-002 6.5057400e-002 1.8794620e-002 +v -9.0949690e-002 1.3895375e-001 1.7371130e-002 +v 4.2879050e-002 1.0093777e-001 9.4753200e-003 +v -7.2455480e-002 1.7610676e-001 -5.3535420e-002 +v -7.5862940e-002 1.5071299e-001 -9.0209000e-003 +v -8.5269820e-002 1.0267793e-001 1.3935600e-003 +v -7.7025570e-002 1.1396763e-001 -4.6168100e-003 +v 4.6280880e-002 7.8702020e-002 1.4786330e-002 +v 4.2106910e-002 8.1533160e-002 -6.6690900e-003 +v 3.6523880e-002 8.1991750e-002 -1.6229590e-002 +v -3.7420220e-002 4.5428500e-002 -2.4226790e-002 +v -8.5148910e-002 1.3965520e-001 2.4808500e-003 +v -6.3313300e-002 1.6503258e-001 -3.2895120e-002 +v -6.1591410e-002 1.5681572e-001 -2.5945630e-002 +v 4.5918540e-002 8.7036220e-002 8.4236300e-003 +v 4.4631140e-002 8.4178380e-002 8.2665000e-004 +v -4.4842870e-002 1.4629393e-001 1.7114800e-003 +v -6.4124180e-002 1.7953625e-001 -5.8730420e-002 +v -6.7070300e-002 1.8072682e-001 -5.6618620e-002 +v -6.4793760e-002 1.7885275e-001 -5.5883250e-002 +v -6.4371030e-002 1.7296209e-001 -4.9225660e-002 +v -7.0381530e-002 1.8071180e-001 -5.3172590e-002 +v -7.5269270e-002 1.5232949e-001 3.4374060e-002 +v -1.6273090e-002 1.2844514e-001 1.6683610e-002 +v -6.2116150e-002 1.5600787e-001 1.8034420e-002 +v -5.6010790e-002 1.5381662e-001 2.5369280e-002 +v -3.7277920e-002 1.7289068e-001 -8.6627000e-004 +v -7.4158700e-002 1.7987275e-001 -5.0794750e-002 +v -7.9039960e-002 1.5537445e-001 1.5141810e-002 +v -7.2505530e-002 1.5459529e-001 2.9588830e-002 +v -6.7738180e-002 1.7728865e-001 -5.0375960e-002 +v -7.5346900e-003 1.0021302e-001 4.7488700e-002 +v -5.9575620e-002 1.5472401e-001 2.6373250e-002 +v -7.7382710e-002 1.5346600e-001 3.0894990e-002 +v -8.1496670e-002 1.5473104e-001 1.9697340e-002 +v -7.2223320e-002 1.5896734e-001 -5.4242300e-003 +v -1.3708500e-002 1.8491150e-001 -2.5549550e-002 +v -4.3465340e-002 1.2451145e-001 2.2518890e-002 +v -6.9103650e-002 1.5559479e-001 1.6370800e-003 +v -7.3748080e-002 1.5539253e-001 2.3491700e-003 +v -6.8192410e-002 1.7439828e-001 -4.5365870e-002 +v -6.0052850e-002 1.5280350e-001 3.2887630e-002 +v -2.3459490e-002 1.2615386e-001 1.6613770e-002 +v -7.2777220e-002 1.7854465e-001 -4.8208800e-002 +v -7.6595580e-002 1.7753227e-001 -4.7118080e-002 +v 1.3906410e-002 1.2790838e-001 2.5110240e-002 +v -8.6367510e-002 1.0906537e-001 1.1980640e-002 +v -3.1358850e-002 1.2140977e-001 2.5971090e-002 +v -4.9104590e-002 1.3666879e-001 1.9314030e-002 +v -4.2930640e-002 1.2928436e-001 9.2700700e-003 +v -6.5320350e-002 1.5390322e-001 9.1386000e-004 +v -3.7606490e-002 1.2422605e-001 2.4313530e-002 +v 9.5078400e-003 1.3041865e-001 2.0715020e-002 +v -1.7976800e-003 1.3117283e-001 1.6360660e-002 +v 3.6231700e-003 1.3076791e-001 2.1168600e-002 +v -9.2674700e-002 1.1701945e-001 1.1889520e-002 +v -6.5739720e-002 1.5565338e-001 2.6017600e-002 +v -8.6561940e-002 1.4249188e-001 8.4326800e-003 +v -7.0731530e-002 1.5569959e-001 6.9058200e-003 +v -8.0840700e-003 1.3030537e-001 1.6872280e-002 +v -4.4286250e-002 1.2606625e-001 2.0795220e-002 +v -7.0222260e-002 1.5143521e-001 3.6718910e-002 +v -1.5210690e-002 1.8463639e-001 -2.2057240e-002 +v -1.7270750e-002 1.8699602e-001 -1.9977570e-002 +v -8.3560950e-002 1.5255943e-001 7.6806700e-003 +v -8.8130280e-002 9.7540510e-002 5.6788000e-003 +v -8.8399240e-002 1.3899000e-001 1.0640660e-002 +v -6.7780550e-002 1.5614453e-001 1.4276320e-002 +v -6.5864600e-003 1.2641717e-001 3.0226390e-002 +v -8.8746180e-002 1.3625578e-001 7.1477800e-003 +v -7.7206730e-002 1.5639950e-001 -1.8972540e-002 +v -9.3176480e-002 1.1821016e-001 2.3362360e-002 +v -2.3506850e-002 1.2672006e-001 1.0996900e-002 +v -6.6546650e-002 1.7171115e-001 -4.2127770e-002 +v -6.9136000e-002 1.7247836e-001 -3.9013330e-002 +v 5.7180270e-002 7.1107690e-002 8.0307600e-003 +v -7.5390870e-002 1.7952824e-001 -5.2402050e-002 +v -3.1828840e-002 1.2639115e-001 1.0013410e-002 +v -8.9888800e-003 1.2952269e-001 2.2026810e-002 +v 3.4325880e-002 1.1193312e-001 -2.2406500e-003 +v -8.1414950e-002 9.7100250e-002 -6.8745800e-003 +v -2.3298830e-002 1.8324307e-001 -1.7923000e-002 +v -6.1641660e-002 1.5582039e-001 1.1099820e-002 +v -8.8826450e-002 9.0483320e-002 2.1204700e-002 +v 5.8373130e-002 6.8067590e-002 5.7247600e-003 +v -4.3045630e-002 1.2785122e-001 1.6842260e-002 +v 3.0835720e-002 1.1554234e-001 -3.1785500e-003 +v -8.8631270e-002 9.4881200e-002 7.9337600e-003 +v -9.1715140e-002 1.1709957e-001 3.0809400e-002 +v -7.2083780e-002 1.7499844e-001 -4.1930320e-002 +v -6.9540630e-002 1.5308527e-001 3.3865720e-002 +v 6.0078690e-002 6.8129260e-002 1.1454500e-002 +v -4.0081060e-002 1.2628381e-001 1.9607250e-002 +v 3.2819930e-002 1.1655625e-001 4.4458600e-003 +v -7.2823220e-002 1.4510601e-001 -1.5654680e-002 +v -8.5270210e-002 1.0551770e-001 2.3290940e-002 +v -7.6051320e-002 1.1103825e-001 -6.2722100e-003 +v -8.6537730e-002 1.5154801e-001 2.5875370e-002 +v 5.5888480e-002 7.2579250e-002 1.0669650e-002 +v -5.4642360e-002 1.5522963e-001 1.2612400e-002 +v 3.6729960e-002 1.1116756e-001 3.8670600e-003 +v 3.1501870e-002 1.1725172e-001 1.6855100e-003 +v -7.8751550e-002 9.5240290e-002 -1.0600670e-002 +v -8.9408160e-002 1.4352815e-001 3.0924750e-002 +v -2.0891130e-002 1.8595338e-001 -1.5037360e-002 +v -7.0863560e-002 1.6136525e-001 -9.7324600e-003 +v -7.0919760e-002 1.7136688e-001 -3.2763750e-002 +v -3.0771290e-002 1.2564075e-001 1.6594770e-002 +v -5.4454180e-002 1.5297699e-001 2.2505190e-002 +v -1.5539500e-003 1.2754717e-001 2.9232870e-002 +v 2.9130550e-002 1.2027445e-001 6.1117500e-003 +v 2.5725940e-002 1.2122705e-001 -3.6150000e-005 +v -8.9318970e-002 9.9546980e-002 1.3418110e-002 +v -7.5429500e-002 1.7095605e-001 -3.2879890e-002 +v -2.8596020e-002 1.1901156e-001 2.9888170e-002 +v 2.1069780e-002 1.2497756e-001 1.0998100e-003 +v -9.2240760e-002 1.1816838e-001 4.1201730e-002 +v 2.4094600e-003 1.0016785e-001 4.6938070e-002 +v -5.6627620e-002 1.5270606e-001 2.9629030e-002 +v -5.7264800e-002 1.5506250e-001 1.9322430e-002 +v -3.6452070e-002 1.2199869e-001 2.7670650e-002 +v -7.4108160e-002 1.7355729e-001 -3.7986840e-002 +v 5.1537130e-002 7.3496690e-002 1.2698700e-002 +v -6.6096040e-002 1.5532529e-001 7.1561800e-003 +v 3.6102000e-002 1.1266103e-001 1.0491780e-002 +v 1.6715210e-002 1.2689851e-001 2.2331000e-004 +v -8.0767920e-002 1.4301400e-001 -1.5312800e-003 +v -9.1757600e-002 1.4334588e-001 1.7790710e-002 +v -8.6824940e-002 1.5280775e-001 1.5521450e-002 +v -6.5808100e-002 1.6764344e-001 -3.0558670e-002 +v -7.8217340e-002 1.6873975e-001 -3.3564250e-002 +v -7.2567060e-002 1.4753230e-001 4.1714090e-002 +v 5.8439960e-002 7.0200810e-002 1.7779620e-002 +v 5.6847560e-002 7.2017160e-002 1.7139380e-002 +v 5.4919390e-002 7.3161610e-002 1.5223590e-002 +v 4.7446900e-002 7.3691410e-002 1.2430020e-002 +v 1.2319360e-002 1.2903768e-001 1.3336200e-003 +v -7.9790640e-002 1.0351662e-001 -6.6275400e-003 +v -7.6655210e-002 1.5509766e-001 7.9686300e-003 +v 2.1747320e-002 1.2118456e-001 3.0878810e-002 +v -7.5260490e-002 1.4938613e-001 3.9175980e-002 +v -2.5919610e-002 1.8272826e-001 -1.3541090e-002 +v -6.7983790e-002 1.6974781e-001 -3.1627490e-002 +v 1.6831110e-002 1.2487146e-001 2.8425580e-002 +v 5.4016490e-002 7.2883850e-002 1.8678010e-002 +v 5.0522750e-002 7.3397910e-002 1.6166890e-002 +v -5.9582440e-002 1.5623338e-001 7.9209900e-003 +v 2.5343500e-002 1.2374750e-001 9.9818800e-003 +v 1.9262750e-002 1.2689390e-001 5.5552100e-003 +v -9.0758520e-002 1.4223375e-001 2.6008130e-002 +v -4.6548490e-002 1.3320769e-001 1.6889630e-002 +v -2.4106950e-002 1.8380887e-001 -1.1544760e-002 +v 8.6784400e-003 1.2894574e-001 2.6156880e-002 +v 2.4919200e-003 1.2983563e-001 2.4847110e-002 +v 5.7345150e-002 6.9482720e-002 2.1153510e-002 +v -8.5329840e-002 1.5339912e-001 2.0378290e-002 +v 3.2877320e-002 1.1691463e-001 9.2957500e-003 +v 2.4246630e-002 1.2377758e-001 4.8764500e-003 +v -4.7765650e-002 1.3301969e-001 2.2874020e-002 +v -6.3541830e-002 1.6332115e-001 -2.5912990e-002 +v -6.6605200e-002 1.6477375e-001 -2.0670760e-002 +v -6.8504220e-002 1.6732018e-001 -2.3959570e-002 +v -7.2759160e-002 1.6965906e-001 -2.7013420e-002 +v 4.8206850e-002 7.2698580e-002 1.6994630e-002 +v -2.7383180e-002 1.2324257e-001 2.1658860e-002 +v -4.5077500e-002 1.3124443e-001 1.1145770e-002 +v 2.9253150e-002 1.2057701e-001 1.2299330e-002 +v 1.3677610e-002 1.2967262e-001 6.9327400e-003 +v 8.4210900e-003 1.3090986e-001 6.2754400e-003 +v 9.6836000e-004 1.3064303e-001 2.5865900e-003 +v 3.0802000e-003 9.8307360e-002 5.0535640e-002 +v -5.2420170e-002 1.5310101e-001 1.2927370e-002 +v -7.0359720e-002 1.6906988e-001 -2.6144260e-002 +v 5.4359390e-002 7.1467260e-002 2.1381250e-002 +v 4.5161440e-002 7.1030380e-002 2.2530690e-002 +v 1.9320440e-002 1.2738348e-001 1.1296310e-002 +v -9.3281210e-002 1.2691094e-001 1.3505010e-002 +v -8.7405060e-002 1.0593990e-001 1.3645920e-002 +v -2.2851640e-002 9.0635040e-002 5.2280460e-002 +v -6.2099370e-002 1.5406697e-001 3.0837360e-002 +v -4.5851560e-002 1.2072981e-001 2.7665040e-002 +v 5.0781670e-002 7.2155170e-002 2.0680180e-002 +v -8.9607270e-002 1.3971105e-001 2.9308560e-002 +v -5.3323050e-002 1.5273520e-001 1.6213860e-002 +v -1.5227080e-002 1.2784878e-001 2.1545200e-002 +v 3.3663540e-002 1.1574212e-001 1.7181290e-002 +v 2.4000260e-002 1.2468761e-001 1.5517930e-002 +v -8.4166840e-002 9.7756820e-002 -3.2761900e-003 +v -3.6223590e-002 1.2777519e-001 9.8501500e-003 +v -3.9189580e-002 1.2828193e-001 5.0346300e-003 +v -3.3674050e-002 1.7774449e-001 -8.1799500e-003 +v -7.4488620e-002 1.5649443e-001 -2.5954600e-003 +v -4.6755620e-002 1.3284294e-001 8.1212800e-003 +v -8.4970410e-002 1.5322309e-001 1.2654460e-002 +v -1.0866210e-002 1.2691699e-001 2.7575440e-002 +v -3.1074000e-003 1.3072898e-001 5.6428500e-003 +v -8.8760540e-002 9.7037440e-002 2.1079040e-002 +v -6.4811320e-002 3.4530640e-002 1.5508440e-002 +v -6.4300260e-002 3.5086450e-002 2.4272050e-002 +v -6.6727020e-002 3.5895770e-002 3.3849430e-002 +v 1.9838510e-002 9.6518890e-002 -2.2785880e-002 +v -3.8670510e-002 1.6070199e-001 -1.2357760e-002 +v -7.6890090e-002 1.3041906e-001 -6.9570100e-003 +v -7.2539730e-002 3.5399270e-002 7.0298800e-003 +v -6.9209050e-002 3.5454810e-002 1.2042140e-002 +v -6.4160810e-002 3.5900770e-002 1.7687570e-002 +v -6.6804150e-002 3.7377740e-002 3.3296290e-002 +v -6.2928350e-002 3.9061660e-002 4.2707680e-002 +v -7.1752230e-002 3.6789350e-002 8.6966700e-003 +v -6.5171380e-002 3.7289500e-002 2.5953770e-002 +v -6.6392030e-002 3.7712350e-002 2.9621950e-002 +v -6.4558720e-002 3.9639900e-002 3.9411530e-002 +v -6.0145790e-002 4.1202050e-002 4.4293830e-002 +v -6.0318430e-002 3.8442990e-002 4.5245950e-002 +v -3.6756310e-002 8.8663360e-002 -2.3868800e-002 +v -3.9494750e-002 3.7551570e-002 4.2870900e-002 +v -7.2016030e-002 3.7572700e-002 3.9789400e-003 +v -7.1693630e-002 3.9461000e-002 6.0145000e-003 +v -7.1165950e-002 3.9366310e-002 8.1142100e-003 +v -6.9000300e-002 3.8467710e-002 1.0768900e-002 +v -6.7253420e-002 3.8142160e-002 1.3533960e-002 +v -6.1125670e-002 3.7790050e-002 1.9710900e-002 +v -3.9179680e-002 4.2406740e-002 4.1476070e-002 +v -3.5145960e-002 3.8585920e-002 4.7732690e-002 +v -2.8950940e-002 3.9285940e-002 5.3309090e-002 +v -1.8223900e-002 9.7494570e-002 4.6847940e-002 +v -6.6916260e-002 1.2278907e-001 -8.9077400e-003 +v -6.3754640e-002 3.8250120e-002 1.6593500e-002 +v -6.4415760e-002 4.1283840e-002 2.8243480e-002 +v -8.5856340e-002 9.7025390e-002 2.7414960e-002 +v -3.7501130e-002 4.0221900e-002 4.4296550e-002 +v -3.4333970e-002 4.0923630e-002 4.8425810e-002 +v -3.1172890e-002 4.0294330e-002 5.1312460e-002 +v -6.9997320e-002 4.2073080e-002 6.6897800e-003 +v -8.0379330e-002 9.7800660e-002 3.3645750e-002 +v -2.6273160e-002 7.7631160e-002 4.8356180e-002 +v -3.7501450e-002 4.2736690e-002 4.2988400e-002 +v -2.6177500e-002 4.2498930e-002 5.3315220e-002 +v -6.9637250e-002 4.1881270e-002 3.1825800e-003 +v -6.7156510e-002 4.1972860e-002 1.0240940e-002 +v -8.7405510e-002 1.0205209e-001 2.2020360e-002 +v -2.3944380e-002 7.8800140e-002 5.3534730e-002 +v -6.0902360e-002 4.3429500e-002 4.2678530e-002 +v -3.1217880e-002 4.3847510e-002 4.9780920e-002 +v -7.5729440e-002 1.0354026e-001 3.6070970e-002 +v -6.2425320e-002 4.1885720e-002 1.4646770e-002 +v -6.1051660e-002 4.4392230e-002 1.2421940e-002 +v 2.5855060e-002 8.9610660e-002 -2.2701840e-002 +v -7.7644960e-002 8.2214940e-002 3.5797660e-002 +v -6.0381270e-002 4.5921420e-002 4.0088740e-002 +v -2.4982010e-002 8.1777650e-002 5.3421060e-002 +v -3.4453850e-002 4.4563960e-002 4.5422990e-002 +v -2.9842910e-002 4.6782280e-002 4.7746920e-002 +v -1.5119580e-002 9.9930020e-002 4.4500270e-002 +v -6.7306470e-002 4.4176830e-002 7.5958300e-003 +v -5.7852990e-002 4.6444500e-002 1.1062610e-002 +v -5.1815260e-002 1.6392582e-001 1.7488800e-003 +v -5.5174130e-002 4.8383880e-002 3.8517780e-002 +v -7.8849150e-002 1.1867375e-001 5.0622870e-002 +v -2.7229070e-002 8.7991480e-002 4.7909730e-002 +v -7.5536880e-002 1.5977062e-001 -1.0438650e-002 +v -3.6151280e-002 4.6505140e-002 4.0740900e-002 +v -2.5439220e-002 9.0677870e-002 4.8852330e-002 +v -8.0050370e-002 1.1670406e-001 4.8762460e-002 +v -5.2513640e-002 4.7577880e-002 1.4858440e-002 +v -3.2043560e-002 5.0461830e-002 3.9341520e-002 +v -3.1487770e-002 4.6930210e-002 4.5253210e-002 +v -2.0321500e-002 9.3999570e-002 5.1588540e-002 +v -7.2145040e-002 9.1556450e-002 4.1494780e-002 +v -5.3644200e-002 4.9358170e-002 1.2201850e-002 +v -8.2403890e-002 1.2186563e-001 4.9365030e-002 +v -4.9754420e-002 4.9738300e-002 3.7037110e-002 +v -3.2332060e-002 4.8672840e-002 4.2523960e-002 +v -2.3122950e-002 9.4515900e-002 4.7358870e-002 +v -8.6347140e-002 9.1722090e-002 2.6811080e-002 +v -5.7713110e-002 4.8717820e-002 7.2765100e-003 +v -8.6970360e-002 8.8912090e-002 2.4879860e-002 +v -9.2237750e-002 1.2488519e-001 4.0786530e-002 +v -1.5862800e-002 9.7021620e-002 5.0139360e-002 +v -2.7720040e-002 5.0502090e-002 4.3340720e-002 +v -8.5918770e-002 1.4263412e-001 3.9849810e-002 +v -7.5097360e-002 9.0073560e-002 3.9581000e-002 +v -8.9430840e-002 1.4730552e-001 2.7694960e-002 +v -5.3288350e-002 5.1925760e-002 1.1730350e-002 +v -5.0168720e-002 5.3462260e-002 1.6255440e-002 +v -8.5986050e-002 1.4670902e-001 3.4827030e-002 +v -6.9937250e-002 8.6076860e-002 4.2175690e-002 +v -5.0399320e-002 5.1831330e-002 3.4037400e-002 +v -8.3298980e-002 1.4960772e-001 3.3740890e-002 +v -2.9174820e-002 5.2264530e-002 3.7637320e-002 +v -8.8763730e-002 1.1944938e-001 4.6560090e-002 +v -7.7693460e-002 1.7367969e-001 -4.1478670e-002 +v -8.3418140e-002 9.4127440e-002 3.0898450e-002 +v -5.6067510e-002 5.3470630e-002 7.3718200e-003 +v -7.8935630e-002 1.4817228e-001 3.9463070e-002 +v -6.7902770e-002 8.7817230e-002 4.3526990e-002 +v -4.4111240e-002 9.2883990e-002 -2.2373210e-002 +v -8.6605100e-002 1.3226807e-001 4.6783020e-002 +v -9.2654280e-002 1.2084025e-001 4.1629650e-002 +v -5.0887310e-002 5.2727900e-002 1.4455790e-002 +v -4.9763410e-002 5.6241200e-002 3.3624250e-002 +v -8.9771330e-002 1.2904861e-001 4.3022990e-002 +v -2.8054240e-002 5.4551030e-002 3.6786850e-002 +v -2.5867080e-002 5.6689210e-002 3.9182240e-002 +v -8.3702200e-002 1.2226381e-001 -3.7301400e-003 +v -8.1455470e-002 1.3012213e-001 5.2117660e-002 +v -5.1458550e-002 5.5878150e-002 1.5900350e-002 +v -7.8597700e-002 1.7441574e-001 -4.6607580e-002 +v -5.2909820e-002 5.7043070e-002 2.0988410e-002 +v -5.2978500e-002 5.9553770e-002 2.6211920e-002 +v -5.2130640e-002 5.6302970e-002 2.6672460e-002 +v -4.7714500e-002 6.1944520e-002 3.6705820e-002 +v -8.3539790e-002 8.1169560e-002 2.7014070e-002 +v -1.8340000e-002 5.7489970e-002 4.9763020e-002 +v -8.0069810e-002 9.0586130e-002 3.4593070e-002 +v -8.3812250e-002 8.6337700e-002 2.9223270e-002 +v -5.5436650e-002 5.9420250e-002 2.3018970e-002 +v -8.2227680e-002 1.4513771e-001 4.0600080e-002 +v -2.4187580e-002 7.2269150e-002 4.7681090e-002 +v -2.5353150e-002 6.2567200e-002 4.0642170e-002 +v -9.1132110e-002 1.2282100e-001 4.4115160e-002 +v -4.6076290e-002 1.6819719e-001 7.3744000e-004 +v -8.7829280e-002 1.4351461e-001 3.5707670e-002 +v -8.6990640e-002 1.3812326e-001 4.2316550e-002 +v -1.5715900e-002 6.0822970e-002 5.2365440e-002 +v -8.3803580e-002 1.2561100e-001 5.0440490e-002 +v -6.2786680e-002 1.1274190e-001 -1.3605440e-002 +v -8.1033840e-002 8.4698180e-002 3.3106400e-002 +v -8.8563540e-002 1.1624535e-001 4.5392840e-002 +v -2.0268380e-002 6.2266810e-002 4.8212120e-002 +v -1.2619630e-002 6.1635030e-002 5.4424080e-002 +v -7.0491190e-002 8.1818160e-002 4.0609890e-002 +v -8.3882520e-002 1.3331465e-001 4.9113540e-002 +v -5.6560350e-002 4.8355540e-002 3.6607050e-002 +v 9.9444900e-003 1.0919723e-001 -1.9472810e-002 +v -5.5928250e-002 3.5917310e-002 4.6376100e-002 +v -7.6003260e-002 1.6361344e-001 -1.8021110e-002 +v -8.3798850e-002 1.0290691e-001 2.8038330e-002 +v -8.8252110e-002 1.2692730e-001 4.6141300e-002 +v -7.9126720e-002 1.0619883e-001 3.2050700e-002 +v -8.8206230e-002 9.4485700e-002 2.3744010e-002 +v -8.9110330e-002 1.3851394e-001 3.7658780e-002 +v -1.9321360e-002 9.2123890e-002 5.3820650e-002 +v -5.8265630e-002 9.0926390e-002 -2.0948690e-002 +v -2.7046310e-002 6.7014450e-002 3.9672140e-002 +v -2.1416300e-002 1.7977662e-001 -2.1732520e-002 +v -7.8240000e-003 1.0924112e-001 -2.2185670e-002 +v -2.3988340e-002 8.5995590e-002 5.3716430e-002 +v -6.0483580e-002 1.5567975e-001 4.3343800e-003 +v -8.6389150e-002 1.2168475e-001 4.8412440e-002 +v -7.4084360e-002 1.4987744e-001 -3.2610050e-002 +v -2.0580600e-002 7.9572500e-002 5.6013880e-002 +v -8.3837500e-002 1.3927865e-001 4.4893850e-002 +v -2.2933960e-002 3.5632910e-002 5.2865490e-002 +v -8.6153620e-002 1.2735612e-001 4.8563960e-002 +v -6.5728590e-002 1.0709818e-001 -1.4317670e-002 +v -2.1481090e-002 7.4194460e-002 5.2857680e-002 +v -7.6423900e-002 1.5736285e-001 -9.0354600e-003 +v -7.7216010e-002 8.5594880e-002 3.7420770e-002 +v -8.4150830e-002 1.2955013e-001 5.0483700e-002 +v -8.1221440e-002 8.1003250e-002 3.1255840e-002 +v -8.1704000e-002 1.0167226e-001 3.0939660e-002 +v -8.6252730e-002 1.0106846e-001 2.5413770e-002 +v -8.0944970e-002 1.3903572e-001 4.7359080e-002 +v -7.8908350e-002 9.4830900e-002 3.5435500e-002 +v -7.3440160e-002 9.5412600e-002 4.0210650e-002 +v -5.2675780e-002 8.8220740e-002 -2.1886300e-002 +v -7.6440670e-002 7.7511060e-002 3.3748300e-002 +v -2.1791140e-002 1.0658035e-001 -2.2327000e-002 +v -8.8360940e-002 1.4996706e-001 2.6044170e-002 +v -2.4078870e-002 6.7906700e-002 4.5178370e-002 +v -2.0018090e-002 6.7569300e-002 5.1565340e-002 +v -8.3577750e-002 1.2052625e-001 4.9177500e-002 +v -1.4655950e-002 1.7456543e-001 -2.5972690e-002 +v -2.7395940e-002 8.4108300e-002 4.8745680e-002 +v -4.1933580e-002 8.8463400e-002 -2.2126350e-002 +v -3.1693900e-002 1.0261265e-001 -2.2352310e-002 +v -2.7890200e-002 1.0440703e-001 -2.2830920e-002 +v -7.3790400e-002 1.2016662e-001 -7.8851200e-003 +v -4.6124160e-002 1.0506369e-001 -2.0457580e-002 +v -2.7412650e-002 7.3269450e-002 4.2641380e-002 +v -4.5532880e-002 3.4736480e-002 -2.1363200e-002 +v -4.4993030e-002 3.9017010e-002 -2.1097830e-002 +v -4.6462610e-002 3.6800270e-002 -1.7778710e-002 +v -8.8366460e-002 1.1361863e-001 5.8227800e-003 +v 5.1746240e-002 7.2897250e-002 9.0647400e-003 +v -7.0385250e-002 3.7450300e-002 -9.3190000e-004 +v -6.0923170e-002 3.8621820e-002 2.2468850e-002 +v -7.7696720e-002 1.7027889e-001 -4.3117910e-002 +v -4.3793210e-002 1.6955506e-001 -7.3026400e-003 +v -7.7587180e-002 1.7717875e-001 -5.0221090e-002 +v -4.0541880e-002 3.8886010e-002 -2.7364950e-002 +v -4.4215850e-002 3.6131460e-002 -2.4252210e-002 +v -6.6634880e-002 4.0430310e-002 -5.0180700e-003 +v -6.9242120e-002 4.1474050e-002 1.9289000e-004 +v -7.5640690e-002 1.5930400e-001 -2.6908460e-002 +v -6.3087030e-002 3.9614170e-002 2.5181560e-002 +v -7.2303020e-002 1.5186699e-001 -4.1544310e-002 +v -4.1051490e-002 4.1528620e-002 -2.4061000e-002 +v -4.6990580e-002 3.8892380e-002 -1.4016920e-002 +v -8.9559690e-002 1.2851666e-001 4.5457500e-003 +v -7.6987340e-002 1.5369375e-001 -2.2970800e-003 +v -7.0121670e-002 1.6882633e-001 -5.1173650e-002 +v -6.4792610e-002 4.1724530e-002 3.1616900e-002 +v -4.2148060e-002 1.2409627e-001 -9.5602500e-003 +v -4.8069700e-002 1.2493027e-001 -8.4076400e-003 +v -4.2150480e-002 4.3343970e-002 -2.1508710e-002 +v -6.7315160e-002 4.4034000e-002 1.5741800e-003 +v -7.3386640e-002 1.5463418e-001 -2.9943830e-002 +v -5.5352770e-002 4.2936210e-002 1.9135490e-002 +v -6.0067770e-002 4.1419500e-002 2.2953280e-002 +v -6.5488460e-002 4.0937780e-002 3.5315470e-002 +v -8.0066400e-002 1.5039650e-001 6.0518000e-004 +v -4.4031300e-002 4.1949070e-002 -1.7993960e-002 +v -4.5186510e-002 4.2453420e-002 -1.4193620e-002 +v -8.3109430e-002 1.0265445e-001 -3.2933400e-003 +v -6.5472800e-002 4.5627570e-002 4.5575400e-003 +v -7.5427730e-002 1.5201213e-001 -1.4393690e-002 +v -5.4473420e-002 4.5937510e-002 2.3612600e-002 +v -6.2464100e-002 4.3722000e-002 2.8493310e-002 +v -6.2832600e-002 4.5182750e-002 3.4622890e-002 +v -6.3538130e-002 4.3524020e-002 3.7974010e-002 +v -6.0255260e-002 4.4749620e-002 -4.1316200e-003 +v -6.3242050e-002 4.5549700e-002 4.8428000e-004 +v -6.2249430e-002 4.6540050e-002 7.1903500e-003 +v -9.1003650e-002 1.4885725e-001 2.1507030e-002 +v -5.7094130e-002 4.5996540e-002 2.6865280e-002 +v -5.7276490e-002 4.7299580e-002 2.9889950e-002 +v -3.9519900e-002 1.7385855e-001 -7.5752600e-003 +v -8.9641110e-002 1.3841920e-001 3.4141800e-002 +v -9.2601430e-002 1.3018652e-001 2.5183580e-002 +v -9.2280860e-002 1.2762053e-001 2.9751670e-002 +v -3.3957310e-002 4.1025060e-002 -2.9660250e-002 +v -9.0199540e-002 1.1657506e-001 5.6754900e-003 +v -5.8515890e-002 4.7731310e-002 2.1246000e-004 +v -7.1723560e-002 1.4617438e-001 -2.1567820e-002 +v -5.2389820e-002 4.5449130e-002 1.7686300e-002 +v -5.9414350e-002 4.7277990e-002 3.4172420e-002 +v -5.7520620e-002 1.5877600e-001 4.1621200e-003 +v -8.0959140e-002 1.0926674e-001 -2.0189900e-003 +v -5.1904000e-002 4.6100060e-002 1.9421290e-002 +v -5.1830050e-002 4.8568730e-002 2.1647030e-002 +v -7.7650400e-002 1.5658012e-001 -1.6599150e-002 +v -3.7416450e-002 4.7682130e-002 -1.7147280e-002 +v -7.8876110e-002 1.5347012e-001 3.9875800e-003 +v -5.7635420e-002 5.0425540e-002 4.6108400e-003 +v -5.2625440e-002 5.0434620e-002 2.9046740e-002 +v -5.2998720e-002 4.9169020e-002 3.3967600e-002 +v -7.3502600e-002 1.6871934e-001 -4.4791800e-002 +v -5.4420720e-002 4.7836520e-002 -5.9186900e-003 +v -5.2312740e-002 5.1085350e-002 2.4485690e-002 +v -7.9129930e-002 1.6736568e-001 -3.5506230e-002 +v 9.4115700e-003 1.2350285e-001 -9.8291000e-003 +v -3.2715700e-002 1.0896631e-001 -1.8941410e-002 +v -3.1133380e-002 4.9607260e-002 -1.9406940e-002 +v 4.5997330e-002 6.9814450e-002 3.0143300e-003 +v 3.3525460e-002 1.0966209e-001 -6.9894800e-003 +v -5.5047160e-002 5.2767560e-002 -3.9461300e-003 +v -5.6897890e-002 4.9655570e-002 -1.5319000e-003 +v -5.0290500e-002 4.9098930e-002 1.7164780e-002 +v -5.0595170e-002 4.9923270e-002 1.9174130e-002 +v -5.1887420e-002 5.3324670e-002 2.8705560e-002 +v -6.7684480e-002 1.6533627e-001 -5.5466400e-002 +v -3.0271440e-002 5.2106080e-002 -1.7676140e-002 +v -9.1087300e-003 1.1141669e-001 -2.0543230e-002 +v -5.7069360e-002 5.4424380e-002 2.3395500e-003 +v -3.2748380e-002 1.7759875e-001 -1.1627470e-002 +v -2.9009580e-002 5.1265290e-002 -2.2175780e-002 +v -3.1383130e-002 5.1791310e-002 -1.3886800e-002 +v -5.5673960e-002 5.6983850e-002 -3.3510400e-003 +v -5.0916050e-002 5.3813610e-002 1.9753140e-002 +v -8.8875380e-002 1.5169443e-001 2.0086580e-002 +v -7.7153050e-002 1.7378676e-001 -4.7867620e-002 +v -7.8577770e-002 1.6420639e-001 -3.1825860e-002 +v -2.7545910e-002 5.4021570e-002 -2.5147390e-002 +v -5.4463660e-002 5.5357450e-002 1.0326840e-002 +v -8.7041410e-002 1.3058932e-001 9.1161000e-004 +v -9.0009340e-002 1.3278082e-001 5.9220600e-003 +v -9.2232620e-002 1.3195400e-001 1.5430650e-002 +v -4.8639980e-002 1.6472475e-001 -5.0591500e-003 +v -5.4066480e-002 5.9959350e-002 -7.5992200e-003 +v -5.7434090e-002 5.7683500e-002 8.7259700e-003 +v -8.6794730e-002 1.3850688e-001 4.5575900e-003 +v -9.2989530e-002 1.3092307e-001 1.9919290e-002 +v -9.1282030e-002 1.3311897e-001 2.4688630e-002 +v 2.1815020e-002 1.1770533e-001 -1.0015300e-002 +v -2.9647120e-002 5.8104260e-002 -2.1311320e-002 +v -3.1289530e-002 5.5208570e-002 -1.4387840e-002 +v -5.9002160e-002 5.9234620e-002 2.6140800e-003 +v -9.0241700e-002 1.3575994e-001 1.4149160e-002 +v -6.1569420e-002 1.7084875e-001 -6.1679170e-002 +v -6.6070180e-002 1.6557822e-001 -5.8644080e-002 +v -2.4539930e-002 1.8005865e-001 -1.8726950e-002 +v -1.6131750e-002 1.8298848e-001 -2.6037190e-002 +v -3.0809390e-002 5.6998040e-002 -1.7835020e-002 +v 1.0464280e-002 9.6180450e-002 -2.5898970e-002 +v -5.7491630e-002 5.9530160e-002 -1.0786100e-003 +v -8.9146460e-002 1.3650500e-001 2.5952780e-002 +v 4.3714500e-003 1.0391901e-001 -2.1515100e-002 +v -9.0377040e-002 1.3252490e-001 3.1082650e-002 +v -9.0795450e-002 1.3855232e-001 2.0562560e-002 +v -9.4237710e-002 1.2615419e-001 2.2201450e-002 +v -9.0336910e-002 1.3119830e-001 3.8138790e-002 +v -4.5082610e-002 1.2218447e-001 -1.1569430e-002 +v 1.1348010e-002 9.8243750e-002 -2.3024250e-002 +v -3.9227920e-002 9.9184630e-002 -2.1912720e-002 +v -6.5509530e-002 1.5857325e-001 -5.5600270e-002 +v -7.7409510e-002 1.6260515e-001 -2.0754580e-002 +v -4.8580010e-002 1.6689211e-001 -2.5256100e-003 +v -7.6922910e-002 1.5351394e-001 -9.0785600e-003 +v -6.7750580e-002 1.5734825e-001 -5.3982110e-002 +v 5.2906410e-002 6.5230450e-002 -5.1112000e-004 +v -2.9054820e-002 6.1084120e-002 -2.4918230e-002 +v -3.1066920e-002 6.5058860e-002 -2.2751080e-002 +v 2.4249720e-002 1.0266151e-001 -1.8313830e-002 +v -5.5473660e-002 1.6050213e-001 1.3763500e-003 +v -6.6642850e-002 1.6040875e-001 -5.6842680e-002 +v -7.8200320e-002 1.6073213e-001 -2.3999690e-002 +v -1.8320680e-002 1.1968625e-001 -1.1110660e-002 +v 2.1712970e-002 1.0956342e-001 -1.5081090e-002 +v -6.8382640e-002 1.5980248e-001 -5.4208800e-002 +v -2.5445620e-002 6.0208550e-002 -3.0864700e-002 +v -2.6540330e-002 6.5084000e-002 -3.1664870e-002 +v -2.8425710e-002 6.2199610e-002 -2.7938500e-002 +v -3.2605750e-002 6.1264600e-002 -1.5453010e-002 +v -7.0872290e-002 1.1611638e-001 -7.9563700e-003 +v -6.9780530e-002 1.5938570e-001 -4.9418240e-002 +v -3.0324870e-002 6.7694720e-002 -2.7654950e-002 +v -3.2977370e-002 6.6365180e-002 -1.8385530e-002 +v 1.3533490e-002 1.0255388e-001 -2.1579310e-002 +v 4.4408530e-002 6.9758860e-002 9.4765000e-004 +v -2.1999000e-003 1.1215881e-001 -1.9658660e-002 +v -7.2028500e-002 6.7046610e-002 -7.2256000e-004 +v -7.8699630e-002 1.7313910e-001 -4.2720470e-002 +v -8.3211970e-002 1.5072131e-001 4.2128500e-003 +v -8.7439060e-002 1.3374875e-001 2.3974700e-003 +v 2.6348020e-002 8.4562230e-002 -2.3151710e-002 +v -7.4901490e-002 7.0419350e-002 -2.2854300e-003 +v -5.4576350e-002 9.1562950e-002 -2.2098700e-002 +v -7.3242520e-002 1.5231332e-001 -3.5703520e-002 +v -7.4550960e-002 1.7218738e-001 -4.7551010e-002 +v -2.8680680e-002 6.8283500e-002 -3.0610160e-002 +v 1.7372900e-002 1.0246037e-001 -2.1487700e-002 +v -8.1257430e-002 7.3025200e-002 7.1020400e-003 +v -7.4982300e-002 1.5407794e-001 -1.8974470e-002 +v -9.1556500e-002 1.3196262e-001 1.0638150e-002 +v -8.2448000e-004 9.5165120e-002 -3.2056320e-002 +v -7.7618830e-002 7.3999130e-002 -5.3263500e-003 +v -7.9858790e-002 7.2755040e-002 3.0420200e-003 +v -8.1627470e-002 7.3470610e-002 1.1161690e-002 +v -7.3679290e-002 1.4785987e-001 -2.0236290e-002 +v -9.1309820e-002 1.4848588e-001 1.6270070e-002 +v -9.0850140e-002 1.4625613e-001 1.4809050e-002 +v -6.8543890e-002 1.7513008e-001 -5.7187900e-002 +v -2.7253960e-002 1.0747453e-001 -2.1279680e-002 +v 2.1443580e-002 1.2273826e-001 -2.9316700e-003 +v -7.9061200e-002 7.3724300e-002 -8.4521000e-004 +v -8.2063500e-002 7.5993670e-002 1.7615500e-003 +v -8.3736580e-002 7.6771840e-002 8.9586000e-003 +v -9.0205720e-002 1.4947775e-001 1.3035090e-002 +v 8.4818000e-004 1.1670025e-001 -1.7337090e-002 +v -7.4577550e-002 1.5164041e-001 -2.8647990e-002 +v -2.9087460e-002 7.2924630e-002 -3.3354470e-002 +v -3.1184020e-002 7.3989530e-002 -3.0339870e-002 +v -3.2606620e-002 7.1955620e-002 -2.4866580e-002 +v -8.0575990e-002 7.6607800e-002 -2.9879400e-003 +v -8.9491020e-002 1.4392581e-001 1.2488490e-002 +v -7.7388410e-002 1.4656426e-001 -4.3543000e-003 +v -7.2896160e-002 1.5834962e-001 -3.4109420e-002 +v 7.1346500e-003 1.1468229e-001 -1.8345640e-002 +v -3.4502610e-002 7.6130020e-002 -2.2373150e-002 +v -8.3890740e-002 8.0789530e-002 2.2951400e-003 +v -8.3740480e-002 7.7240270e-002 4.6673300e-003 +v -8.6204620e-002 8.0930750e-002 1.0535420e-002 +v -8.6061500e-002 7.9931100e-002 1.4440780e-002 +v -8.1542760e-002 7.7950660e-002 2.6727280e-002 +v 2.6666170e-002 1.1268609e-001 -1.0509540e-002 +v -7.6041430e-002 1.5663068e-001 -2.1420480e-002 +v -9.0012110e-002 1.5083344e-001 1.5752740e-002 +v -7.1156510e-002 1.6335125e-001 -4.5360530e-002 +v -3.3210960e-002 7.6873190e-002 -2.7708380e-002 +v -7.3263090e-002 7.9983830e-002 -1.3749940e-002 +v -7.9285950e-002 8.0048830e-002 -7.0125500e-003 +v -8.6034510e-002 8.2645720e-002 1.9542680e-002 +v -8.4335410e-002 8.0729950e-002 2.2180460e-002 +v -7.1351460e-002 1.5727092e-001 -4.2183090e-002 +v -7.3548450e-002 1.6120822e-001 -3.5288420e-002 +v 1.6732620e-002 1.0991230e-001 -1.7020040e-002 +v -3.0978770e-002 7.7020860e-002 -3.2816490e-002 +v -6.2359240e-002 1.7544824e-001 -6.1485990e-002 +v -1.7587870e-002 1.1491318e-001 -1.7205040e-002 +v -8.2354050e-002 8.0876320e-002 -2.4038900e-003 +v -7.8578910e-002 1.4050129e-001 -4.6031000e-003 +v -2.8931080e-002 7.9247620e-002 -3.5049800e-002 +v -3.1225710e-002 8.0413100e-002 -3.2182320e-002 +v -3.3258680e-002 7.9621670e-002 -2.7146060e-002 +v -4.4697400e-002 1.1791537e-001 -1.4725860e-002 +v -7.9723740e-002 8.4226660e-002 -8.7608600e-003 +v -8.5042160e-002 8.3817830e-002 -7.7640000e-005 +v -8.6776400e-002 8.4344860e-002 1.2419030e-002 +v -8.6674670e-002 8.2665010e-002 1.5174340e-002 +v -8.5106250e-002 8.5176580e-002 2.5679440e-002 +v -7.6975760e-002 8.2935940e-002 -1.1450630e-002 +v -8.2776390e-002 8.3430890e-002 -4.3687000e-003 +v -8.6180440e-002 8.2572150e-002 6.3639000e-003 +v -9.1160820e-002 1.4144362e-001 1.5673910e-002 +v -7.4638800e-002 1.4398484e-001 -7.1504600e-003 +v -8.3448500e-002 1.3393299e-001 -1.6873200e-003 +v -7.5804700e-002 1.5134475e-001 -1.9881200e-002 +v -7.4924140e-002 1.5273013e-001 -1.9397440e-002 +v -5.2314440e-002 1.2159646e-001 -1.0798060e-002 +v -3.0734050e-002 8.5427560e-002 -3.0506670e-002 +v -3.2590560e-002 8.1942660e-002 -2.9100210e-002 +v -8.6454830e-002 8.6940490e-002 9.1667000e-004 +v -1.2501820e-002 1.0634409e-001 -2.2360190e-002 +v -8.8585880e-002 1.4605869e-001 9.8780000e-003 +v -8.5609750e-002 1.4712513e-001 6.5981100e-003 +v -8.7511210e-002 1.5061504e-001 1.0152460e-002 +v -6.0113540e-002 3.5550440e-002 4.4907580e-002 +v -8.8284200e-002 8.6869110e-002 8.1029200e-003 +v -8.8812560e-002 8.7765490e-002 1.4226540e-002 +v -8.8001070e-002 8.6626430e-002 1.5466680e-002 +v -8.6991110e-002 8.6444700e-002 2.2420950e-002 +v -7.4609990e-002 1.4727815e-001 -1.4172380e-002 +v -3.4707910e-002 8.4035880e-002 -2.4302260e-002 +v -8.4964900e-002 8.9962540e-002 -3.0068000e-003 +v -8.8091450e-002 8.7741580e-002 4.8489900e-003 +v -9.1490470e-002 1.4543178e-001 2.2277220e-002 +v -9.4380420e-002 1.2183919e-001 1.7904340e-002 +v -2.9164530e-002 8.5393440e-002 -3.3666780e-002 +v -3.0557790e-002 8.8625920e-002 -2.7550670e-002 +v -7.7770550e-002 8.7844840e-002 -1.1694810e-002 +v -8.0728260e-002 8.8204150e-002 -7.8003100e-003 +v -8.3272540e-002 8.9476690e-002 -5.6502900e-003 +v -8.9398710e-002 8.9539000e-002 1.1645550e-002 +v -8.9698390e-002 1.3971257e-001 1.3774760e-002 +v -7.7134890e-002 1.5151225e-001 -5.5823000e-003 +v -5.1121410e-002 1.6374125e-001 -2.6640500e-003 +v -8.6442960e-002 1.2767438e-001 -1.4864100e-003 +v -6.9605590e-002 1.5490763e-001 -5.0188670e-002 +v -8.7265180e-002 9.2110030e-002 4.2059000e-003 +v -8.9086250e-002 9.2377120e-002 1.0569860e-002 +v -8.9612340e-002 9.1599880e-002 1.7812280e-002 +v -8.2732460e-002 1.4196856e-001 1.2529100e-003 +v -7.2618370e-002 1.4368135e-001 -1.0987100e-002 +v -7.7677230e-002 1.6610992e-001 -3.6777320e-002 +v -1.5078060e-002 9.3863440e-002 -3.4317310e-002 +v -7.1057280e-002 1.5476885e-001 -4.5778530e-002 +v -9.2331920e-002 1.2523886e-001 9.1589500e-003 +v -7.6046700e-002 9.1037250e-002 -1.3643150e-002 +v -8.2942810e-002 9.3291700e-002 -6.1856300e-003 +v -1.0411170e-002 9.4592340e-002 -3.3784850e-002 +v -2.9331140e-002 1.1476230e-001 -1.5844640e-002 +v -3.7218250e-002 1.1594244e-001 -1.5173050e-002 +v -1.2429920e-002 1.0286006e-001 -2.3822480e-002 +v 6.6509600e-003 8.8144500e-002 -3.2945810e-002 +v -6.4119900e-003 9.2876210e-002 -3.4817640e-002 +v 1.5800150e-002 1.1996558e-001 -1.1415630e-002 +v 2.9102740e-002 1.0247506e-001 -1.5768380e-002 +v 4.2080690e-002 6.3480630e-002 -2.5405300e-003 +v 2.8723120e-002 9.7943220e-002 -1.7497350e-002 +v -1.9987640e-002 1.0278313e-001 -2.3392920e-002 +v 3.3748350e-002 8.3644140e-002 -1.8630450e-002 +v -1.8685680e-002 1.8689625e-001 -2.0248700e-002 +v 6.4154900e-003 1.1790181e-001 -1.6282740e-002 +v 5.6305210e-002 6.7769910e-002 2.6525000e-003 +v -5.3608300e-003 1.1289400e-001 -1.9613290e-002 +v 4.5769430e-002 6.4628800e-002 -1.2166100e-003 +v -1.0090870e-002 9.8229650e-002 -2.7731360e-002 +v -6.0458520e-002 1.1755645e-001 -1.1354580e-002 +v 1.2933940e-002 1.1887250e-001 -1.3979370e-002 +v 1.5235680e-002 9.4977900e-002 -2.4437140e-002 +v -3.0892950e-002 4.7409030e-002 -2.4954000e-002 +v -1.7766190e-002 1.8572344e-001 -2.3049280e-002 +v -1.3034890e-002 1.1002855e-001 -2.0161170e-002 +v -7.1206550e-002 3.8608570e-002 7.7218000e-004 +v 1.7904800e-002 1.0627709e-001 -1.7729250e-002 +v -3.3623490e-002 1.1840428e-001 -1.1927480e-002 +v -4.9906840e-002 1.1788332e-001 -1.4402480e-002 +v -6.6878100e-003 1.1747209e-001 -1.5359280e-002 +v -1.5451470e-002 1.8597600e-001 -2.4795870e-002 +v -3.0603900e-002 3.8038460e-002 -3.0123840e-002 +v -1.3220270e-002 1.8397188e-001 -2.7519460e-002 +v -4.7859450e-002 1.1162729e-001 -1.7482120e-002 +v -1.3098990e-002 9.0776040e-002 -3.6659270e-002 +v -6.3117340e-002 1.5425437e-001 2.9730400e-003 +v -5.5139750e-002 1.1051601e-001 -1.7672740e-002 +v -1.1096770e-002 1.8202324e-001 -2.8042450e-002 +v -2.6568900e-002 3.4695830e-002 -2.9113750e-002 +v -6.6396600e-003 1.0222209e-001 -2.3519320e-002 +v -5.6996400e-002 1.5741713e-001 6.0244000e-004 +v 1.9076550e-002 9.1870620e-002 -2.4890230e-002 +v 1.3473090e-002 1.2429893e-001 -6.8361400e-003 +v -2.1730490e-002 9.8410960e-002 -2.4306850e-002 +v -1.7142170e-002 9.8057460e-002 -2.4924330e-002 +v -5.8698110e-002 1.5137318e-001 -6.5801000e-004 +v 3.5641100e-003 1.2764883e-001 -4.4672400e-003 +v -8.5369800e-003 9.9921220e-002 -2.4351070e-002 +v -1.2171980e-002 1.8125102e-001 -2.9061170e-002 +v -6.1113980e-002 1.5305212e-001 9.9983000e-004 +v -2.9570620e-002 1.1713871e-001 -1.3675530e-002 +v 3.0530110e-002 1.1221207e-001 -8.1860600e-003 +v -3.1714100e-002 3.5111530e-002 -3.0658990e-002 +v -1.3691130e-002 1.7914707e-001 -2.8126410e-002 +v 1.1620840e-002 1.1548972e-001 -1.6385680e-002 +v -6.1993570e-002 1.5028063e-001 -1.6297100e-003 +v 3.6684020e-002 1.0099570e-001 -9.8485900e-003 +v 4.8512670e-002 7.1798180e-002 6.0005000e-003 +v -4.6583000e-004 1.1983662e-001 -1.3610580e-002 +v 1.6747170e-002 9.0113950e-002 -2.7127190e-002 +v 6.9832400e-003 9.7730080e-002 -2.4800310e-002 +v -4.3226830e-002 4.6263570e-002 -1.1771730e-002 +v -8.3562500e-003 1.1373600e-001 -1.8239810e-002 +v -1.2354410e-002 1.1556773e-001 -1.6486930e-002 +v 4.6834470e-002 7.4354100e-002 1.0139500e-002 +v 2.5319170e-002 1.0931725e-001 -1.3579660e-002 +v -4.2459500e-002 1.1392482e-001 -1.6188050e-002 +v 5.7744640e-002 6.4158440e-002 2.6277600e-003 +v -5.9710530e-002 3.6535780e-002 -9.4949000e-003 +v -3.2078400e-003 1.0962100e-001 -2.1523850e-002 +v 2.7020740e-002 6.1345700e-002 -2.2292060e-002 +v 7.1030200e-003 1.0191162e-001 -2.1230990e-002 +v -3.8225680e-002 1.2465525e-001 -7.3257400e-003 +v 2.5941540e-002 1.1576352e-001 -8.2193900e-003 +v -6.1297960e-002 3.3900220e-002 -9.3216600e-003 +v -5.9466670e-002 1.4743956e-001 -1.8885400e-003 +v 1.0506610e-002 1.0087700e-001 -2.2109510e-002 +v 3.3081340e-002 1.0273382e-001 -1.2787210e-002 +v 1.2517840e-002 1.0475378e-001 -1.9915960e-002 +v 2.3087990e-002 9.3998720e-002 -2.2210680e-002 +v 3.1555430e-002 9.2484730e-002 -1.8204280e-002 +v 6.2723100e-003 9.9910370e-002 -2.2296890e-002 +v -4.0917240e-002 4.6121780e-002 -1.7942580e-002 +v 3.5407360e-002 9.8188850e-002 -1.2008970e-002 +v 9.4135900e-003 1.2121902e-001 -1.2937780e-002 +v 5.3735190e-002 7.2027350e-002 6.8010000e-003 +v 2.5620340e-002 1.1880719e-001 -5.0330800e-003 +v -3.8150260e-002 4.2466610e-002 -2.6893990e-002 +v -2.8212410e-002 1.1116862e-001 -1.8001930e-002 +v -6.0253590e-002 1.4339100e-001 -3.7906300e-003 +v 1.9016880e-002 1.0401450e-001 -1.9333120e-002 +v 7.5446700e-003 9.1682150e-002 -3.1643140e-002 +v -7.0760800e-003 1.2240119e-001 -1.1364410e-002 +v -1.9047500e-002 9.6562130e-002 -2.7579900e-002 +v -1.6953390e-002 1.0669256e-001 -2.2002990e-002 +v -6.7307000e-004 1.0119875e-001 -2.2857770e-002 +v -9.0179300e-003 1.2528031e-001 -7.7912000e-003 +v -6.8136180e-002 1.8006113e-001 -5.8816050e-002 +v -2.3600190e-002 1.1513818e-001 -1.5577390e-002 +v -5.9831220e-002 4.2842260e-002 -6.6469100e-003 +v 5.3124070e-002 5.9012380e-002 -2.8853800e-003 +v -3.6931840e-002 3.7107370e-002 -2.9714170e-002 +v -5.6215140e-002 1.4139213e-001 -2.8027300e-003 +v 3.6695880e-002 1.0372844e-001 -7.9621500e-003 +v -3.5885070e-002 1.2040038e-001 -1.0640470e-002 +v -9.3569500e-003 8.5423730e-002 -3.8112540e-002 +v -6.0127340e-002 1.2041391e-001 -9.3791100e-003 +v -3.9842790e-002 1.2156113e-001 -1.1570310e-002 +v 2.8322200e-002 1.0847957e-001 -1.2623390e-002 +v -1.8733500e-003 1.1593910e-001 -1.7169430e-002 +v 3.8648150e-002 9.0153340e-002 -1.2549680e-002 +v -1.7359200e-003 9.2244170e-002 -3.4310460e-002 +v 5.0000820e-002 6.1612070e-002 -3.4649900e-003 +v 5.5858960e-002 6.2910170e-002 6.9037000e-004 +v 2.0461520e-002 1.1515372e-001 -1.3103780e-002 +v -1.5165840e-002 1.1798075e-001 -1.4465520e-002 +v -7.0859540e-002 7.1510150e-002 3.3895100e-002 +v 2.2674030e-002 8.6606050e-002 -2.4925490e-002 +v 3.5358840e-002 8.7438890e-002 -1.7109050e-002 +v 1.8400920e-002 1.2145507e-001 -7.6804200e-003 +v -2.5425900e-002 4.1421010e-002 -2.9204830e-002 +v -8.2085100e-003 9.6777440e-002 -3.0809780e-002 +v -5.6810660e-002 3.3873940e-002 -1.1166310e-002 +v -3.4588640e-002 4.4744960e-002 -2.7122900e-002 +v -4.0251680e-002 1.1827531e-001 -1.3674080e-002 +v 1.6387020e-002 1.1402346e-001 -1.5496900e-002 +v 4.2635280e-002 6.0797460e-002 -3.4583700e-003 +v -5.0687200e-002 3.5935870e-002 -1.2380790e-002 +v 7.3446800e-003 9.4509570e-002 -2.9683220e-002 +v -1.9706700e-002 9.2917340e-002 -3.4636880e-002 +v -1.2083040e-002 1.2219229e-001 -9.7120900e-003 +v 4.8805930e-002 6.8457810e-002 1.6952900e-003 +v -3.0869700e-003 9.8402500e-002 -2.7403170e-002 +v -5.3198790e-002 1.3672896e-001 -1.6580500e-003 +v -4.7290060e-002 1.3055355e-001 1.6909100e-003 +v 4.4651700e-003 1.2044039e-001 -1.3931400e-002 +v -2.3850100e-003 1.2290534e-001 -1.0382460e-002 +v -2.4833330e-002 9.5858030e-002 -2.5162110e-002 +v -4.2296900e-002 3.6291920e-002 -2.7253600e-002 +v -5.4388260e-002 1.3404922e-001 -3.9920400e-003 +v -5.0539380e-002 1.3336659e-001 -1.0872200e-003 +v 2.6040300e-003 9.6942660e-002 -2.8407060e-002 +v -7.8163100e-003 1.2821209e-001 -1.9430400e-003 +v 6.5111700e-003 1.3002517e-001 9.2881000e-004 +v 3.4742860e-002 9.2274140e-002 -1.5654590e-002 +v -6.7787700e-002 1.8088887e-001 -5.8191050e-002 +v -3.3715410e-002 1.1151566e-001 -1.8078440e-002 +v 4.4630400e-003 1.2427294e-001 -9.4291400e-003 +v -2.3370170e-002 9.3392760e-002 -3.2031820e-002 +v -4.8982070e-002 1.2980647e-001 -1.3229400e-003 +v -7.8164000e-004 1.2822918e-001 -3.2490000e-003 +v 2.4960400e-003 8.9857600e-002 -3.3628450e-002 +v 7.4553300e-003 1.1196790e-001 -1.9554260e-002 +v 2.8791140e-002 9.1157340e-002 -2.0370210e-002 +v -5.3590150e-002 1.2437450e-001 -7.3470400e-003 +v -4.7743630e-002 1.2064432e-001 -1.2812990e-002 +v -1.9616230e-002 1.2109197e-001 -9.5487700e-003 +v -6.5047370e-002 1.7999148e-001 -5.9758600e-002 +v -5.1704160e-002 3.7620360e-002 -1.1763450e-002 +v -5.2124270e-002 1.2929832e-001 -4.1187000e-003 +v -4.5334450e-002 1.2891494e-001 1.5819100e-003 +v -3.0471200e-003 1.2919453e-001 -1.0688000e-003 +v 7.2129600e-003 1.2721957e-001 -5.2073700e-003 +v 1.1669320e-002 1.2720154e-001 -3.1850900e-003 +v 5.3056400e-002 6.9708830e-002 3.1291400e-003 +v -6.3021150e-002 1.7810951e-001 -6.0393570e-002 +v 2.8204800e-002 6.4391270e-002 -2.0698040e-002 +v 3.4400180e-002 1.0503000e-001 -1.0224920e-002 +v 3.0975190e-002 1.0790250e-001 -1.1058430e-002 +v -4.8984390e-002 1.1480518e-001 -1.5966690e-002 +v -3.2821710e-002 1.2300500e-001 -5.9088300e-003 +v -5.0792860e-002 1.2716487e-001 -4.8183200e-003 +v -3.5301670e-002 1.2547815e-001 -3.1542800e-003 +v 5.6455250e-002 6.9951490e-002 4.9191700e-003 +v -1.6240450e-002 1.2512177e-001 -3.6499700e-003 +v -1.6970400e-002 1.1119793e-001 -1.9586410e-002 +v -5.4088120e-002 3.9781210e-002 -1.0544680e-002 +v -3.4190490e-002 4.7514010e-002 -2.2301500e-002 +v 1.3699090e-002 9.3914220e-002 -2.6427690e-002 +v 8.8000000e-004 9.9234930e-002 -2.4355670e-002 +v -4.6459460e-002 1.2723953e-001 -4.8843300e-003 +v -4.1735500e-002 1.2687599e-001 -4.1742000e-003 +v -2.1000480e-002 1.2313643e-001 -6.1190100e-003 +v -1.2130450e-002 1.2572568e-001 -5.2007900e-003 +v -4.3822400e-003 1.2640753e-001 -6.9495200e-003 +v 1.4085700e-003 3.4781990e-002 -2.3265200e-002 +v -1.4846200e-002 3.5070930e-002 -2.6071900e-002 +v -2.1399500e-002 3.4795120e-002 -2.7958820e-002 +v 1.2009220e-002 3.5961900e-002 -2.1735750e-002 +v 3.8249200e-003 3.6129220e-002 -2.3878090e-002 +v -5.1139560e-002 9.6617580e-002 -2.2095120e-002 +v -5.4813320e-002 9.8102480e-002 -2.1425370e-002 +v -2.7597040e-002 1.6979824e-001 -1.8170420e-002 +v 1.3359870e-002 3.9377410e-002 -2.2496330e-002 +v 4.3919300e-003 3.8674430e-002 -2.4170290e-002 +v -6.8478200e-003 3.6444540e-002 -2.5177120e-002 +v -1.3280260e-002 3.7699590e-002 -2.6391810e-002 +v -4.7672760e-002 3.6116650e-002 -1.3301210e-002 +v -4.5590120e-002 1.0853826e-001 -1.8796680e-002 +v -5.0095670e-002 1.0990925e-001 -1.8504510e-002 +v -6.5766640e-002 3.6469550e-002 -7.2073000e-003 +v -2.3455840e-002 1.6824727e-001 -1.8822880e-002 +v -4.5918000e-003 3.8404570e-002 -2.5412870e-002 +v -2.4954130e-002 3.7441060e-002 -2.9152720e-002 +v 2.9007770e-002 3.7358220e-002 -2.7474000e-004 +v -7.9468800e-003 4.1489920e-002 -2.5911270e-002 +v -1.6803800e-002 3.9753810e-002 -2.7565350e-002 +v -6.5156150e-002 1.4034537e-001 -7.6848600e-003 +v -4.7080100e-002 4.0700690e-002 -1.1869830e-002 +v -6.8470630e-002 3.7477700e-002 -4.9557400e-003 +v 3.7326850e-002 4.0209510e-002 -8.5850000e-004 +v 3.5349870e-002 4.1257050e-002 -2.8075100e-003 +v 5.1820700e-003 4.1536320e-002 -2.4065670e-002 +v 1.8660660e-002 1.0030784e-001 -2.2127290e-002 +v -6.0510780e-002 1.0748450e-001 -1.7042300e-002 +v -6.2374340e-002 4.0146090e-002 -7.4040200e-003 +v 2.5456950e-002 3.9483890e-002 -4.0251400e-003 +v -2.2828000e-004 4.3394940e-002 -2.5124420e-002 +v -8.1088400e-003 4.3439060e-002 -2.6140070e-002 +v -1.7362450e-002 4.3237420e-002 -2.7665190e-002 +v -2.6416670e-002 4.4674020e-002 -2.8209740e-002 +v 3.8064500e-003 1.0944331e-001 -2.0203790e-002 +v -5.8232370e-002 9.5690400e-002 -2.0616030e-002 +v -6.6122370e-002 4.2341260e-002 -2.7538800e-003 +v -6.0959920e-002 9.4173040e-002 -1.9015670e-002 +v 3.1352250e-002 4.2649280e-002 -4.6745000e-003 +v -3.3540900e-002 3.6342620e-002 4.9089960e-002 +v 1.7252780e-002 4.4335610e-002 -2.3067190e-002 +v 1.0637660e-002 4.4161560e-002 -2.4926170e-002 +v 4.3843100e-003 4.5806710e-002 -2.6788990e-002 +v -8.2506400e-003 4.5148720e-002 -2.8441070e-002 +v -1.5748410e-002 4.5043860e-002 -2.7877790e-002 +v 2.8990330e-002 4.4697850e-002 -6.1863000e-003 +v 8.1686400e-003 4.5053030e-002 -2.5178740e-002 +v -9.6291000e-004 4.5378230e-002 -2.7308280e-002 +v -1.7033400e-003 4.7819200e-002 -2.9928930e-002 +v -3.1535830e-002 4.4740410e-002 -2.8079410e-002 +v -3.3619650e-002 1.5691468e-001 -1.1024870e-002 +v -5.0751180e-002 4.3109620e-002 -1.0018680e-002 +v 3.6890890e-002 4.7353200e-002 -6.1057100e-003 +v 2.4975630e-002 4.2644580e-002 -7.0169900e-003 +v 2.4562420e-002 4.8369560e-002 -1.9672760e-002 +v 1.3964040e-002 4.5579170e-002 -2.4706510e-002 +v 1.3376130e-002 4.8630300e-002 -2.6551500e-002 +v 3.7308900e-003 4.8127990e-002 -2.9025970e-002 +v -8.7947000e-003 4.7056850e-002 -2.9881630e-002 +v -1.3753770e-002 5.1865060e-002 -3.2243480e-002 +v -2.1200840e-002 4.6657090e-002 -2.7951320e-002 +v 3.9693540e-002 4.5658580e-002 -4.5274100e-003 +v 3.3627400e-002 4.8717730e-002 -6.3904600e-003 +v -6.5352120e-002 9.9294570e-002 -1.6820150e-002 +v 1.2868100e-003 5.0383670e-002 -3.0357440e-002 +v -8.1797500e-003 4.9845800e-002 -3.1071390e-002 +v -1.7184350e-002 4.8210500e-002 -2.9741930e-002 +v -2.6049450e-002 4.7692500e-002 -2.6149500e-002 +v -8.4747010e-002 1.1078350e-001 3.9488380e-002 +v -5.1316870e-002 4.8270690e-002 -7.9310500e-003 +v -8.2506510e-002 1.2765487e-001 -4.6796400e-003 +v 3.8663690e-002 5.1696670e-002 -6.6910200e-003 +v -7.5643160e-002 9.9440450e-002 -1.1927610e-002 +v 2.0284470e-002 5.1349190e-002 -2.4895380e-002 +v 5.9436000e-003 5.0976660e-002 -2.9119360e-002 +v -2.5528290e-002 5.1472710e-002 -2.6884680e-002 +v -3.5562670e-002 4.9399890e-002 -1.2865040e-002 +v -4.2818980e-002 1.6220182e-001 -1.0337510e-002 +v -6.5593600e-002 1.7665711e-001 -6.0504730e-002 +v -3.4151080e-002 1.7442797e-001 -1.3312550e-002 +v 4.3673180e-002 5.0162230e-002 -5.9843500e-003 +v -5.0342410e-002 1.5546197e-001 -5.1927700e-003 +v 2.5464180e-002 5.4029700e-002 -2.1691010e-002 +v 1.0149790e-002 4.9258540e-002 -2.7750590e-002 +v -2.2043190e-002 5.3612020e-002 -3.0135610e-002 +v -3.2875520e-002 5.1677630e-002 -1.0888650e-002 +v -3.7613820e-002 4.9534770e-002 -1.1626140e-002 +v -4.0750630e-002 4.9285110e-002 -1.1286200e-002 +v -4.6385170e-002 4.7490850e-002 -1.0085980e-002 +v 4.4473170e-002 5.3293010e-002 -6.3327900e-003 +v 3.3205620e-002 5.1020650e-002 -7.2382500e-003 +v 1.5678350e-002 5.1169270e-002 -2.6397810e-002 +v 6.8341700e-003 5.5010170e-002 -3.0561130e-002 +v 2.1424700e-003 5.5502800e-002 -3.1334400e-002 +v 5.9285000e-004 5.2867950e-002 -3.0513830e-002 +v -3.6481400e-003 5.1869000e-002 -3.1457940e-002 +v -9.4245600e-003 5.5399220e-002 -3.3653980e-002 +v -1.9302150e-002 5.8224770e-002 -3.3919700e-002 +v -6.1084270e-002 1.3386190e-001 -7.2248900e-003 +v -4.3309760e-002 5.5656840e-002 -1.1402110e-002 +v -6.1080540e-002 1.6833773e-001 -5.9192060e-002 +v 4.7574690e-002 5.2943630e-002 -5.1300300e-003 +v -3.7403030e-002 1.1150775e-001 -1.8243310e-002 +v 1.9972490e-002 5.4409710e-002 -2.7108230e-002 +v 5.3974800e-003 5.8382570e-002 -3.0903760e-002 +v -1.0603590e-002 5.3602910e-002 -3.3403350e-002 +v -3.4998290e-002 5.2331560e-002 -1.0347380e-002 +v -4.6471230e-002 5.1304340e-002 -9.8299800e-003 +v -6.7945360e-002 1.1493603e-001 -9.5107300e-003 +v -7.1048210e-002 1.5161088e-001 -4.4679270e-002 +v -5.8903800e-003 3.4790620e-002 -2.4224470e-002 +v 1.6842140e-002 5.5555670e-002 -2.8284560e-002 +v 1.0711040e-002 5.4687610e-002 -2.9767520e-002 +v -1.1826800e-003 5.9492420e-002 -3.3360920e-002 +v -5.2325900e-003 5.5688960e-002 -3.2840220e-002 +v -5.1705830e-002 5.2470760e-002 -7.4047200e-003 +v -5.2626360e-002 6.0043760e-002 -8.9566900e-003 +v -7.2598590e-002 9.7762720e-002 -1.4434510e-002 +v 4.4331260e-002 5.5818010e-002 -6.0362700e-003 +v 3.8463400e-002 5.4934820e-002 -6.1822500e-003 +v 3.8838620e-002 5.7808260e-002 -5.2584800e-003 +v -9.2015400e-003 5.9510130e-002 -3.4437110e-002 +v -3.5262560e-002 5.5284900e-002 -1.0545060e-002 +v -3.8336450e-002 5.4503540e-002 -1.0905320e-002 +v -1.7727540e-002 3.6289540e-002 5.2222250e-002 +v 5.0006490e-002 5.8095800e-002 -4.6211800e-003 +v 4.6133970e-002 5.9278810e-002 -4.7769600e-003 +v 1.5110300e-002 5.9819840e-002 -2.8645750e-002 +v 1.0312380e-002 5.7586530e-002 -2.9995250e-002 +v -6.1353400e-003 6.0256790e-002 -3.4695830e-002 +v -1.2318220e-002 5.9396390e-002 -3.5268510e-002 +v -1.4466910e-002 6.3136020e-002 -3.6865870e-002 +v -4.6650260e-002 5.9840950e-002 -1.2135840e-002 +v -5.6572080e-002 1.2480275e-001 -7.1885700e-003 +v -7.9237500e-002 1.2055419e-001 -5.6744800e-003 +v -7.9334790e-002 1.2560650e-001 -6.1175900e-003 +v 2.2340000e-002 5.8492230e-002 -2.6014120e-002 +v 7.6270400e-003 6.2098330e-002 -3.1135840e-002 +v 3.3101700e-003 6.0456840e-002 -3.2481070e-002 +v -1.6811880e-002 6.1275230e-002 -3.5929330e-002 +v -3.2491910e-002 5.7196350e-002 -1.2104730e-002 +v -3.4108240e-002 6.1466560e-002 -1.3053130e-002 +v -3.3896980e-002 5.7025330e-002 -1.1047570e-002 +v -3.8623580e-002 5.8303290e-002 -1.1505750e-002 +v -4.5008400e-002 6.2723940e-002 -1.3390450e-002 +v -5.6896010e-002 1.3398739e-001 -5.6270700e-003 +v -4.4853890e-002 1.5746031e-001 -8.6731600e-003 +v -7.8609550e-002 6.9656870e-002 1.1810740e-002 +v -2.3730020e-002 1.0186156e-001 -2.3836400e-002 +v -2.8122930e-002 9.9322390e-002 -2.3580130e-002 +v -5.0076720e-002 1.4997652e-001 -3.6419700e-003 +v -3.3048420e-002 9.5958590e-002 -2.3426460e-002 +v 1.9520390e-002 6.2064770e-002 -2.7292470e-002 +v -3.8864710e-002 1.0333987e-001 -2.0641400e-002 +v -4.8952940e-002 5.6281090e-002 -1.0220880e-002 +v -5.3993040e-002 1.4498656e-001 -1.1093400e-003 +v -4.5530560e-002 9.8510850e-002 -2.1729510e-002 +v -5.0910960e-002 1.0074570e-001 -2.1619430e-002 +v 2.3245830e-002 6.2792530e-002 -2.5047990e-002 +v 9.7412800e-003 6.3181400e-002 -3.1141370e-002 +v -8.6614000e-004 6.4559630e-002 -3.4490930e-002 +v -8.5264000e-003 6.4001730e-002 -3.5850480e-002 +v -4.8451500e-002 6.4794120e-002 -1.3029910e-002 +v -5.2325160e-002 1.0614813e-001 -1.9271240e-002 +v -5.5265350e-002 1.0216682e-001 -1.9897100e-002 +v -5.9042010e-002 9.9032210e-002 -1.9222950e-002 +v -5.7846760e-002 1.0433496e-001 -1.8525740e-002 +v -2.7113460e-002 1.7332156e-001 -1.8538890e-002 +v 2.2832000e-002 6.7082570e-002 -2.6297510e-002 +v 1.4519060e-002 6.4595540e-002 -2.9855690e-002 +v 1.1471330e-002 6.7581440e-002 -3.0901170e-002 +v -1.7739360e-002 6.6260830e-002 -3.7657310e-002 +v -6.5059750e-002 1.3452104e-001 -8.0899900e-003 +v -7.5829320e-002 1.4244605e-001 -5.8090000e-003 +v -4.1362350e-002 6.1637330e-002 -1.2813770e-002 +v -5.6147890e-002 6.1921550e-002 -5.7541100e-003 +v -6.2126110e-002 6.2845360e-002 -4.5202600e-003 +v -3.7292480e-002 1.6449057e-001 -1.3627050e-002 +v -1.9818920e-002 1.6509494e-001 -1.7608980e-002 +v 6.2881100e-003 6.5416350e-002 -3.2563040e-002 +v -5.9250500e-003 6.9515630e-002 -3.5933480e-002 +v -1.0538630e-002 6.7999180e-002 -3.6517060e-002 +v -3.5385700e-002 6.6817430e-002 -1.5434860e-002 +v -5.3994500e-002 6.4638700e-002 -9.3254900e-003 +v -6.3852310e-002 6.5572310e-002 -6.9393300e-003 +v -6.3920880e-002 1.2774242e-001 -8.5494600e-003 +v -2.6940700e-002 3.6184050e-002 5.3351850e-002 +v 1.9618650e-002 6.7007390e-002 -2.8356120e-002 +v 1.2275180e-002 6.9933940e-002 -3.1553160e-002 +v 5.4265100e-003 6.8247960e-002 -3.2730520e-002 +v -4.4084200e-003 6.6619200e-002 -3.4870250e-002 +v -2.1911350e-002 6.7144790e-002 -3.6535750e-002 +v -4.5643150e-002 1.5466949e-001 -7.2969400e-003 +v -5.1673460e-002 6.6850660e-002 -1.2120350e-002 +v -5.8105180e-002 6.6465950e-002 -1.0044340e-002 +v -5.6992260e-002 1.4311862e-001 -2.2403000e-003 +v -8.0651110e-002 1.3119854e-001 -4.4397800e-003 +v -5.6544310e-002 1.2850938e-001 -6.2014700e-003 +v 1.7758080e-002 7.0138540e-002 -2.9404680e-002 +v 6.4980500e-003 7.0791870e-002 -3.3525310e-002 +v 7.5831000e-004 7.0434460e-002 -3.4462560e-002 +v -1.3235950e-002 6.9292820e-002 -3.7917490e-002 +v -6.7390780e-002 1.1889688e-001 -8.7301400e-003 +v -3.8119520e-002 6.4162310e-002 -1.3829140e-002 +v 1.8527400e-003 1.1303356e-001 -1.9794270e-002 +v -7.5950810e-002 6.8170610e-002 1.8117970e-002 +v -1.0001990e-002 7.2671480e-002 -3.7661370e-002 +v -1.7976070e-002 7.0613770e-002 -3.8443880e-002 +v -2.3035990e-002 7.2778460e-002 -3.8072640e-002 +v -2.6120100e-002 7.1177480e-002 -3.5451530e-002 +v -6.8535420e-002 1.3929375e-001 -7.8046600e-003 +v -3.5263040e-002 7.1067650e-002 -1.8011860e-002 +v -4.1558180e-002 6.9774010e-002 -1.6774100e-002 +v -5.2831730e-002 7.0298920e-002 -1.4864960e-002 +v -6.6978850e-002 6.7638980e-002 -6.8094400e-003 +v -1.0244470e-002 1.7895826e-001 -2.9538870e-002 +v -7.5272650e-002 1.2680098e-001 -8.0241700e-003 +v -8.7359900e-002 1.1248315e-001 4.2049490e-002 +v 8.7503000e-003 7.4301560e-002 -3.3398210e-002 +v -6.4249520e-002 1.6045024e-001 -5.7041470e-002 +v -4.4354010e-002 7.3372220e-002 -1.7874430e-002 +v -4.5762580e-002 6.9445320e-002 -1.5928780e-002 +v -4.7957440e-002 7.2542990e-002 -1.6106990e-002 +v -5.7822630e-002 6.9538010e-002 -1.4416470e-002 +v -7.2071600e-002 7.1538150e-002 -7.4714400e-003 +v 2.5472930e-002 7.4094500e-002 -2.4938540e-002 +v 1.5719730e-002 7.3756350e-002 -2.9747770e-002 +v 4.8214000e-003 7.3763980e-002 -3.4552450e-002 +v -2.2528600e-003 7.3921320e-002 -3.5887190e-002 +v -7.3834900e-003 7.4799620e-002 -3.7223830e-002 +v -2.0225340e-002 7.7095190e-002 -3.9044290e-002 +v -3.4016180e-002 7.2101270e-002 -2.0823150e-002 +v -3.8493370e-002 7.2839870e-002 -1.7502230e-002 +v -6.4392550e-002 7.3116330e-002 -1.5335340e-002 +v -6.4480660e-002 7.0187350e-002 -1.2261750e-002 +v -2.3854330e-002 1.6164528e-001 -1.4504190e-002 +v 2.2104450e-002 7.2692600e-002 -2.6900140e-002 +v 1.5532370e-002 7.6586960e-002 -2.9606940e-002 +v 1.1574050e-002 7.4860570e-002 -3.1383860e-002 +v -1.4731560e-002 7.7640750e-002 -3.8490670e-002 +v -1.6018820e-002 7.4288800e-002 -3.8864420e-002 +v -5.1103620e-002 7.3071950e-002 -1.6243060e-002 +v -5.7989540e-002 7.4017880e-002 -1.7522320e-002 +v -6.9608380e-002 7.2322890e-002 -1.0934430e-002 +v -7.5996110e-002 1.1714132e-001 -6.5577200e-003 +v -3.7987660e-002 1.0751453e-001 -1.9975760e-002 +v 1.0696210e-002 7.9889200e-002 -3.2009580e-002 +v -5.3433400e-003 7.8264580e-002 -3.7476940e-002 +v -2.6081990e-002 7.6191290e-002 -3.6780200e-002 +v -3.9161040e-002 1.5718885e-001 -1.0580510e-002 +v -6.5609880e-002 7.5860010e-002 -1.6750060e-002 +v -7.0177600e-002 7.5663330e-002 -1.3839210e-002 +v -7.4291360e-002 7.4808360e-002 -9.3537900e-003 +v -6.3428890e-002 1.7185387e-001 -6.1412170e-002 +v 3.0684890e-002 7.5726870e-002 -2.0778090e-002 +v 1.9305010e-002 7.9017870e-002 -2.7743990e-002 +v -8.5992100e-003 7.9338730e-002 -3.7905180e-002 +v -2.3200110e-002 7.6568500e-002 -3.8386500e-002 +v -3.8117820e-002 7.6390120e-002 -1.8644360e-002 +v -4.4231130e-002 7.7664130e-002 -1.9026580e-002 +v -5.1025500e-002 7.5705070e-002 -1.8186900e-002 +v -7.0595130e-002 1.2994832e-001 -8.7629200e-003 +v 2.8147660e-002 7.8785370e-002 -2.2432450e-002 +v 7.6016000e-003 7.9435920e-002 -3.3714560e-002 +v 4.9502400e-003 7.8027250e-002 -3.4409750e-002 +v -1.5858350e-002 8.1165550e-002 -3.9185590e-002 +v -1.8502080e-002 8.3343870e-002 -3.9010720e-002 +v -7.9739350e-002 1.3606854e-001 -4.1482100e-003 +v -3.0980180e-002 1.6634656e-001 -1.6241160e-002 +v -3.5749800e-002 7.7248350e-002 -1.9374020e-002 +v -4.8944740e-002 7.9086360e-002 -1.9575700e-002 +v -5.5065860e-002 7.8089190e-002 -1.9755480e-002 +v 2.3706000e-002 8.0240410e-002 -2.5450120e-002 +v 1.2254110e-002 8.3456700e-002 -3.0771580e-002 +v 1.8549900e-003 8.4692790e-002 -3.4838500e-002 +v -2.0857000e-004 7.8941410e-002 -3.5782080e-002 +v -4.2710000e-004 8.2947370e-002 -3.6380660e-002 +v -4.4101600e-003 8.2794510e-002 -3.7467250e-002 +v -3.3202320e-002 1.0578320e-001 -2.0647590e-002 +v -3.9206970e-002 8.1536380e-002 -2.0571000e-002 +v -6.0355410e-002 7.9766610e-002 -1.9375540e-002 +v -4.1771830e-002 1.0396706e-001 -2.0832940e-002 +v -1.1204010e-002 8.2713320e-002 -3.8489610e-002 +v -2.3181500e-002 8.1686990e-002 -3.8329160e-002 +v -2.7233190e-002 8.0570950e-002 -3.6620670e-002 +v -3.5470180e-002 8.0196070e-002 -2.2325910e-002 +v -4.4864210e-002 8.1997900e-002 -2.0473520e-002 +v -5.0647890e-002 8.2309430e-002 -2.1365890e-002 +v -5.5522610e-002 8.1927600e-002 -2.1353790e-002 +v -8.8089610e-002 1.1135484e-001 1.8516150e-002 +v -7.2036080e-002 1.1107918e-001 4.5361400e-002 +v -3.3359780e-002 1.6986395e-001 -1.5448990e-002 +v -6.6839030e-002 6.2170510e-002 2.1576840e-002 +v 3.0730560e-002 8.1968990e-002 -2.0040460e-002 +v 1.6224320e-002 8.6480380e-002 -2.8952010e-002 +v -6.9855630e-002 1.0027892e-001 -1.4847830e-002 +v -6.3836170e-002 8.1704600e-002 -1.8908860e-002 +v -6.7914820e-002 8.0136290e-002 -1.7128200e-002 +v -4.5752080e-002 1.6340754e-001 -8.1780500e-003 +v 1.1727540e-002 8.8010780e-002 -3.0860110e-002 +v 7.3334800e-003 8.5270000e-002 -3.2829380e-002 +v -3.4356500e-003 8.7017890e-002 -3.6461000e-002 +v -2.6964110e-002 8.4512810e-002 -3.6361740e-002 +v -3.6553370e-002 8.5316190e-002 -2.2576200e-002 +v -3.8791090e-002 8.5232710e-002 -2.1917600e-002 +v -5.7676940e-002 8.6258340e-002 -2.1098320e-002 +v -6.2581810e-002 8.6394530e-002 -1.9169290e-002 +v -7.1395340e-002 1.2468846e-001 -8.5944200e-003 +v 1.4801570e-002 9.9040900e-002 -2.2842920e-002 +v -2.1162860e-002 1.7491852e-001 -2.1977110e-002 +v -1.4824250e-002 8.7288840e-002 -3.8317070e-002 +v -2.3285750e-002 8.9468030e-002 -3.6027250e-002 +v -5.1595650e-002 8.4422070e-002 -2.1600960e-002 +v -6.9481040e-002 8.5656460e-002 -1.7198420e-002 +v -7.0917210e-002 1.0754846e-001 -1.1496630e-002 +v 3.0145320e-002 8.6284000e-002 -2.0408140e-002 +v -5.5578110e-002 1.1567692e-001 -1.4645990e-002 +v -8.0981100e-003 8.9070080e-002 -3.6552200e-002 +v -8.1206310e-002 1.1205088e-001 -8.8299000e-004 +v -1.8772170e-002 8.9838040e-002 -3.6991710e-002 +v -2.1100420e-002 8.6587670e-002 -3.7849050e-002 +v -2.5809910e-002 8.8889590e-002 -3.5082250e-002 +v -4.8984800e-002 9.0731760e-002 -2.1817170e-002 +v -3.5874870e-002 3.4776000e-002 -3.0845200e-002 +v -3.3164390e-002 3.3606540e-002 -2.9721880e-002 +v -2.5964020e-002 3.3487000e-002 -2.6321120e-002 +v -1.6717530e-002 3.3611640e-002 -2.4625420e-002 +v -5.3486300e-003 3.3829010e-002 -2.2600430e-002 +v 6.4843500e-003 3.4293000e-002 -2.0854930e-002 +v 1.3950350e-002 3.4880000e-002 -1.8612870e-002 +v -4.2465980e-002 3.4189100e-002 -2.7260650e-002 +v -3.3241100e-002 3.3578760e-002 -2.6719450e-002 +v 6.2813500e-003 3.4165800e-002 -1.8764230e-002 +v -4.4265790e-002 3.3663660e-002 -2.1914420e-002 +v -2.3671460e-002 3.3630970e-002 -2.3217760e-002 +v -1.1558580e-002 3.3895430e-002 -2.1054260e-002 +v -2.0406400e-003 3.4053940e-002 -1.9331070e-002 +v 1.7323900e-003 3.4459660e-002 -1.6607870e-002 +v -2.7316070e-002 3.3910070e-002 -2.1353750e-002 +v -1.3371080e-002 3.4361580e-002 -1.9023720e-002 +v 9.5887300e-003 3.4207220e-002 -1.5424050e-002 +v -1.4981540e-002 3.5878180e-002 -1.7992380e-002 +v -2.3474300e-003 3.5903130e-002 -1.5929740e-002 +v 2.2544300e-003 3.6411540e-002 -1.4783970e-002 +v -3.5199130e-002 3.3835210e-002 -2.0508290e-002 +v -2.6075450e-002 3.5918600e-002 -1.9405170e-002 +v 8.2740600e-003 3.5645200e-002 -1.2648700e-002 +v 1.0473640e-002 3.4742600e-002 -1.1262870e-002 +v 1.4055380e-002 3.4483430e-002 -1.4495730e-002 +v -3.6970520e-002 3.5680360e-002 -1.5007790e-002 +v -2.4719500e-003 3.8408770e-002 -1.4159030e-002 +v -3.9481890e-002 3.3618220e-002 -2.3612470e-002 +v -4.1091510e-002 3.4006000e-002 -1.1997540e-002 +v -3.1589810e-002 3.5592330e-002 -1.9204150e-002 +v -2.0086310e-002 3.8064450e-002 -1.7220790e-002 +v -1.1113250e-002 3.8290290e-002 -1.5646360e-002 +v 4.4522600e-003 3.7705190e-002 -1.2957650e-002 +v 1.5870480e-002 3.4416230e-002 -2.9666500e-003 +v -4.7872000e-002 3.4136300e-002 -1.5418250e-002 +v -4.7521640e-002 3.3622720e-002 -1.2804590e-002 +v -3.3407340e-002 3.7577040e-002 -1.6158190e-002 +v -2.7851470e-002 3.8404330e-002 -1.7210420e-002 +v -8.5065300e-003 3.9028950e-002 -1.3000800e-002 +v 6.4552500e-003 3.8165190e-002 -1.0164860e-002 +v 7.4147100e-003 3.4659190e-002 -3.0116800e-003 +v 1.1966200e-002 3.4335400e-002 -5.9571300e-003 +v 2.0414820e-002 3.5567580e-002 -3.7806900e-003 +v -1.9288780e-002 3.8762570e-002 -1.4202620e-002 +v -1.1390100e-003 3.9176760e-002 -1.0381370e-002 +v 3.8149200e-003 3.9024470e-002 -8.0827300e-003 +v 7.5208200e-003 3.6733400e-002 -6.7614300e-003 +v 1.9968120e-002 3.4843990e-002 -1.8984900e-003 +v -4.5058400e-002 3.3600490e-002 -1.2527510e-002 +v -3.0754850e-002 3.8639810e-002 -1.4050770e-002 +v -5.1499810e-002 3.3729110e-002 -1.2082510e-002 +v -2.3756860e-002 3.8585750e-002 -1.1093270e-002 +v 3.9734700e-003 3.8208550e-002 -3.7963500e-003 +v 9.5485400e-003 3.4232620e-002 1.7162000e-003 +v 2.9086550e-002 3.5799990e-002 3.5630900e-003 +v -5.5965200e-002 3.3529910e-002 -9.1246200e-003 +v -1.9523510e-002 3.8505210e-002 -4.5434500e-003 +v 1.6363470e-002 3.4394790e-002 2.2948600e-003 +v 2.1324740e-002 3.4624040e-002 5.6444000e-003 +v -3.9670300e-002 3.6174000e-002 -7.3397700e-003 +v -1.4251730e-002 3.8648030e-002 -4.3030400e-003 +v 2.3262300e-003 3.5348200e-002 2.3246000e-003 +v 1.4014300e-002 3.5703800e-002 3.8878900e-003 +v 1.5322800e-002 3.6239700e-002 3.6628500e-003 +v 2.3753130e-002 3.4670710e-002 3.9885300e-003 +v 3.2369180e-002 3.5816010e-002 7.0246300e-003 +v -6.3715900e-002 3.3776930e-002 -8.0065600e-003 +v -6.4266880e-002 3.3562500e-002 -5.1253200e-003 +v -3.8066600e-002 3.8518600e-002 -7.3079600e-003 +v -9.4308800e-003 3.8887690e-002 -7.4848700e-003 +v 3.9677800e-003 3.4200210e-002 4.9754500e-003 +v 9.4292600e-003 3.6030400e-002 4.5275100e-003 +v 2.9859020e-002 3.4980130e-002 9.8349300e-003 +v -5.2730060e-002 3.3497900e-002 -1.8117500e-003 +v -4.1271000e-002 3.3855400e-002 -1.8800800e-003 +v -3.1105000e-003 3.8946190e-002 -2.7793900e-003 +v 6.2194100e-003 3.5134100e-002 6.5492800e-003 +v 2.0897900e-002 3.5937100e-002 8.7849000e-003 +v 3.5606010e-002 3.6526640e-002 9.8155300e-003 +v -6.7078340e-002 3.3840100e-002 -6.1688300e-003 +v -8.1140000e-004 3.7424170e-002 4.7721500e-003 +v 3.1492300e-003 3.4125310e-002 1.1762220e-002 +v 4.9172000e-003 3.3997100e-002 9.1666100e-003 +v 2.5130800e-002 3.4546910e-002 1.1012580e-002 +v 2.8248620e-002 3.5046370e-002 1.6016700e-002 +v -6.7032970e-002 6.5145960e-002 2.7292860e-002 +v -4.6380170e-002 3.3605230e-002 -8.9435000e-004 +v -3.3163400e-002 3.8195400e-002 -5.2520000e-004 +v -3.2074200e-002 3.8323400e-002 -4.2109000e-004 +v -2.1692690e-002 3.8266010e-002 4.5100800e-003 +v 2.3930750e-002 3.4816710e-002 1.7739160e-002 +v 4.2719120e-002 3.9977070e-002 8.9321600e-003 +v -5.8604080e-002 3.3462230e-002 -2.1667000e-004 +v -3.7314400e-002 3.3633000e-002 4.5724700e-003 +v -1.0423990e-002 3.8488570e-002 6.2292700e-003 +v -1.3896900e-003 3.8651360e-002 2.3966500e-003 +v -3.0845000e-004 3.5462480e-002 8.2607200e-003 +v -1.4089000e-003 3.6193080e-002 1.2944550e-002 +v 2.2252900e-002 3.6583300e-002 1.3979700e-002 +v -7.0961830e-002 3.4345730e-002 -7.8374000e-004 +v -6.9066180e-002 3.3717630e-002 -1.9761000e-004 +v -6.4825640e-002 3.3505860e-002 2.8222500e-003 +v -4.7059660e-002 3.3501860e-002 3.5646400e-003 +v -3.6953800e-003 3.8172780e-002 1.3046800e-002 +v 3.3475850e-002 3.6447340e-002 1.6266960e-002 +v 3.7249610e-002 3.7509920e-002 1.4815820e-002 +v -4.5675940e-002 3.3703640e-002 6.4300300e-003 +v -3.8639270e-002 3.3937310e-002 8.5506500e-003 +v -9.5064100e-003 3.8352640e-002 1.5570660e-002 +v 2.1499800e-002 3.5807100e-002 1.8169400e-002 +v 4.4876460e-002 4.1230990e-002 1.6008250e-002 +v -7.2474010e-002 3.6255930e-002 1.5532600e-003 +v -7.1498130e-002 3.4452970e-002 4.2026500e-003 +v -2.7790900e-002 3.8062900e-002 7.9376100e-003 +v -1.6556410e-002 3.8286470e-002 1.0215790e-002 +v 8.1043500e-003 3.4842900e-002 1.8134600e-002 +v 2.3589460e-002 3.5890600e-002 2.5337690e-002 +v 4.1261350e-002 4.0585070e-002 2.0751930e-002 +v -5.1350870e-002 3.3645700e-002 8.0329400e-003 +v -4.7104300e-002 3.5549500e-002 8.0803900e-003 +v -1.4103500e-003 3.6999940e-002 1.6982030e-002 +v 9.1714000e-004 3.4803380e-002 1.5634690e-002 +v 2.8887900e-003 3.4636250e-002 1.8849770e-002 +v 1.3279200e-002 3.4379500e-002 2.1423700e-002 +v 1.4322700e-002 3.4425500e-002 2.1593200e-002 +v 1.7490100e-002 3.4646300e-002 2.2040900e-002 +v 2.9868460e-002 3.6248820e-002 1.9872200e-002 +v -3.9222000e-002 3.6326200e-002 1.0789900e-002 +v -3.0307100e-002 3.3995400e-002 1.4706400e-002 +v 2.0081230e-002 3.5172700e-002 2.8018770e-002 +v 2.4989010e-002 3.8104580e-002 2.9429570e-002 +v 3.3584130e-002 3.8303930e-002 2.2928670e-002 +v 4.9015720e-002 4.4573630e-002 2.0659450e-002 +v -5.8225970e-002 6.6607310e-002 3.5050280e-002 +v -6.7330830e-002 3.3846440e-002 8.7266300e-003 +v -3.4692330e-002 3.3828710e-002 1.2438580e-002 +v -2.9803200e-002 3.4287000e-002 1.6353100e-002 +v 1.7023800e-003 3.6310890e-002 2.1179600e-002 +v 4.5137020e-002 4.4625440e-002 2.5516510e-002 +v -6.8876490e-002 1.1022176e-001 3.9004630e-002 +v -5.7680560e-002 3.3622690e-002 1.4040310e-002 +v -5.3210500e-002 3.3585300e-002 1.3987000e-002 +v -3.5711600e-002 3.5891600e-002 1.5502900e-002 +v -2.8861500e-002 3.5396700e-002 1.7350000e-002 +v -2.6580500e-002 3.7742600e-002 1.5705300e-002 +v -1.0974400e-003 3.8147840e-002 2.0427010e-002 +v 3.5047710e-002 4.0973940e-002 2.6970390e-002 +v -6.9685460e-002 3.4478780e-002 9.7984300e-003 +v -5.4019000e-002 3.3309900e-002 1.5848000e-002 +v 4.4816800e-003 3.7117830e-002 2.4755300e-002 +v 6.6605500e-003 3.5204730e-002 2.4315930e-002 +v 8.3833000e-003 3.4748700e-002 2.4057310e-002 +v 3.8883100e-002 4.1032980e-002 2.4976570e-002 +v -2.6441900e-003 3.8727070e-002 2.5131260e-002 +v 3.2222300e-003 3.8708440e-002 2.5898750e-002 +v 9.0016500e-003 3.6890930e-002 2.8482190e-002 +v 1.3196980e-002 3.4835790e-002 3.1630980e-002 +v 2.2291600e-002 3.7053310e-002 3.3101020e-002 +v 2.8948390e-002 3.9160020e-002 2.7234810e-002 +v -8.7773470e-002 1.1181412e-001 3.7144310e-002 +v -1.7870490e-002 3.8203890e-002 2.0243220e-002 +v 1.0087420e-002 3.7047690e-002 3.0822500e-002 +v 4.2296550e-002 4.5435770e-002 2.9040920e-002 +v -8.4341340e-002 1.1388013e-001 4.6513480e-002 +v -7.3795710e-002 1.0895629e-001 3.9217250e-002 +v -5.1243340e-002 6.4239200e-002 3.4258040e-002 +v -6.1777390e-002 3.4017860e-002 1.6900580e-002 +v -3.6665100e-002 3.5304200e-002 2.3032000e-002 +v -1.4930180e-002 3.8643510e-002 2.9378330e-002 +v -8.0894520e-002 1.0967225e-001 3.7910230e-002 +v -8.9822620e-002 1.1387199e-001 3.2845310e-002 +v -6.9655510e-002 6.8728370e-002 3.1127880e-002 +v -7.8449800e-002 1.0988832e-001 4.2517920e-002 +v -7.5824140e-002 1.0794900e-001 3.7128750e-002 +v -5.5740630e-002 3.4128050e-002 2.6674360e-002 +v -3.8279600e-002 3.5429000e-002 2.4380600e-002 +v -3.5283340e-002 3.4179780e-002 2.2744860e-002 +v -2.5798070e-002 3.7865000e-002 1.9981460e-002 +v 6.9064300e-003 3.9004270e-002 2.9548510e-002 +v 1.5448990e-002 3.4852440e-002 3.6984890e-002 +v 1.9128230e-002 3.5640640e-002 3.6642280e-002 +v -6.3664970e-002 6.6047840e-002 3.1828080e-002 +v 3.9604800e-002 4.4939530e-002 2.9992360e-002 +v -8.0294310e-002 7.1702430e-002 1.5995300e-002 +v -5.4185430e-002 6.7322700e-002 3.6935610e-002 +v -7.3110210e-002 1.4847168e-001 -2.8748470e-002 +v -5.8999980e-002 7.3751550e-002 4.1197080e-002 +v -5.9520730e-002 6.1040260e-002 -2.3753800e-003 +v -6.2791800e-002 3.4596760e-002 2.3505640e-002 +v -4.1895500e-002 3.3668300e-002 2.6940000e-002 +v 8.9808200e-003 3.7639400e-002 3.3900800e-002 +v 8.5287800e-003 3.4888000e-002 3.6265100e-002 +v -8.9803890e-002 1.1498106e-001 4.2771650e-002 +v -6.5545420e-002 7.4430370e-002 3.9168070e-002 +v -6.4644190e-002 6.1723230e-002 2.2552000e-004 +v 5.2496900e-003 3.9507100e-002 3.3271200e-002 +v 2.0250320e-002 3.7033170e-002 3.9327190e-002 +v -6.7006400e-002 6.3292870e-002 -1.7493900e-003 +v -6.4479770e-002 6.0651470e-002 4.2343200e-003 +v -5.7219630e-002 5.7000470e-002 4.9175800e-003 +v -7.4362810e-002 7.2437050e-002 3.1430040e-002 +v -6.2019000e-002 3.4343180e-002 3.1883280e-002 +v -4.6870820e-002 3.4444130e-002 3.0513130e-002 +v -2.0814280e-002 3.8400960e-002 2.7868430e-002 +v 1.6439350e-002 3.5635110e-002 4.1281040e-002 +v -6.9087160e-002 1.1205014e-001 4.5320060e-002 +v -7.1811570e-002 1.4861318e-001 -3.4639490e-002 +v -6.9538770e-002 6.3074750e-002 3.5758200e-003 +v -8.4863890e-002 7.8392100e-002 1.6462010e-002 +v -9.1188780e-002 1.1588893e-001 2.4705540e-002 +v -8.8827760e-002 1.1359169e-001 2.3873640e-002 +v -7.1302830e-002 1.1325363e-001 4.9444530e-002 +v -5.4876950e-002 7.0282330e-002 3.8828200e-002 +v -7.7208880e-002 1.0715887e-001 3.4738290e-002 +v -6.1241780e-002 5.9007440e-002 8.0916600e-003 +v -6.5885650e-002 3.5025080e-002 2.9416520e-002 +v -5.7889430e-002 3.4419570e-002 3.6265760e-002 +v -5.1847710e-002 3.4470270e-002 3.4635180e-002 +v -3.4834600e-002 3.4721400e-002 3.4578200e-002 +v -3.0984700e-002 3.8191900e-002 3.2390100e-002 +v -4.9613100e-003 3.9364900e-002 3.6702200e-002 +v 1.2224170e-002 3.5177480e-002 4.2620580e-002 +v -7.4898220e-002 1.1458863e-001 5.0776480e-002 +v -8.0469100e-002 1.1357963e-001 4.6643440e-002 +v -7.4107560e-002 6.9586030e-002 2.7264400e-002 +v -7.9002620e-002 7.6339320e-002 2.9248090e-002 +v -6.5297080e-002 3.4778970e-002 3.3744340e-002 +v -3.3656400e-002 3.4344100e-002 3.6914100e-002 +v 4.9318500e-003 3.4814800e-002 4.3462110e-002 +v 1.1347440e-002 3.6213020e-002 4.4652280e-002 +v -6.0569260e-002 7.1154540e-002 3.8653760e-002 +v -8.8979470e-002 1.1450869e-001 2.8446030e-002 +v -6.8543520e-002 6.1090480e-002 1.0557760e-002 +v -8.2710960e-002 1.1648975e-001 4.8518530e-002 +v -4.1913210e-002 3.4467720e-002 3.3200040e-002 +v -1.1289800e-002 3.9529200e-002 3.8844100e-002 +v -2.8261900e-003 3.4885340e-002 4.5611410e-002 +v -6.4561210e-002 5.9484140e-002 1.3061680e-002 +v -5.8581440e-002 5.7801460e-002 1.3429540e-002 +v -2.3320000e-002 3.9169500e-002 3.8473300e-002 +v -1.8159900e-002 3.9322300e-002 3.9402900e-002 +v -1.6471400e-002 3.4812800e-002 4.3684700e-002 +v 3.2906600e-003 3.5833470e-002 4.6024610e-002 +v -8.5229630e-002 1.1200712e-001 3.0416940e-002 +v -8.5644730e-002 1.1131719e-001 3.4234780e-002 +v -7.4530360e-002 6.6680690e-002 4.6953300e-003 +v -7.1112970e-002 6.2751470e-002 8.7995500e-003 +v -6.1149380e-002 5.8834410e-002 1.6539440e-002 +v -4.6912270e-002 3.4627180e-002 3.9739710e-002 +v -4.0760350e-002 3.4668230e-002 4.0492530e-002 +v -2.6323100e-002 3.4658000e-002 4.3473500e-002 +v -3.1836600e-003 3.6229910e-002 4.7873100e-002 +v -7.9940490e-002 1.0916678e-001 3.4119800e-002 +v -5.9712170e-002 6.3165280e-002 2.8789180e-002 +v -5.1176600e-002 6.8061880e-002 3.7398330e-002 +v -5.0126580e-002 7.0933150e-002 3.9481010e-002 +v -7.2790130e-002 6.4399880e-002 1.5205950e-002 +v -6.8511230e-002 6.1214650e-002 1.5354080e-002 +v -3.9343210e-002 3.5440180e-002 4.2492560e-002 +v -8.1305900e-003 3.5008350e-002 4.7502400e-002 +v -6.6080670e-002 7.0202740e-002 3.5552860e-002 +v -6.8602600e-002 1.4992277e-001 -4.0051350e-002 +v -7.1722100e-002 6.7023040e-002 2.4959750e-002 +v -7.5115010e-002 6.6557040e-002 1.0244090e-002 +v -6.5146650e-002 3.5945650e-002 3.9775080e-002 +v -3.6898600e-002 3.5924640e-002 4.4794170e-002 +v -9.4780400e-003 3.5977600e-002 4.9434210e-002 +v -8.5175960e-002 1.1706809e-001 4.8139420e-002 +v -6.3366400e-002 6.2790260e-002 2.5647610e-002 +v -6.6633330e-002 6.1001700e-002 1.8101240e-002 +v -5.8167590e-002 5.9985190e-002 2.2606060e-002 +v -6.4212210e-002 3.4992560e-002 3.9401920e-002 +v -5.3425790e-002 3.4560020e-002 4.2782420e-002 +v -1.8031490e-002 3.4859970e-002 4.9264760e-002 +v -1.1440410e-002 3.7640770e-002 5.0275730e-002 +v -7.5165320e-002 1.1154286e-001 4.6707180e-002 +v -7.7168390e-002 6.9826450e-002 5.0605600e-003 +v -7.2801360e-002 6.4382590e-002 1.2089080e-002 +v -7.8022000e-002 7.0995160e-002 2.1322150e-002 +v -6.1263370e-002 3.4690410e-002 4.1994900e-002 +v -5.4403750e-002 3.5007310e-002 4.4874590e-002 +v -4.5754280e-002 3.5206980e-002 4.3518120e-002 +v -3.3832440e-002 3.5168820e-002 4.6957890e-002 +v -2.8657630e-002 3.5083380e-002 5.0549440e-002 +v -1.5306440e-002 3.5246410e-002 5.0133810e-002 +v -6.5283650e-002 1.5592447e-001 -4.9865930e-002 +v -6.6467860e-002 1.4871539e-001 -3.1579300e-002 +v -6.2095980e-002 1.6388324e-001 -5.8385930e-002 +v -6.3274890e-002 1.5245731e-001 -3.2221730e-002 +v -4.3755720e-002 1.4773408e-001 -2.1433200e-003 +v -6.5696940e-002 1.4561631e-001 -1.8974710e-002 +v -6.6713650e-002 1.5358824e-001 -4.9097100e-002 +v -1.0482810e-002 1.6668287e-001 -2.1746090e-002 +v -6.2744510e-002 1.6397531e-001 -5.9398280e-002 +v -7.0413230e-002 1.4129200e-001 -8.4590800e-003 +v -6.1530380e-002 1.4037628e-001 -6.2734700e-003 +v -1.1452460e-002 1.7220633e-001 -2.6844980e-002 +v -6.3731140e-002 1.6577037e-001 -6.0103610e-002 +v -2.8218820e-002 1.5758144e-001 -1.0999490e-002 +v -1.8471270e-002 1.5967716e-001 -1.1169510e-002 +v -6.6700710e-002 1.5236775e-001 -4.5266390e-002 +v -4.9896410e-002 1.4670859e-001 -1.8614200e-003 +v -3.1449640e-002 1.5460463e-001 -7.6802300e-003 +v -6.7447660e-002 1.5507675e-001 -5.1594250e-002 +v -1.0906650e-002 1.7649301e-001 -2.9246300e-002 +v -7.2083600e-002 1.4965550e-001 -3.9265860e-002 +v -6.4230830e-002 1.4877806e-001 -2.5899710e-002 +v -6.3056640e-002 1.4341650e-001 -7.4907700e-003 +v -5.3043350e-002 1.4092550e-001 -4.7408000e-004 +v -3.9269410e-002 1.5205232e-001 -6.6203800e-003 +v -6.4796930e-002 1.5210615e-001 -3.6185520e-002 +v -6.4400320e-002 1.5834400e-001 -5.4256370e-002 +v -6.6178120e-002 1.4218350e-001 -9.3766300e-003 +v -6.7751430e-002 1.4605207e-001 -2.3333300e-002 +v -6.4731580e-002 1.5410067e-001 -4.0464820e-002 +v -2.4265590e-002 1.5687690e-001 -7.8509300e-003 +v -1.5723180e-002 1.6312344e-001 -1.6396570e-002 +v -7.0887660e-002 1.4404618e-001 -1.4908480e-002 +v -4.4341830e-002 1.5113809e-001 -5.6859800e-003 +v -6.2896810e-002 1.4694778e-001 -1.3098620e-002 +v -6.3755400e-002 1.4428875e-001 -1.1395730e-002 +v -6.8214560e-002 1.4390932e-001 -1.4984170e-002 +v -5.0271440e-002 1.4336563e-001 1.5153000e-003 +v -2.8535590e-002 1.6208479e-001 -1.4786030e-002 +v -6.5810700e-002 1.4359119e-001 -1.2585380e-002 +v -5.6179200e-002 1.3774406e-001 -4.0674300e-003 +v -6.8866880e-002 1.4723338e-001 -2.8739870e-002 +v -6.0965420e-002 1.7002113e-001 -6.0839390e-002 +v -1.3895490e-002 1.6787168e-001 -2.1897230e-002 +v -6.9413000e-002 1.5121847e-001 -4.4538540e-002 +v -5.5039800e-002 5.7309700e-002 1.6990900e-002 +f 1069 1647 1578 +f 1058 909 939 +f 421 1176 238 +f 1055 1101 1042 +f 238 1059 1126 +f 1254 30 1261 +f 1065 1071 1 +f 1037 1130 1120 +f 1570 2381 1585 +f 2434 2502 2473 +f 1632 1654 1646 +f 1144 1166 669 +f 1202 1440 305 +f 1071 1090 1 +f 1555 1570 1584 +f 1184 1174 404 +f 65 432 12 +f 1032 1085 574 +f 1789 2207 2223 +f 1154 1118 1184 +f 1141 1086 1154 +f 99 1117 342 +f 404 1174 419 +f 489 2000 1998 +f 1118 1174 1184 +f 1196 403 136 +f 1495 717 1490 +f 1804 402 1207 +f 2272 1398 891 +f 1100 1002 804 +f 1596 1595 2381 +f 208 420 1207 +f 402 208 1207 +f 1455 1935 1925 +f 1176 1059 238 +f 1150 1040 348 +f 1957 1537 2051 +f 1124 1189 939 +f 1804 1207 1823 +f 1381 1300 1109 +f 383 384 1182 +f 1085 1086 1141 +f 1040 1046 132 +f 220 1495 1188 +f 420 261 1207 +f 261 420 1065 +f 1055 1133 1101 +f 1054 421 403 +f 182 1109 2 +f 1181 1207 320 +f 545 1570 1561 +f 35 342 432 +f 1024 574 1141 +f 432 342 12 +f 1489 1081 1547 +f 1181 320 1805 +f 1516 1683 1507 +f 357 1117 1047 +f 1561 1570 1555 +f 1090 1196 1206 +f 1047 1203 1051 +f 1165 202 1121 +f 1099 341 301 +f 1174 240 419 +f 922 921 833 +f 1121 1080 385 +f 815 21 1183 +f 35 99 342 +f 1083 398 262 +f 106 94 1317 +f 94 292 1317 +f 292 95 1317 +f 940 1039 1033 +f 1300 1306 433 +f 21 212 471 +f 1120 1131 1037 +f 833 921 688 +f 1117 357 342 +f 106 271 94 +f 386 227 1375 +f 1130 1044 1053 +f 419 240 219 +f 1255 1244 32 +f 1557 1081 1489 +f 2062 2120 2109 +f 2034 2110 430 +f 23 315 1111 +f 291 94 271 +f 291 292 94 +f 50 386 95 +f 964 734 665 +f 1616 1585 1611 +f 445 1084 402 +f 574 1085 1141 +f 1654 341 1653 +f 220 1188 1640 +f 342 69 12 +f 417 261 328 +f 292 50 95 +f 204 227 386 +f 50 204 386 +f 1276 1471 1311 +f 1206 1196 136 +f 1033 1055 1042 +f 1037 1044 1130 +f 1180 320 417 +f 1121 202 1080 +f 325 203 271 +f 291 76 292 +f 292 237 50 +f 2159 1696 1767 +f 583 929 850 +f 1584 1585 1616 +f 1495 1490 1188 +f 1557 1489 1660 +f 1078 1069 1494 +f 1972 1992 1971 +f 183 1226 2000 +f 325 429 203 +f 292 76 237 +f 1152 227 1143 +f 1488 1412 1489 +f 1638 1646 1653 +f 1947 1869 2468 +f 203 306 291 +f 306 76 291 +f 237 248 50 +f 204 1143 227 +f 2395 14 429 +f 1502 881 2500 +f 1 1090 202 +f 1652 1653 1099 +f 2117 1863 2496 +f 50 248 204 +f 160 792 994 +f 884 888 857 +f 544 2117 2496 +f 1090 1206 202 +f 2463 879 2492 +f 429 306 203 +f 498 188 418 +f 865 884 857 +f 994 998 1014 +f 884 897 888 +f 1795 948 1802 +f 208 1035 1071 +f 1065 1 1066 +f 377 435 1377 +f 304 429 14 +f 304 306 429 +f 73 60 74 +f 248 592 204 +f 846 2264 829 +f 897 912 906 +f 1004 991 992 +f 1422 1421 1233 +f 980 10 303 +f 1058 922 909 +f 2436 2449 2418 +f 394 435 377 +f 435 475 446 +f 475 474 446 +f 336 337 361 +f 338 235 372 +f 624 148 129 +f 812 306 596 +f 1726 992 1019 +f 945 1514 1511 +f 1069 1627 1628 +f 1812 1823 1181 +f 1165 1121 169 +f 447 475 435 +f 2487 2458 901 +f 42 59 46 +f 401 7 187 +f 1010 970 797 +f 1513 220 1640 +f 2474 2491 2462 +f 594 307 1014 +f 398 1513 1640 +f 307 594 1026 +f 545 2381 1570 +f 403 421 238 +f 445 402 127 +f 1611 1631 1616 +f 1805 1180 1148 +f 394 447 435 +f 2341 2413 2376 +f 75 74 60 +f 541 47 42 +f 47 59 42 +f 541 42 28 +f 917 931 1103 +f 897 906 883 +f 2484 2068 779 +f 888 883 857 +f 261 1065 328 +f 363 1307 349 +f 377 363 394 +f 444 747 464 +f 323 338 362 +f 92 116 74 +f 592 634 97 +f 982 1027 1004 +f 1020 982 1004 +f 1084 1054 1035 +f 208 402 1084 +f 421 1119 1176 +f 1207 1181 1823 +f 1179 1187 1160 +f 263 296 1343 +f 1298 296 1307 +f 1307 296 349 +f 405 363 349 +f 405 394 363 +f 405 447 394 +f 362 372 384 +f 338 372 362 +f 983 1004 987 +f 122 134 139 +f 415 440 414 +f 75 92 74 +f 226 186 246 +f 796 787 700 +f 1119 1059 1176 +f 122 114 91 +f 624 129 116 +f 641 558 631 +f 1311 1318 1487 +f 100 1162 1170 +f 1653 341 1099 +f 1316 1983 273 +f 263 277 296 +f 296 358 349 +f 436 447 405 +f 109 554 570 +f 504 1385 2501 +f 115 122 91 +f 2068 2460 779 +f 43 777 163 +f 378 405 349 +f 358 378 349 +f 448 447 436 +f 448 476 447 +f 78 77 108 +f 75 60 47 +f 1764 2481 1795 +f 717 714 1512 +f 1490 717 1501 +f 238 1126 168 +f 1878 1866 826 +f 2025 2360 2367 +f 251 278 263 +f 278 277 263 +f 277 318 296 +f 296 318 358 +f 318 350 358 +f 378 436 405 +f 384 372 1182 +f 454 440 415 +f 987 1004 992 +f 493 476 448 +f 323 788 338 +f 403 238 136 +f 1565 1503 1474 +f 297 277 278 +f 297 318 277 +f 358 350 378 +f 378 388 436 +f 476 493 500 +f 73 105 60 +f 323 337 312 +f 953 1573 2358 +f 142 161 119 +f 454 443 440 +f 1862 1871 1405 +f 297 319 318 +f 560 47 541 +f 170 1323 111 +f 357 1047 1050 +f 1119 98 1059 +f 1838 1877 1900 +f 2359 230 251 +f 350 364 378 +f 449 448 436 +f 449 493 448 +f 185 186 226 +f 443 469 479 +f 874 165 2480 +f 463 444 464 +f 64 105 91 +f 1182 440 1129 +f 1958 1651 2502 +f 1238 2034 191 +f 251 279 278 +f 278 279 297 +f 364 388 378 +f 483 493 449 +f 134 148 139 +f 244 268 259 +f 910 942 930 +f 105 115 91 +f 24 30 18 +f 1132 487 1059 +f 1869 1947 2021 +f 2497 2494 2463 +f 2359 2385 230 +f 230 280 251 +f 251 280 279 +f 279 308 297 +f 297 308 319 +f 319 364 318 +f 364 350 318 +f 388 395 436 +f 436 395 449 +f 493 472 500 +f 122 129 134 +f 125 142 124 +f 373 400 393 +f 24 557 30 +f 2264 2278 2251 +f 1261 30 1269 +f 1730 1862 1877 +f 252 280 230 +f 343 364 319 +f 364 343 388 +f 63 64 91 +f 399 393 416 +f 416 444 463 +f 162 189 142 +f 768 373 326 +f 189 661 177 +f 189 199 661 +f 847 887 864 +f 533 747 444 +f 1744 1022 1418 +f 1170 524 729 +f 121 1342 128 +f 1236 1244 26 +f 280 281 279 +f 281 308 279 +f 343 319 308 +f 343 365 388 +f 388 365 395 +f 365 406 395 +f 406 449 395 +f 483 477 493 +f 477 491 472 +f 493 477 472 +f 78 109 77 +f 166 174 196 +f 481 150 814 +f 63 59 64 +f 326 373 393 +f 643 260 43 +f 230 253 252 +f 449 441 483 +f 441 477 483 +f 415 416 463 +f 226 246 245 +f 464 470 454 +f 323 362 337 +f 52 37 1283 +f 253 281 252 +f 281 280 252 +f 309 308 281 +f 330 343 308 +f 366 365 343 +f 441 449 406 +f 464 814 15 +f 883 906 887 +f 337 362 371 +f 479 498 290 +f 247 746 1003 +f 25 37 557 +f 640 930 669 +f 2486 2499 2459 +f 309 330 308 +f 343 330 366 +f 441 437 477 +f 290 498 418 +f 124 119 108 +f 77 124 108 +f 589 125 109 +f 570 589 109 +f 125 162 142 +f 1045 433 1034 +f 1207 261 320 +f 2004 2474 2495 +f 1215 1228 2285 +f 365 396 406 +f 396 422 406 +f 422 437 441 +f 406 422 441 +f 59 47 60 +f 51 78 66 +f 361 371 383 +f 196 215 214 +f 463 454 415 +f 27 41 535 +f 53 1283 37 +f 84 1299 1283 +f 1805 320 1180 +f 254 253 222 +f 254 281 253 +f 309 366 330 +f 396 365 366 +f 456 477 437 +f 484 491 477 +f 2480 2485 2493 +f 418 188 187 +f 53 85 1283 +f 85 84 1283 +f 420 1071 1065 +f 264 281 254 +f 298 309 281 +f 368 366 367 +f 368 396 366 +f 1639 1564 1139 +f 560 48 47 +f 82 471 212 +f 25 38 37 +f 202 1206 1080 +f 264 298 281 +f 298 331 309 +f 309 331 366 +f 331 367 366 +f 396 368 422 +f 422 456 437 +f 491 1192 313 +f 1699 2064 1710 +f 462 443 479 +f 371 362 384 +f 2502 2476 2464 +f 371 384 383 +f 21 732 212 +f 1571 1629 1627 +f 38 39 53 +f 37 38 53 +f 39 85 53 +f 1173 1184 404 +f 1006 2142 1674 +f 201 255 254 +f 255 264 254 +f 368 407 422 +f 450 456 422 +f 450 484 456 +f 456 484 477 +f 314 1192 491 +f 2027 2501 2489 +f 2475 2471 2488 +f 551 492 732 +f 464 481 814 +f 1081 1494 1547 +f 201 231 255 +f 407 450 422 +f 484 494 491 +f 494 327 491 +f 327 314 491 +f 876 797 995 +f 847 856 829 +f 125 143 162 +f 134 129 148 +f 1564 1571 1627 +f 417 320 261 +f 328 1065 1066 +f 170 156 201 +f 156 231 201 +f 231 282 255 +f 282 264 255 +f 450 485 484 +f 484 485 494 +f 2463 2486 2479 +f 159 185 167 +f 492 68 212 +f 732 492 212 +f 68 82 212 +f 1311 1471 1296 +f 101 156 111 +f 332 264 282 +f 332 298 264 +f 332 331 298 +f 331 332 367 +f 407 423 450 +f 450 423 485 +f 804 1002 1443 +f 2484 779 946 +f 689 443 462 +f 440 689 1129 +f 166 167 174 +f 38 31 39 +f 112 145 101 +f 101 145 156 +f 156 256 231 +f 332 423 368 +f 367 332 368 +f 368 423 407 +f 946 779 920 +f 1432 1261 1449 +f 461 478 453 +f 464 15 470 +f 31 54 39 +f 39 54 85 +f 86 101 85 +f 145 210 156 +f 282 283 332 +f 283 369 332 +f 369 423 332 +f 423 408 485 +f 854 876 965 +f 78 108 66 +f 440 443 689 +f 374 2465 961 +f 929 519 979 +f 54 86 85 +f 156 241 256 +f 256 282 231 +f 256 283 282 +f 389 423 369 +f 389 408 423 +f 408 457 485 +f 457 49 485 +f 485 49 494 +f 494 135 327 +f 175 83 314 +f 1167 1140 1483 +f 196 174 215 +f 697 16 68 +f 1038 82 16 +f 140 117 141 +f 1654 1653 1646 +f 1234 54 31 +f 86 112 101 +f 210 241 156 +f 923 917 911 +f 697 34 16 +f 145 193 210 +f 256 265 283 +f 265 310 283 +f 283 310 369 +f 310 344 369 +f 344 370 369 +f 370 389 369 +f 409 408 389 +f 409 466 408 +f 466 457 408 +f 466 49 457 +f 49 135 494 +f 174 225 215 +f 1014 766 602 +f 826 2220 2215 +f 1078 1494 1081 +f 1273 70 86 +f 120 112 86 +f 146 145 112 +f 146 193 145 +f 265 256 241 +f 223 265 241 +f 486 49 466 +f 175 327 135 +f 105 122 115 +f 480 15 681 +f 225 234 215 +f 731 34 697 +f 86 54 1273 +f 70 120 86 +f 193 241 210 +f 299 310 265 +f 310 333 344 +f 344 351 370 +f 424 466 409 +f 135 49 175 +f 214 215 234 +f 48 75 47 +f 34 9 1038 +f 16 34 1038 +f 203 291 271 +f 9 558 754 +f 1195 397 1120 +f 120 146 112 +f 146 194 193 +f 266 265 223 +f 266 299 265 +f 299 333 310 +f 333 351 344 +f 382 383 392 +f 399 416 415 +f 266 333 299 +f 351 352 370 +f 424 486 466 +f 487 175 49 +f 7 117 187 +f 1182 414 440 +f 41 42 46 +f 290 289 497 +f 2502 2464 2473 +f 372 399 414 +f 1570 1585 1584 +f 1066 1 1165 +f 1 202 1165 +f 120 70 102 +f 157 146 120 +f 194 223 193 +f 223 241 193 +f 352 379 370 +f 370 379 389 +f 410 409 389 +f 2478 1409 1958 +f 806 945 1002 +f 157 194 146 +f 267 266 223 +f 267 333 266 +f 379 410 389 +f 410 438 409 +f 438 424 409 +f 190 205 143 +f 337 371 361 +f 2215 830 826 +f 1631 1646 1638 +f 102 157 120 +f 157 195 194 +f 195 223 194 +f 195 211 223 +f 223 211 267 +f 267 300 333 +f 300 334 351 +f 333 300 351 +f 351 334 352 +f 410 411 438 +f 438 486 424 +f 487 49 486 +f 875 594 989 +f 108 581 66 +f 225 245 244 +f 312 336 335 +f 151 754 107 +f 274 1386 300 +f 352 334 379 +f 923 1729 1096 +f 244 245 268 +f 463 464 454 +f 414 399 415 +f 15 480 470 +f 1647 1069 1078 +f 909 922 833 +f 387 417 328 +f 133 157 102 +f 1314 133 102 +f 133 195 157 +f 1148 1179 1160 +f 1046 1167 182 +f 379 411 410 +f 792 339 229 +f 391 7 668 +f 185 226 174 +f 461 290 497 +f 2027 504 2501 +f 1196 1054 403 +f 728 1019 752 +f 2459 2483 2461 +f 1291 1264 55 +f 133 1356 195 +f 195 1356 211 +f 412 438 411 +f 4 486 438 +f 458 4 438 +f 4 487 486 +f 1720 1572 1771 +f 245 275 268 +f 1869 2021 2059 +f 235 399 372 +f 64 60 105 +f 836 2492 879 +f 1315 133 1314 +f 1331 1382 1356 +f 1310 926 1128 +f 7 1121 117 +f 119 161 611 +f 380 379 334 +f 379 380 411 +f 467 4 458 +f 495 487 4 +f 495 1126 487 +f 416 400 533 +f 479 469 498 +f 74 116 73 +f 478 461 497 +f 393 400 416 +f 61 1291 55 +f 505 1999 2474 +f 1999 2491 2474 +f 199 189 36 +f 1164 1165 169 +f 1179 387 249 +f 390 411 380 +f 411 390 412 +f 458 438 412 +f 495 168 1126 +f 480 469 470 +f 116 122 105 +f 418 187 140 +f 185 174 167 +f 166 148 167 +f 470 469 443 +f 40 55 32 +f 61 71 1291 +f 71 103 1291 +f 1184 1173 1154 +f 634 514 97 +f 425 458 412 +f 917 923 931 +f 2472 2489 853 +f 754 641 567 +f 44 567 1163 +f 454 470 443 +f 40 32 1249 +f 33 40 1249 +f 56 55 40 +f 56 61 55 +f 451 1265 439 +f 1180 417 1179 +f 1099 301 1077 +f 1189 1058 939 +f 1059 221 1132 +f 598 1074 1075 +f 412 426 425 +f 650 186 185 +f 234 244 259 +f 226 245 225 +f 1033 1042 1030 +f 2492 836 247 +f 7 169 1121 +f 1462 1322 1482 +f 425 467 458 +f 496 4 467 +f 1751 2468 2480 +f 290 418 140 +f 326 789 762 +f 142 177 161 +f 165 1751 2480 +f 87 103 71 +f 103 87 104 +f 1180 1179 1148 +f 417 387 1179 +f 2081 2060 2031 +f 1154 1173 1141 +f 181 131 197 +f 442 425 426 +f 614 144 143 +f 876 1010 797 +f 40 45 56 +f 56 45 61 +f 87 71 61 +f 1563 1437 1590 +f 1121 385 117 +f 1148 1160 1137 +f 1449 1459 1439 +f 1028 2462 929 +f 442 459 425 +f 459 467 425 +f 168 495 4 +f 496 168 4 +f 1763 1403 1444 +f 140 187 117 +f 244 234 225 +f 246 740 269 +f 372 414 1182 +f 40 547 45 +f 45 62 61 +f 62 87 61 +f 87 88 104 +f 1084 517 1054 +f 387 328 1064 +f 2467 2497 2485 +f 286 1363 302 +f 205 189 162 +f 290 140 289 +f 214 234 224 +f 393 399 809 +f 315 1131 397 +f 302 321 353 +f 1164 169 391 +f 427 459 442 +f 217 496 467 +f 217 168 496 +f 978 969 2074 +f 361 383 382 +f 269 276 245 +f 1440 11 305 +f 62 88 87 +f 328 1066 1064 +f 1066 1165 1164 +f 242 287 302 +f 1363 242 302 +f 287 321 302 +f 1179 249 1187 +f 983 1020 1004 +f 464 747 481 +f 788 323 276 +f 269 245 246 +f 88 89 1325 +f 171 172 242 +f 360 353 321 +f 360 1354 353 +f 1057 1064 1164 +f 2184 2188 2183 +f 460 459 451 +f 460 467 459 +f 149 168 217 +f 149 136 168 +f 116 129 122 +f 109 124 77 +f 159 167 148 +f 28 42 41 +f 57 88 62 +f 45 57 62 +f 1336 1325 89 +f 89 72 1336 +f 147 172 171 +f 172 258 242 +f 258 257 242 +f 257 287 242 +f 257 321 287 +f 345 360 321 +f 360 381 1354 +f 1069 938 1655 +f 387 473 249 +f 270 217 467 +f 130 136 149 +f 851 847 829 +f 983 987 975 +f 189 177 142 +f 88 72 89 +f 184 258 172 +f 257 288 321 +f 1265 451 459 +f 270 149 217 +f 226 225 174 +f 27 28 41 +f 109 125 124 +f 547 57 45 +f 57 58 88 +f 88 58 72 +f 2476 2484 2458 +f 147 184 172 +f 184 213 258 +f 258 243 257 +f 243 288 257 +f 345 321 288 +f 391 169 7 +f 468 460 451 +f 468 488 460 +f 270 467 460 +f 488 270 460 +f 1206 136 130 +f 481 793 150 +f 143 205 162 +f 142 119 124 +f 58 90 72 +f 90 128 72 +f 147 173 184 +f 173 213 184 +f 213 233 258 +f 258 233 243 +f 354 360 345 +f 354 381 360 +f 1026 991 307 +f 268 312 259 +f 1206 130 1080 +f 116 105 73 +f 139 148 166 +f 275 312 268 +f 188 401 187 +f 2479 2459 2461 +f 58 63 90 +f 1064 1066 1164 +f 1064 473 387 +f 288 311 345 +f 311 354 345 +f 996 994 307 +f 452 468 439 +f 452 478 468 +f 478 488 468 +f 141 130 149 +f 1564 1639 1563 +f 547 41 57 +f 2081 2107 2060 +f 382 381 354 +f 497 270 488 +f 289 149 270 +f 289 141 149 +f 114 122 139 +f 59 60 64 +f 275 323 312 +f 401 668 7 +f 41 46 57 +f 57 46 58 +f 1459 1345 1269 +f 1342 121 158 +f 166 173 158 +f 213 224 233 +f 233 259 243 +f 243 322 288 +f 322 311 288 +f 453 478 452 +f 497 289 270 +f 912 911 906 +f 276 323 275 +f 276 275 245 +f 46 63 58 +f 90 121 128 +f 173 214 213 +f 213 214 224 +f 259 322 243 +f 336 311 322 +f 336 354 311 +f 361 382 354 +f 1043 439 1290 +f 497 488 478 +f 385 130 141 +f 385 1080 130 +f 144 190 143 +f 535 41 547 +f 121 166 158 +f 335 336 322 +f 354 336 361 +f 2004 2481 1764 +f 698 439 1043 +f 289 140 141 +f 923 1096 931 +f 650 185 159 +f 46 59 63 +f 63 91 90 +f 90 114 121 +f 121 139 166 +f 173 196 214 +f 259 335 322 +f 2478 2502 2434 +f 312 337 336 +f 90 91 114 +f 114 139 121 +f 166 196 173 +f 224 234 233 +f 234 259 233 +f 259 312 335 +f 1124 916 1189 +f 542 541 530 +f 462 479 290 +f 269 783 276 +f 813 567 641 +f 276 783 788 +f 82 1038 1333 +f 816 701 703 +f 672 137 603 +f 625 635 624 +f 2457 2439 1973 +f 767 533 529 +f 2468 1869 2480 +f 662 190 639 +f 711 720 719 +f 630 639 614 +f 161 654 638 +f 781 991 982 +f 1227 31 516 +f 648 639 630 +f 630 614 590 +f 2098 544 1899 +f 578 579 586 +f 697 492 551 +f 529 533 400 +f 869 859 870 +f 1732 924 914 +f 1004 1027 991 +f 801 591 603 +f 636 676 651 +f 876 949 965 +f 2207 1789 1859 +f 76 739 237 +f 188 681 15 +f 578 604 599 +f 797 616 995 +f 510 2035 1365 +f 76 812 617 +f 617 739 76 +f 1468 93 1765 +f 596 546 812 +f 1457 1305 1477 +f 760 197 150 +f 671 773 765 +f 586 609 604 +f 591 700 632 +f 476 2312 474 +f 2084 2027 2489 +f 582 590 571 +f 1555 2449 1996 +f 674 546 596 +f 812 655 617 +f 161 177 661 +f 599 604 636 +f 700 787 576 +f 776 675 572 +f 776 674 675 +f 617 634 739 +f 591 632 649 +f 612 546 674 +f 617 655 634 +f 728 752 706 +f 571 2311 2305 +f 775 674 776 +f 775 612 674 +f 612 628 546 +f 546 628 812 +f 812 628 655 +f 620 630 615 +f 620 648 630 +f 667 653 646 +f 810 782 785 +f 150 197 814 +f 534 1517 2000 +f 702 572 2378 +f 748 776 572 +f 655 613 634 +f 911 917 905 +f 648 679 662 +f 727 771 713 +f 750 807 799 +f 639 190 144 +f 662 679 200 +f 702 748 572 +f 775 776 748 +f 628 718 655 +f 626 658 645 +f 791 778 790 +f 612 811 628 +f 613 514 634 +f 1380 1756 1673 +f 570 590 614 +f 720 741 719 +f 1074 795 835 +f 614 639 144 +f 612 775 811 +f 718 735 655 +f 655 735 613 +f 798 338 788 +f 636 652 676 +f 571 590 555 +f 528 730 687 +f 690 702 2312 +f 476 690 2312 +f 811 718 628 +f 721 778 727 +f 748 702 690 +f 735 686 613 +f 1517 2002 2127 +f 654 685 667 +f 569 588 606 +f 513 531 538 +f 538 549 548 +f 549 553 548 +f 550 588 549 +f 1903 869 870 +f 691 775 748 +f 691 600 775 +f 600 811 775 +f 811 563 718 +f 563 736 718 +f 718 736 735 +f 736 647 735 +f 735 647 686 +f 686 745 613 +f 745 514 613 +f 569 606 605 +f 654 667 638 +f 851 857 847 +f 588 569 549 +f 690 691 748 +f 680 514 745 +f 2127 2002 2094 +f 747 701 481 +f 400 373 529 +f 600 536 811 +f 536 563 811 +f 1306 227 1152 +f 522 24 18 +f 523 24 522 +f 865 857 851 +f 2031 2060 1540 +f 767 701 747 +f 618 652 609 +f 652 636 609 +f 573 22 710 +f 642 699 730 +f 1522 1518 2476 +f 500 629 691 +f 690 500 691 +f 691 629 600 +f 780 644 641 +f 579 578 561 +f 131 668 197 +f 197 668 814 +f 789 809 798 +f 622 760 150 +f 621 563 536 +f 673 745 686 +f 673 818 745 +f 818 680 745 +f 680 96 514 +f 2495 2462 1028 +f 1028 583 575 +f 663 794 664 +f 629 761 600 +f 761 757 600 +f 600 757 536 +f 621 696 563 +f 755 736 563 +f 696 755 563 +f 633 736 755 +f 633 647 736 +f 623 686 647 +f 633 623 647 +f 686 623 673 +f 819 680 818 +f 680 819 96 +f 1729 1677 1096 +f 2482 1899 2471 +f 537 536 757 +f 536 537 621 +f 673 819 818 +f 2428 222 230 +f 25 24 523 +f 25 557 24 +f 38 25 19 +f 710 22 272 +f 663 759 794 +f 1120 878 1195 +f 537 696 621 +f 696 633 755 +f 822 2215 2220 +f 97 96 1053 +f 750 784 743 +f 887 905 864 +f 768 784 373 +f 512 513 548 +f 573 664 22 +f 696 715 633 +f 673 521 819 +f 2454 2453 2445 +f 883 887 847 +f 306 812 76 +f 642 528 759 +f 798 809 235 +f 994 792 998 +f 587 626 586 +f 1900 1918 1937 +f 645 652 618 +f 537 786 696 +f 521 593 819 +f 515 19 523 +f 741 749 719 +f 789 326 809 +f 539 581 550 +f 657 777 723 +f 684 713 660 +f 692 712 720 +f 652 666 692 +f 507 761 629 +f 472 507 629 +f 507 757 761 +f 623 633 673 +f 724 521 673 +f 515 516 19 +f 304 675 674 +f 178 778 721 +f 947 1447 2358 +f 626 645 618 +f 586 626 618 +f 784 768 742 +f 753 537 757 +f 537 753 786 +f 724 981 521 +f 521 981 593 +f 979 559 850 +f 637 660 677 +f 787 631 576 +f 141 117 385 +f 809 399 235 +f 641 754 558 +f 542 553 561 +f 742 768 762 +f 444 416 533 +f 528 687 796 +f 813 598 566 +f 1490 1501 1557 +f 753 757 507 +f 786 715 696 +f 633 724 673 +f 2090 2062 2109 +f 646 653 660 +f 660 694 683 +f 677 660 683 +f 1872 839 838 +f 1224 18 30 +f 326 393 809 +f 799 529 373 +f 313 507 472 +f 715 774 633 +f 974 699 841 +f 703 820 816 +f 692 711 676 +f 1014 355 766 +f 875 752 1019 +f 627 646 660 +f 711 692 720 +f 652 692 676 +f 799 373 784 +f 813 566 567 +f 2462 2482 2475 +f 764 644 780 +f 1479 1924 1916 +f 753 738 786 +f 738 607 786 +f 786 607 715 +f 715 524 774 +f 633 774 724 +f 559 979 672 +f 758 798 783 +f 683 694 705 +f 820 703 562 +f 764 687 644 +f 744 743 725 +f 313 753 507 +f 607 524 715 +f 664 801 22 +f 646 627 610 +f 800 820 562 +f 750 769 807 +f 767 747 533 +f 578 586 604 +f 862 593 981 +f 688 2382 1083 +f 306 304 674 +f 738 584 607 +f 168 136 238 +f 773 552 765 +f 2473 2464 2458 +f 773 793 552 +f 626 619 658 +f 1007 1139 1013 +f 562 529 799 +f 744 750 743 +f 659 683 693 +f 677 683 659 +f 313 737 753 +f 753 737 738 +f 607 729 524 +f 27 518 28 +f 553 569 580 +f 657 163 777 +f 580 569 605 +f 789 798 758 +f 769 562 807 +f 820 671 816 +f 638 646 611 +f 1074 598 644 +f 750 799 784 +f 1931 907 898 +f 2483 2487 2461 +f 737 584 738 +f 1439 1438 1431 +f 2098 1213 544 +f 48 578 75 +f 796 631 787 +f 815 732 21 +f 581 588 550 +f 625 636 651 +f 778 1011 810 +f 693 705 725 +f 693 683 705 +f 236 1921 1966 +f 584 729 607 +f 2237 1866 2227 +f 530 541 28 +f 237 739 248 +f 512 530 28 +f 727 778 771 +f 684 727 713 +f 2237 2220 826 +f 542 561 560 +f 528 796 700 +f 808 785 671 +f 739 592 248 +f 895 905 896 +f 740 246 186 +f 272 137 979 +f 770 769 744 +f 712 742 720 +f 1213 2026 544 +f 1888 1235 2438 +f 555 554 2311 +f 737 313 1192 +f 1585 1612 1611 +f 695 721 685 +f 518 17 28 +f 769 770 562 +f 719 749 740 +f 648 669 679 +f 773 657 723 +f 606 637 619 +f 2072 2062 2042 +f 606 619 626 +f 549 569 553 +f 161 638 611 +f 910 917 942 +f 917 1103 942 +f 991 1026 992 +f 979 137 672 +f 785 163 657 +f 710 2488 2472 +f 611 581 119 +f 808 671 820 +f 1820 1900 1870 +f 759 700 591 +f 637 677 619 +f 2494 2490 2463 +f 671 765 816 +f 687 764 780 +f 1019 992 1026 +f 1726 1719 987 +f 713 771 694 +f 51 2355 78 +f 510 526 525 +f 525 526 1249 +f 526 33 1249 +f 2311 554 2335 +f 827 848 840 +f 603 591 649 +f 758 269 740 +f 1595 1612 1586 +f 1694 1048 1699 +f 682 740 186 +f 22 801 603 +f 555 570 554 +f 1053 110 97 +f 615 582 601 +f 814 668 188 +f 725 705 744 +f 528 700 759 +f 640 648 620 +f 703 701 562 +f 886 892 582 +f 631 731 576 +f 1087 1835 1747 +f 882 864 895 +f 956 950 1103 +f 1502 2500 2470 +f 205 190 200 +f 815 878 616 +f 616 878 995 +f 1183 878 815 +f 1601 1827 881 +f 527 535 526 +f 2184 2183 2175 +f 1142 1125 1133 +f 235 338 798 +f 160 339 792 +f 599 92 75 +f 598 1116 566 +f 631 558 731 +f 771 770 744 +f 730 528 642 +f 841 699 642 +f 668 401 188 +f 510 527 526 +f 749 758 740 +f 706 721 695 +f 694 726 705 +f 694 744 726 +f 906 911 905 +f 661 695 161 +f 708 815 616 +f 535 547 33 +f 794 759 591 +f 778 808 790 +f 269 758 783 +f 771 744 694 +f 800 808 820 +f 571 886 582 +f 854 948 1010 +f 906 905 887 +f 625 651 635 +f 2000 1226 534 +f 2140 1504 2016 +f 601 620 615 +f 620 601 640 +f 648 640 669 +f 698 452 439 +f 671 785 657 +f 1561 2356 545 +f 685 653 667 +f 685 727 684 +f 568 616 797 +f 708 732 815 +f 93 229 339 +f 865 851 839 +f 942 1103 950 +f 589 614 125 +f 606 610 627 +f 951 834 873 +f 92 599 625 +f 1878 830 1902 +f 2482 2098 1899 +f 568 708 616 +f 708 551 732 +f 2434 2487 2483 +f 160 964 665 +f 2316 2391 2309 +f 762 758 749 +f 570 614 589 +f 888 897 883 +f 2000 1517 1388 +f 685 721 727 +f 588 610 606 +f 653 685 684 +f 651 650 635 +f 760 1151 6 +f 793 622 150 +f 651 676 650 +f 744 769 750 +f 541 542 560 +f 476 500 690 +f 473 1064 1057 +f 561 578 560 +f 636 625 599 +f 876 995 949 +f 829 856 846 +f 682 704 740 +f 791 790 770 +f 2466 2500 2460 +f 579 587 586 +f 1352 1208 1095 +f 1684 1479 1916 +f 604 609 636 +f 751 721 706 +f 810 608 782 +f 672 603 649 +f 475 447 476 +f 794 591 801 +f 682 186 650 +f 808 800 790 +f 644 598 813 +f 704 719 740 +f 1011 608 810 +f 1192 584 737 +f 687 780 796 +f 2337 474 2312 +f 638 667 646 +f 706 1186 728 +f 733 575 568 +f 595 551 708 +f 595 540 551 +f 1308 501 1852 +f 665 339 160 +f 527 2447 535 +f 558 9 731 +f 723 793 773 +f 660 713 694 +f 693 725 666 +f 562 767 529 +f 550 538 531 +f 2267 2287 2233 +f 996 964 160 +f 2068 2470 2466 +f 704 711 719 +f 741 762 749 +f 605 606 626 +f 548 542 530 +f 995 878 709 +f 1898 1684 1916 +f 778 791 771 +f 782 163 785 +f 789 758 762 +f 857 883 847 +f 733 970 1028 +f 838 829 825 +f 2447 511 535 +f 22 603 137 +f 705 726 744 +f 605 587 580 +f 512 548 530 +f 743 784 742 +f 790 800 770 +f 778 810 808 +f 1014 998 355 +f 708 568 595 +f 656 697 551 +f 540 656 551 +f 143 125 614 +f 1000 1020 983 +f 778 178 1011 +f 676 704 682 +f 637 627 660 +f 606 627 637 +f 701 552 481 +f 808 810 785 +f 590 570 555 +f 716 595 568 +f 2355 2335 554 +f 912 1729 911 +f 1076 1456 1546 +f 697 68 492 +f 676 711 704 +f 839 851 838 +f 1028 575 733 +f 1020 844 982 +f 716 568 575 +f 844 781 982 +f 1238 2156 2034 +f 553 580 561 +f 580 579 561 +f 452 461 453 +f 560 578 48 +f 564 540 595 +f 632 656 540 +f 564 632 540 +f 75 578 599 +f 518 27 535 +f 511 518 535 +f 783 798 788 +f 642 759 663 +f 720 742 741 +f 605 626 587 +f 580 587 579 +f 725 712 666 +f 562 701 767 +f 1729 923 911 +f 712 743 742 +f 619 677 658 +f 161 695 654 +f 770 800 562 +f 2084 2489 2472 +f 575 559 716 +f 716 564 595 +f 654 695 685 +f 843 855 2064 +f 34 731 9 +f 527 510 1973 +f 723 622 793 +f 992 1726 987 +f 693 666 652 +f 2472 853 573 +f 624 159 148 +f 671 657 773 +f 681 188 498 +f 797 970 733 +f 565 656 632 +f 565 697 656 +f 565 731 697 +f 1949 951 920 +f 85 111 84 +f 662 200 190 +f 44 324 754 +f 33 547 40 +f 658 693 652 +f 658 652 645 +f 664 794 801 +f 666 712 692 +f 639 648 662 +f 611 646 610 +f 850 559 575 +f 1447 2490 1106 +f 1972 1955 1935 +f 582 615 590 +f 66 581 539 +f 780 641 631 +f 796 780 631 +f 1049 1192 83 +f 1348 13 1519 +f 799 807 562 +f 581 611 588 +f 687 795 644 +f 663 8 642 +f 1936 1972 1935 +f 650 676 682 +f 615 630 590 +f 730 795 687 +f 742 762 741 +f 548 553 542 +f 1048 1692 1074 +f 658 659 693 +f 37 52 30 +f 611 610 588 +f 649 632 564 +f 565 576 731 +f 2138 922 1058 +f 1204 854 965 +f 725 743 712 +f 644 813 641 +f 660 653 684 +f 771 791 770 +f 644 795 1074 +f 469 480 681 +f 559 672 564 +f 716 559 564 +f 672 649 564 +f 2161 1378 2171 +f 474 475 476 +f 816 765 701 +f 765 552 701 +f 513 538 548 +f 754 324 107 +f 609 586 618 +f 25 523 19 +f 677 659 658 +f 689 452 698 +f 1334 1115 1353 +f 700 565 632 +f 700 576 565 +f 481 552 793 +f 763 901 2458 +f 550 549 538 +f 781 964 996 +f 1596 1634 1595 +f 198 916 1124 +f 198 1124 341 +f 842 973 1025 +f 842 1025 836 +f 1009 1024 934 +f 573 710 2472 +f 1100 971 1002 +f 1501 1081 1557 +f 1225 1219 955 +f 413 2138 284 +f 955 1630 522 +f 341 1124 301 +f 2333 2376 2350 +f 1107 218 284 +f 398 925 1513 +f 1513 1442 1495 +f 1935 1455 1744 +f 1723 1935 1744 +f 825 1872 838 +f 1495 1442 1496 +f 963 1024 1009 +f 1511 1514 966 +f 1775 1729 912 +f 688 262 1067 +f 714 1007 1512 +f 919 1732 914 +f 2319 2331 2304 +f 2400 2407 2391 +f 1674 2164 1780 +f 843 927 899 +f 1660 988 1188 +f 1067 262 1640 +f 1381 1109 1483 +f 1437 1381 1483 +f 2495 1010 948 +f 1514 1289 1313 +f 899 374 961 +f 1438 1430 1422 +f 1634 1095 1632 +f 2487 973 2461 +f 1003 499 874 +f 849 848 827 +f 1430 1462 1453 +f 2496 2084 2471 +f 909 10 980 +f 730 927 835 +f 2031 1540 1536 +f 831 849 2178 +f 881 834 951 +f 1841 1722 1803 +f 1005 670 1020 +f 1021 670 1005 +f 1869 2059 2467 +f 903 902 1939 +f 2476 2502 1651 +f 853 8 573 +f 1850 831 2178 +f 934 746 247 +f 934 65 746 +f 301 285 1077 +f 968 944 977 +f 970 2495 1028 +f 974 2465 374 +f 899 927 374 +f 1882 1898 1916 +f 1613 1634 1596 +f 909 833 1396 +f 2492 247 1003 +f 919 914 1931 +f 1459 1299 1458 +f 1634 1632 1633 +f 844 670 228 +f 2494 2497 2467 +f 901 973 2487 +f 228 1772 734 +f 1701 1709 1666 +f 963 574 1024 +f 847 864 856 +f 1730 1736 2239 +f 870 859 848 +f 2074 2111 2103 +f 1140 1590 1483 +f 927 730 974 +f 2103 978 2074 +f 756 1745 1718 +f 848 859 840 +f 1296 1482 1320 +f 2331 51 66 +f 1067 988 962 +f 1396 833 1445 +f 1001 1005 1000 +f 901 1009 973 +f 1099 1077 817 +f 933 944 936 +f 952 958 1828 +f 988 1660 986 +f 833 1067 1445 +f 1067 1640 988 +f 218 413 284 +f 1843 180 347 +f 1846 1708 1798 +f 2469 2477 855 +f 1006 1021 1005 +f 381 382 250 +f 2369 828 531 +f 968 977 1001 +f 2460 1949 779 +f 1194 1441 1115 +f 1001 1000 968 +f 756 678 1745 +f 963 1009 901 +f 2471 2084 2472 +f 841 642 8 +f 982 991 1027 +f 670 844 1020 +f 1289 1514 945 +f 869 904 890 +f 1161 1115 1639 +f 823 2178 849 +f 746 12 499 +f 263 428 2366 +f 1685 1075 1692 +f 1002 926 806 +f 1799 1755 216 +f 944 968 993 +f 943 944 993 +f 31 38 19 +f 531 828 550 +f 1501 1078 1081 +f 1921 1149 431 +f 936 943 932 +f 1660 1489 1412 +f 301 980 285 +f 903 918 902 +f 869 890 868 +f 890 903 867 +f 1003 746 499 +f 951 1949 2500 +f 990 841 853 +f 1595 1634 1611 +f 374 927 974 +f 836 1025 247 +f 1653 1652 1638 +f 1303 1545 1142 +f 1616 1631 1638 +f 1629 1546 1628 +f 936 932 913 +f 513 506 531 +f 868 890 867 +f 2330 2369 2353 +f 924 918 914 +f 907 914 904 +f 1258 1421 1267 +f 301 939 980 +f 1472 1482 1296 +f 868 867 859 +f 472 491 313 +f 272 519 2488 +f 1471 1472 1296 +f 1025 934 247 +f 1634 1633 1611 +f 2176 1847 2177 +f 1310 1289 806 +f 924 933 918 +f 1969 1968 902 +f 2107 2128 2118 +f 1428 1436 1287 +f 1139 1564 1617 +f 2378 572 2384 +f 853 841 8 +f 2501 961 2465 +f 1221 1240 1408 +f 1069 1578 1627 +f 1006 1005 1001 +f 1617 1564 1578 +f 828 539 550 +f 1791 2168 2160 +f 1829 1718 1739 +f 1968 1939 902 +f 756 1718 665 +f 1998 2000 1388 +f 2451 545 2356 +f 178 997 1011 +f 1275 325 1270 +f 1709 872 1666 +f 2176 1959 1847 +f 944 943 936 +f 2424 518 511 +f 1445 1067 962 +f 2007 952 1828 +f 2052 2061 2081 +f 828 2303 539 +f 835 1699 1048 +f 1709 1706 872 +f 885 574 963 +f 1318 1296 1320 +f 859 867 1902 +f 1452 1448 1421 +f 943 993 976 +f 993 1000 983 +f 854 1010 876 +f 988 986 962 +f 2031 2052 2081 +f 924 1732 1828 +f 965 949 1060 +f 781 228 734 +f 1718 1765 665 +f 943 976 932 +f 1680 1794 1783 +f 1448 1471 1276 +f 1276 1267 1421 +f 1931 914 907 +f 991 781 996 +f 1276 1421 1448 +f 10 909 1396 +f 831 860 849 +f 1523 1762 1774 +f 924 1828 937 +f 307 994 1014 +f 946 963 901 +f 978 2103 977 +f 977 1006 1001 +f 1007 1161 1639 +f 1639 1294 1437 +f 885 1032 574 +f 1294 1381 1437 +f 733 568 797 +f 792 229 1112 +f 119 581 108 +f 843 835 927 +f 1889 860 831 +f 2211 2216 2204 +f 2400 2431 2422 +f 2103 1006 977 +f 840 1902 830 +f 827 840 830 +f 827 830 822 +f 1003 874 2492 +f 1432 1439 1431 +f 781 734 964 +f 1937 1936 1723 +f 918 913 902 +f 958 977 944 +f 1850 2178 2177 +f 1005 1020 1000 +f 991 996 307 +f 1396 1445 340 +f 2179 1763 889 +f 939 909 980 +f 1828 958 937 +f 978 977 958 +f 1590 1571 1563 +f 779 1949 920 +f 1551 1362 1573 +f 2103 2142 1006 +f 920 885 963 +f 946 920 963 +f 1584 1616 1583 +f 1453 1472 1452 +f 1647 1617 1578 +f 1578 1564 1627 +f 1628 938 1069 +f 869 868 859 +f 993 983 976 +f 912 1762 1775 +f 752 751 706 +f 1628 1546 938 +f 844 228 781 +f 840 859 1902 +f 898 907 904 +f 1025 973 1009 +f 663 664 573 +f 763 946 901 +f 898 904 869 +f 2172 889 1763 +f 1128 926 971 +f 860 848 849 +f 904 903 890 +f 2486 2459 2479 +f 577 782 608 +f 933 936 918 +f 2177 1847 1851 +f 665 1765 339 +f 937 958 944 +f 894 981 724 +f 968 1000 993 +f 2192 2195 2205 +f 1652 1099 817 +f 997 608 1011 +f 997 577 608 +f 577 163 782 +f 1112 998 792 +f 2177 1851 1850 +f 1257 1421 1258 +f 951 873 920 +f 822 830 2215 +f 1899 2496 2471 +f 1773 1668 1558 +f 904 914 903 +f 932 1671 913 +f 873 885 920 +f 1013 1617 1647 +f 873 1032 885 +f 894 862 981 +f 2469 855 961 +f 913 1671 1969 +f 2477 2064 855 +f 918 936 913 +f 860 870 848 +f 937 944 933 +f 1501 1013 1647 +f 824 178 751 +f 824 997 178 +f 824 577 997 +f 643 163 577 +f 863 856 882 +f 2128 2153 2134 +f 722 774 880 +f 722 894 774 +f 864 905 895 +f 850 575 583 +f 914 918 903 +f 924 937 933 +f 1501 717 1013 +f 1587 1324 928 +f 717 1512 1013 +f 602 577 824 +f 766 643 577 +f 894 709 862 +f 709 878 862 +f 976 975 932 +f 1324 1596 928 +f 880 524 1060 +f 2434 2459 2499 +f 1324 1613 1596 +f 752 824 751 +f 602 766 577 +f 1014 602 594 +f 1387 1226 2152 +f 2153 1387 2152 +f 669 930 950 +f 1710 1694 1699 +f 768 326 762 +f 582 892 601 +f 974 990 2465 +f 624 116 625 +f 835 795 730 +f 2458 2484 763 +f 989 602 824 +f 2064 2477 1710 +f 976 983 975 +f 949 722 880 +f 996 160 994 +f 2305 863 556 +f 556 863 886 +f 601 910 640 +f 2264 825 829 +f 989 824 752 +f 856 864 882 +f 1595 1586 2381 +f 1627 1629 1628 +f 2174 2180 2173 +f 2128 2134 2118 +f 137 272 22 +f 949 880 1060 +f 995 894 722 +f 894 995 709 +f 894 724 774 +f 886 895 892 +f 640 910 930 +f 871 870 860 +f 846 856 863 +f 1026 875 1019 +f 838 851 829 +f 1024 1171 934 +f 36 189 205 +f 863 882 886 +f 886 882 895 +f 875 1026 594 +f 52 1459 1269 +f 896 917 910 +f 1025 1009 934 +f 949 995 722 +f 2152 1226 1636 +f 895 896 892 +f 892 910 601 +f 942 950 930 +f 875 989 752 +f 594 602 989 +f 766 355 643 +f 355 260 643 +f 905 917 896 +f 965 1060 1162 +f 892 896 910 +f 1101 1052 1042 +f 1029 1031 834 +f 1101 1133 1118 +f 342 357 376 +f 516 515 2454 +f 1656 2494 2467 +f 1056 1303 1133 +f 1120 1130 862 +f 69 342 376 +f 1055 1056 1133 +f 499 69 165 +f 85 101 111 +f 1031 1032 834 +f 200 679 1166 +f 1031 1042 1032 +f 1171 65 934 +f 1822 1204 1177 +f 1096 956 1103 +f 514 96 97 +f 956 1145 1144 +f 1185 1166 1144 +f 1145 1185 1144 +f 1185 200 1166 +f 375 132 1041 +f 1153 1202 305 +f 32 1244 1249 +f 1096 1087 956 +f 554 78 2355 +f 1191 138 110 +f 65 35 432 +f 1087 1110 956 +f 1110 1146 956 +f 956 1146 1145 +f 1146 1156 1145 +f 1145 1156 1185 +f 950 956 1144 +f 2481 2495 948 +f 1156 1193 1185 +f 1050 1047 1051 +f 239 151 107 +f 1185 1193 36 +f 1747 1110 1087 +f 1134 1146 1110 +f 1146 1157 1156 +f 1156 1157 1193 +f 1041 1045 1034 +f 1397 1134 1110 +f 1157 1146 1134 +f 1157 1175 1193 +f 1193 199 36 +f 1090 1035 1196 +f 1456 1150 1051 +f 1175 199 1193 +f 1186 695 199 +f 1186 199 1175 +f 1175 1157 1134 +f 728 1186 1175 +f 197 760 6 +f 1130 593 862 +f 1167 1109 182 +f 1194 1115 1161 +f 2140 1928 1504 +f 921 922 2138 +f 1147 1134 1397 +f 1719 1147 1397 +f 1147 1175 1134 +f 1175 1147 728 +f 341 1654 1208 +f 754 151 9 +f 284 2138 1058 +f 1188 1557 1660 +f 1191 110 1053 +f 916 284 1189 +f 284 1058 1189 +f 2094 1465 2127 +f 1726 1019 1147 +f 1147 1019 728 +f 593 1130 96 +f 239 305 1038 +f 1036 1131 315 +f 397 1131 1120 +f 1053 96 1130 +f 2467 2485 1869 +f 517 1089 421 +f 834 1827 1029 +f 419 1047 1117 +f 1034 433 1306 +f 2239 1862 1730 +f 1453 1462 1472 +f 1408 1422 1399 +f 471 23 1111 +f 1205 1150 1456 +f 1205 1040 1150 +f 1131 1036 293 +f 293 1068 1044 +f 375 1041 138 +f 1205 1140 1046 +f 1040 1205 1046 +f 1140 1167 1046 +f 1104 1049 83 +f 1052 1085 1032 +f 1044 1068 1191 +f 1167 1483 1109 +f 208 1084 1035 +f 1040 132 375 +f 1834 20 3 +f 1050 1051 1070 +f 1133 1125 1174 +f 11 1440 1401 +f 420 208 1071 +f 1135 1079 1094 +f 1086 1101 1118 +f 1029 1030 1031 +f 1200 1061 294 +f 1191 1068 138 +f 1171 1141 65 +f 1141 1172 65 +f 1172 35 65 +f 1172 404 35 +f 404 99 35 +f 221 1104 1063 +f 802 398 1083 +f 20 1089 3 +f 2064 1699 835 +f 1042 1052 1032 +f 1433 1261 1432 +f 1323 2338 155 +f 1076 1205 1456 +f 1088 1402 1056 +f 1150 348 1070 +f 1200 1089 20 +f 1097 1162 100 +f 1032 873 834 +f 21 471 1111 +f 294 1097 1104 +f 1072 100 584 +f 1151 760 622 +f 132 1045 1041 +f 1050 1070 1135 +f 1088 1039 940 +f 650 159 635 +f 100 1170 729 +f 729 584 100 +f 1103 931 1096 +f 925 1443 1513 +f 138 1102 110 +f 1034 1306 1152 +f 1071 1035 1090 +f 100 1072 1097 +f 23 1158 315 +f 1068 375 138 +f 1586 1612 1585 +f 1819 1030 1029 +f 1041 1034 1102 +f 232 375 1068 +f 348 1079 1070 +f 1061 1097 294 +f 1513 1443 1442 +f 1200 294 1119 +f 376 1050 1062 +f 1094 1036 315 +f 1200 1119 1089 +f 1111 1183 21 +f 1044 1191 1053 +f 698 295 689 +f 1079 232 1036 +f 404 1117 99 +f 1495 1496 717 +f 1119 294 98 +f 3 1089 517 +f 1132 1063 83 +f 1132 83 175 +f 132 1046 182 +f 1111 1195 1183 +f 1131 1044 1037 +f 127 402 1804 +f 219 1272 1047 +f 1697 1135 1094 +f 2140 1854 2117 +f 1111 397 1195 +f 1177 1162 1097 +f 1061 1177 1097 +f 717 1509 714 +f 2 1300 433 +f 462 290 461 +f 98 294 221 +f 294 1104 221 +f 714 1161 1007 +f 1073 1152 1143 +f 1697 1094 1360 +f 1223 1423 1218 +f 836 2479 842 +f 1097 1072 1049 +f 348 1040 375 +f 3 517 316 +f 180 1061 1201 +f 348 375 232 +f 1432 1431 1415 +f 220 1513 1495 +f 1104 1097 1049 +f 306 674 596 +f 777 455 723 +f 2170 2151 1641 +f 1047 419 219 +f 1102 1034 1073 +f 1073 1034 1152 +f 1035 1054 1196 +f 1177 1204 1162 +f 746 65 12 +f 751 178 721 +f 1054 517 421 +f 1051 1150 1070 +f 1102 1073 110 +f 998 1136 355 +f 567 566 1163 +f 1111 315 397 +f 1048 1074 835 +f 1158 1094 315 +f 1374 1107 1252 +f 1112 1136 998 +f 472 629 500 +f 355 1136 260 +f 260 118 43 +f 1104 83 1063 +f 376 357 1050 +f 1463 1142 1545 +f 1036 232 293 +f 1030 1042 1031 +f 1079 348 232 +f 221 1063 1132 +f 1094 1079 1036 +f 1076 1629 1205 +f 1136 1197 260 +f 260 1197 118 +f 1204 965 1162 +f 293 232 1068 +f 1590 1205 1629 +f 1205 1590 1140 +f 250 382 392 +f 1296 1318 1311 +f 347 1201 20 +f 1201 1200 20 +f 132 182 1045 +f 1101 1086 1052 +f 1033 1039 1055 +f 138 1041 1102 +f 970 1010 2495 +f 455 777 43 +f 1992 1948 2023 +f 20 1834 347 +f 1072 584 1049 +f 584 1192 1049 +f 182 2 1045 +f 1163 324 44 +f 1360 1094 1158 +f 1450 1360 1158 +f 1091 1112 229 +f 509 723 455 +f 207 509 455 +f 1251 1257 1266 +f 1488 1489 1547 +f 2157 1541 1875 +f 305 107 324 +f 1045 2 433 +f 1070 1079 1135 +f 1136 1168 1197 +f 1197 359 118 +f 118 359 43 +f 359 356 43 +f 356 455 43 +f 356 207 455 +f 1240 1422 1408 +f 1163 1153 324 +f 1201 1061 1200 +f 1052 1086 1085 +f 1024 1141 1171 +f 1112 1105 1136 +f 1050 1135 1062 +f 1105 1168 1136 +f 1168 1178 1197 +f 1197 1178 359 +f 1173 404 1172 +f 465 356 359 +f 1174 1125 240 +f 1240 1431 1422 +f 1098 1113 1105 +f 1112 1098 1105 +f 1105 1178 1168 +f 1178 465 359 +f 1091 1098 1112 +f 1133 1174 1118 +f 98 221 1059 +f 487 1132 175 +f 980 1017 285 +f 465 207 356 +f 180 1201 347 +f 1060 524 1170 +f 445 127 316 +f 1431 1438 1422 +f 498 469 681 +f 940 1807 1759 +f 381 250 1290 +f 1113 1122 1105 +f 1105 1122 1178 +f 1151 509 207 +f 1236 2035 525 +f 1131 293 1044 +f 346 207 465 +f 346 1151 207 +f 1822 1796 1204 +f 1143 204 97 +f 123 1128 971 +f 2153 2152 2134 +f 126 1151 346 +f 517 445 316 +f 1450 1158 23 +f 1458 1462 1430 +f 1129 152 1182 +f 1122 1159 1178 +f 1178 1198 465 +f 79 346 465 +f 126 1155 1151 +f 1151 1155 6 +f 295 1129 689 +f 1073 1143 97 +f 1098 1123 1113 +f 1113 1123 1122 +f 1123 1169 1122 +f 1178 1159 1198 +f 1198 79 465 +f 392 383 152 +f 1822 1061 180 +f 116 92 625 +f 421 1089 1119 +f 1129 295 152 +f 110 1073 97 +f 1173 1172 1141 +f 1122 1169 1159 +f 79 126 346 +f 1155 181 6 +f 971 926 1002 +f 295 1043 152 +f 1039 1088 1056 +f 1428 1266 1436 +f 404 419 1117 +f 836 879 2479 +f 2464 2476 2458 +f 1198 317 79 +f 1124 939 301 +f 44 754 567 +f 1039 1056 1055 +f 1439 1459 1458 +f 1660 1412 986 +f 1169 1160 1159 +f 179 1155 126 +f 1155 131 181 +f 1061 1822 1177 +f 1153 305 324 +f 175 314 327 +f 1160 1187 1159 +f 1159 1187 1198 +f 1198 1187 317 +f 79 179 126 +f 1043 250 392 +f 152 1043 392 +f 96 819 593 +f 1123 1127 1169 +f 317 179 79 +f 1057 1155 179 +f 1155 391 131 +f 131 391 668 +f 2381 1586 1585 +f 12 69 499 +f 262 398 1640 +f 2107 2118 2060 +f 2130 2094 2002 +f 1187 249 317 +f 1155 1057 391 +f 1290 439 1265 +f 305 239 107 +f 1127 1160 1169 +f 317 473 179 +f 473 1057 179 +f 83 1192 314 +f 1043 1290 250 +f 1807 940 1030 +f 517 1084 445 +f 1057 1164 391 +f 2492 2480 2493 +f 163 643 43 +f 1056 1545 1303 +f 1069 1655 1023 +f 249 473 317 +f 1162 1060 1170 +f 1086 1118 1154 +f 82 68 16 +f 1989 1990 1536 +f 1633 1632 1611 +f 1487 2372 1305 +f 1494 1069 1023 +f 1137 1160 1127 +f 669 1166 679 +f 390 1285 426 +f 1955 1972 1971 +f 1219 1223 2437 +f 1254 1261 1223 +f 1319 1545 1056 +f 1320 1328 2443 +f 1261 1433 1223 +f 1219 1254 1223 +f 254 222 2428 +f 1237 1290 1265 +f 1284 1273 1263 +f 1277 1291 1301 +f 1314 102 1301 +f 1280 363 377 +f 1313 1353 1514 +f 468 451 439 +f 1918 1964 1956 +f 2026 29 2140 +f 1354 381 1279 +f 1224 30 1254 +f 147 158 173 +f 1247 1253 274 +f 1271 380 334 +f 2043 2072 2042 +f 274 300 267 +f 1356 1392 211 +f 13 240 1142 +f 1382 1330 1392 +f 1312 1323 155 +f 240 1125 1142 +f 2358 1573 1362 +f 1236 1249 1244 +f 1272 219 1348 +f 1271 1274 380 +f 191 2034 1982 +f 1992 2052 1990 +f 462 452 689 +f 2262 2286 2261 +f 183 489 1642 +f 2485 2480 1869 +f 84 111 1323 +f 1190 353 1354 +f 446 434 435 +f 1336 171 1341 +f 2021 430 2059 +f 862 878 1120 +f 1263 1273 1248 +f 1966 1921 2144 +f 1312 84 1323 +f 240 13 1348 +f 1359 1274 1271 +f 1392 1330 1247 +f 1520 1333 11 +f 1368 1253 1247 +f 1279 1285 1190 +f 2465 990 2489 +f 1272 1519 805 +f 1369 1272 805 +f 1317 95 1344 +f 1242 1248 1234 +f 1368 242 1363 +f 274 1262 1386 +f 532 597 1886 +f 2117 2026 2140 +f 1392 1247 274 +f 2162 508 985 +f 1964 1469 1965 +f 1315 104 1331 +f 1392 1356 1382 +f 128 1342 1336 +f 1285 427 426 +f 1219 1224 1254 +f 1320 1322 1321 +f 1320 1321 1328 +f 153 2443 1328 +f 1321 153 1328 +f 1235 1244 1243 +f 1225 1224 1219 +f 1359 353 1190 +f 1312 1473 1458 +f 1336 1342 147 +f 305 1333 1038 +f 1336 147 171 +f 516 31 19 +f 2479 2461 842 +f 1237 1265 427 +f 1263 1278 1284 +f 881 1827 834 +f 1237 427 1285 +f 1299 1312 1458 +f 1190 1285 1274 +f 1363 286 1253 +f 2330 2303 828 +f 427 442 426 +f 2493 2463 2492 +f 1285 380 1274 +f 522 18 1225 +f 2471 2472 2488 +f 2338 154 1321 +f 1423 1415 1218 +f 1225 18 1224 +f 1253 286 1262 +f 286 353 1359 +f 171 1368 1383 +f 1273 54 1234 +f 1973 2447 527 +f 1322 155 1321 +f 1203 1369 1413 +f 1307 363 1298 +f 1364 1375 1329 +f 1329 227 1306 +f 296 1298 1343 +f 947 2499 1447 +f 1203 1047 1272 +f 1098 1748 1123 +f 1519 1272 1348 +f 1277 70 1273 +f 1282 1337 1361 +f 286 302 353 +f 103 104 1315 +f 1377 435 434 +f 1449 1261 1345 +f 926 1310 806 +f 1263 1248 1242 +f 985 508 597 +f 1415 1222 1218 +f 88 1325 104 +f 170 111 156 +f 1384 1282 1361 +f 274 1253 1262 +f 1371 1317 1344 +f 1371 1366 1337 +f 1345 1459 1449 +f 171 1383 1341 +f 2438 1235 1227 +f 2134 1582 2118 +f 428 1260 1379 +f 1336 1341 1325 +f 1235 1242 1227 +f 1228 1687 2284 +f 1854 2140 2016 +f 1866 1887 1873 +f 1343 1298 1370 +f 1384 1361 2440 +f 171 242 1368 +f 1344 1309 1366 +f 1371 1344 1366 +f 1280 1377 1293 +f 200 1185 205 +f 1330 1383 1368 +f 1255 1264 1263 +f 543 1367 1876 +f 1343 1370 1260 +f 1293 1326 1370 +f 2440 1361 1302 +f 1282 1384 2406 +f 271 1337 1282 +f 170 2338 1323 +f 1528 1503 2470 +f 515 1347 2453 +f 1997 1705 1998 +f 2285 1228 2284 +f 1229 1250 1228 +f 1330 1368 1247 +f 1919 1619 2045 +f 1344 1364 1335 +f 1222 1240 1221 +f 1212 858 1741 +f 2388 1222 1221 +f 1528 2470 2068 +f 501 1308 2171 +f 1295 1311 1487 +f 2116 1619 1655 +f 1220 1229 1228 +f 8 663 573 +f 1343 1260 428 +f 1337 1366 1361 +f 1298 1280 1293 +f 1269 1345 1261 +f 1279 381 1290 +f 1230 1229 1220 +f 1230 1245 1229 +f 1245 1250 1229 +f 1227 1234 31 +f 1302 1361 1350 +f 1245 1266 1428 +f 1992 2023 2052 +f 2482 2471 2475 +f 452 462 461 +f 271 1282 1275 +f 1991 1989 1934 +f 1366 1309 1350 +f 1344 1335 1309 +f 730 699 974 +f 1374 1252 1208 +f 597 508 1912 +f 1363 1253 1368 +f 1386 1271 300 +f 1211 1218 1222 +f 1376 1377 434 +f 2399 2437 1211 +f 1284 1291 1277 +f 1230 1251 1245 +f 1251 1266 1245 +f 1317 1371 1337 +f 1288 1286 1095 +f 1095 1286 1352 +f 1241 1208 1352 +f 1241 1374 1208 +f 1284 1278 1291 +f 211 1392 267 +f 1344 1375 1364 +f 929 583 1028 +f 1361 1366 1350 +f 1115 1294 1639 +f 1291 103 1301 +f 1220 1231 1230 +f 1231 1251 1230 +f 1234 1248 1273 +f 1255 55 1264 +f 1360 1450 1702 +f 363 1280 1298 +f 1369 1203 1272 +f 1415 1240 1222 +f 1216 1231 1220 +f 1243 1263 1235 +f 1375 227 1329 +f 1264 1278 1263 +f 855 899 961 +f 1286 1241 1352 +f 2081 2128 2107 +f 1223 1433 1423 +f 1473 1312 155 +f 154 153 1321 +f 1377 1376 1293 +f 1392 274 267 +f 334 300 1271 +f 1955 1991 1934 +f 1613 1327 1288 +f 1327 1286 1288 +f 1349 1374 1241 +f 2370 2025 2367 +f 1315 1331 133 +f 434 446 1256 +f 1232 1251 1231 +f 1243 1244 1255 +f 1286 1304 1241 +f 1349 1107 1374 +f 1359 1271 1386 +f 1227 516 2431 +f 219 240 1348 +f 1270 271 1275 +f 1255 1263 1243 +f 2026 1926 29 +f 1683 2157 1212 +f 1326 1293 1376 +f 1255 32 55 +f 104 1325 1341 +f 519 2462 2475 +f 2154 2161 2137 +f 1376 434 1246 +f 1246 434 1256 +f 1257 1251 1232 +f 1262 1359 1386 +f 2195 2192 2186 +f 1308 534 1226 +f 2026 2117 544 +f 1327 1613 1324 +f 1327 1326 1286 +f 1286 1326 1304 +f 104 1341 1331 +f 774 524 880 +f 837 1517 534 +f 1127 1123 1567 +f 1279 1237 1285 +f 1297 1381 1294 +f 1217 1232 1216 +f 1142 1519 13 +f 1436 1267 1287 +f 1324 1372 1327 +f 1304 1246 1241 +f 1246 1349 1241 +f 1246 1373 1349 +f 286 1359 1262 +f 1382 1383 1330 +f 1284 1277 1273 +f 489 1998 1799 +f 1675 1116 1075 +f 106 1317 1337 +f 1311 1295 1281 +f 1292 1364 1329 +f 1335 1364 1292 +f 1334 1294 1115 +f 1334 1297 1294 +f 1300 1381 1297 +f 973 842 2461 +f 1217 1239 1232 +f 1232 1239 1257 +f 1258 1267 1436 +f 1359 1190 1274 +f 1862 1405 1877 +f 1372 1339 1327 +f 1339 1326 1327 +f 1373 1351 1349 +f 1276 1311 1281 +f 1256 2386 1351 +f 2 1109 1300 +f 482 1731 520 +f 803 1604 2022 +f 1223 1218 1211 +f 1341 1383 1382 +f 1298 1293 1370 +f 1190 1354 1279 +f 1324 2398 1372 +f 1714 1700 2173 +f 183 2000 489 +f 1701 1666 192 +f 1227 1242 1234 +f 1332 1289 1310 +f 1517 2005 2130 +f 1331 1341 1382 +f 525 1249 1236 +f 23 1268 1450 +f 1264 1291 1278 +f 1281 1287 1267 +f 1295 1305 1287 +f 1281 1295 1287 +f 1487 1305 1295 +f 1605 2097 2058 +f 1326 1376 1304 +f 1304 1376 1246 +f 1316 1919 1984 +f 2500 1949 2460 +f 1332 1313 1289 +f 2189 2181 2177 +f 1335 1334 1353 +f 1292 1297 1334 +f 1428 1250 1245 +f 969 958 952 +f 1217 1233 1239 +f 1233 1257 1239 +f 1876 1367 1338 +f 1379 1260 1372 +f 1372 1260 1339 +f 1128 1302 1310 +f 1310 1302 1332 +f 1335 1353 1313 +f 1292 1334 1335 +f 1297 1329 1300 +f 1279 1290 1237 +f 1301 103 1314 +f 70 1301 102 +f 23 1333 1268 +f 380 1285 390 +f 772 325 1275 +f 1314 103 1315 +f 2473 2458 2487 +f 1276 1281 1267 +f 1344 95 1375 +f 2053 1771 1572 +f 1246 1256 1373 +f 1373 1256 1351 +f 1340 1302 1128 +f 1350 1313 1332 +f 1329 1297 1292 +f 2434 2473 2487 +f 106 1337 271 +f 23 471 1333 +f 622 723 509 +f 1388 1517 2127 +f 1991 1990 1989 +f 183 1636 1226 +f 2133 1605 2151 +f 1260 1370 1339 +f 1339 1370 1326 +f 867 1894 1902 +f 390 426 412 +f 1235 1263 1242 +f 1399 1422 1233 +f 305 11 1333 +f 1300 1329 1306 +f 1302 1350 1332 +f 1350 1309 1313 +f 1309 1335 1313 +f 2470 2102 1502 +f 1787 1531 1599 +f 1724 1725 1691 +f 1827 1601 1927 +f 1678 1358 1476 +f 1823 1812 1846 +f 1805 1824 1708 +f 1746 1676 1797 +f 325 2395 429 +f 1835 1677 1826 +f 1507 1790 1722 +f 1526 1672 858 +f 158 147 1342 +f 1462 1473 1322 +f 1474 1414 1565 +f 1761 1900 1877 +f 940 1759 1008 +f 1565 1015 1008 +f 1924 1533 1933 +f 1878 826 830 +f 1565 1414 1015 +f 1402 1088 1008 +f 1538 1532 1651 +f 1015 1552 1008 +f 1538 1591 1474 +f 1532 1538 1474 +f 1474 1591 1414 +f 1484 1402 1008 +f 1552 1484 1008 +f 1414 1460 1015 +f 1015 1460 1552 +f 806 1289 945 +f 1597 1538 1659 +f 1484 1319 1402 +f 1056 1402 1319 +f 1538 1597 1591 +f 1591 960 1414 +f 1414 960 1460 +f 1925 1466 1455 +f 1552 1400 1484 +f 1484 1400 1319 +f 1400 113 1319 +f 1597 1580 1591 +f 1460 1400 1552 +f 1514 1441 966 +f 1597 1659 1409 +f 1657 113 1400 +f 1460 1657 1400 +f 1288 1095 1634 +f 1551 1597 1409 +f 1580 1598 1591 +f 1591 1598 960 +f 1536 1990 2031 +f 960 1657 1460 +f 1809 1746 1797 +f 1423 1433 1432 +f 2478 1362 1409 +f 1463 1545 113 +f 1657 1463 113 +f 1457 1287 1305 +f 1682 1716 1746 +f 1434 1761 1885 +f 1013 1139 1617 +f 2379 1362 2478 +f 1420 1597 1551 +f 1420 1580 1597 +f 1664 1808 1712 +f 2256 2250 2231 +f 1362 1551 1409 +f 2196 2214 2213 +f 1691 1725 1777 +f 1626 192 1666 +f 1534 1574 2058 +f 1574 1600 1605 +f 1600 1606 1605 +f 1606 1641 1605 +f 1573 1420 1551 +f 1657 1485 1463 +f 678 1806 1742 +f 1534 1553 1574 +f 1574 1575 1600 +f 1810 2170 585 +f 1623 1641 1606 +f 1407 1657 960 +f 1598 1407 960 +f 1485 1142 1463 +f 1716 1581 1676 +f 1738 1743 1733 +f 843 2064 835 +f 1539 1575 1574 +f 1553 1539 1574 +f 1575 1592 1600 +f 1592 1624 1606 +f 1600 1592 1606 +f 1642 585 1641 +f 1623 1642 1641 +f 1485 164 1142 +f 1738 1516 1743 +f 1809 1720 1798 +f 1533 1535 1534 +f 1592 1607 1624 +f 1624 1623 1606 +f 1163 566 1116 +f 1407 1485 1657 +f 1432 1449 1439 +f 1100 802 2382 +f 1743 1516 1722 +f 1746 1716 1676 +f 1535 1539 1534 +f 1534 1539 1553 +f 1642 1623 1624 +f 1095 1208 1654 +f 967 1407 1598 +f 1580 967 1598 +f 1809 1797 1720 +f 1924 1524 1535 +f 1533 1924 1535 +f 1539 1576 1575 +f 1642 216 585 +f 1407 1529 1485 +f 1485 1529 164 +f 1472 1462 1482 +f 1415 1431 1240 +f 966 1194 714 +f 383 1182 152 +f 474 2337 446 +f 1743 1841 1757 +f 1486 1524 1924 +f 1535 1525 1539 +f 1575 1576 1592 +f 1420 967 1580 +f 1288 1634 1613 +f 459 427 1265 +f 1404 2179 1393 +f 1404 1403 1800 +f 1404 1410 1403 +f 1410 1749 1403 +f 1349 1351 218 +f 1486 1498 1524 +f 1535 1524 1525 +f 1607 1636 1624 +f 183 1642 1624 +f 1636 183 1624 +f 1107 1349 218 +f 1351 845 218 +f 164 1519 1142 +f 845 413 218 +f 1525 1576 1539 +f 1576 1582 1592 +f 1592 2134 1607 +f 2134 1636 1607 +f 2147 1491 1401 +f 1407 1589 1529 +f 1529 1519 164 +f 1693 1763 1444 +f 1924 1479 1486 +f 1592 1582 2134 +f 499 165 874 +f 2176 1857 1959 +f 2327 2368 2326 +f 2358 821 953 +f 953 821 1573 +f 1824 1704 1464 +f 1731 1358 1678 +f 1394 1410 1404 +f 1394 1418 1410 +f 1466 1479 1839 +f 1486 1479 1498 +f 1498 1525 1524 +f 1576 2080 1582 +f 1785 1684 1898 +f 804 398 802 +f 804 925 398 +f 1447 1562 2358 +f 2358 1562 821 +f 821 1620 1573 +f 1620 1420 1573 +f 1420 1556 967 +f 1393 1394 1404 +f 1525 2080 1576 +f 1621 1420 1620 +f 1621 1556 1420 +f 967 1589 1407 +f 1505 5 1357 +f 1266 1258 1436 +f 1393 1395 1394 +f 2176 2175 1848 +f 1455 1466 1839 +f 1525 1540 2080 +f 1582 2080 2118 +f 1100 804 802 +f 1556 1589 967 +f 1589 1082 1529 +f 1093 1685 1357 +f 1504 1093 1357 +f 1425 1418 1394 +f 1475 1479 1466 +f 1479 1506 1498 +f 1789 1784 1730 +f 2501 2465 2489 +f 1438 1458 1430 +f 1462 1458 1473 +f 1454 805 1529 +f 1082 1454 1529 +f 1529 805 1519 +f 1425 1394 1395 +f 1425 1744 1418 +f 1479 1475 1506 +f 1540 2060 2080 +f 1556 1082 1589 +f 1443 945 1511 +f 1506 1536 1498 +f 1498 1536 1525 +f 1525 1536 1540 +f 1670 852 1672 +f 1998 1388 1389 +f 1511 966 1509 +f 1509 966 714 +f 1442 1443 1496 +f 1562 1635 821 +f 155 1322 1473 +f 1439 1458 1438 +f 1426 1425 1395 +f 1475 1499 1506 +f 1735 1588 1776 +f 2422 2454 2421 +f 1423 1432 1415 +f 1559 2101 2073 +f 845 866 413 +f 1429 1620 821 +f 1620 1429 1621 +f 1228 1250 1687 +f 1002 945 1443 +f 2382 802 1083 +f 1859 1411 1395 +f 1411 1426 1395 +f 1426 1744 1425 +f 1590 1437 1483 +f 1480 1475 1466 +f 1480 1499 1475 +f 1510 1733 1743 +f 1663 1696 1658 +f 1430 1453 1452 +f 1452 1472 1471 +f 1452 1471 1448 +f 1430 1452 1421 +f 1430 1421 1422 +f 1429 1082 1556 +f 1621 1429 1556 +f 1351 2386 845 +f 1126 1059 487 +f 1639 1437 1563 +f 1504 1928 1093 +f 1499 1536 1506 +f 1588 1770 1727 +f 1110 1747 1397 +f 1776 1588 1531 +f 1322 1320 1482 +f 1590 1629 1571 +f 1730 1877 1838 +f 1429 935 1082 +f 1082 935 1454 +f 804 1443 925 +f 1139 1007 1639 +f 1925 1480 1466 +f 1934 1989 1480 +f 1499 1989 1536 +f 1727 1526 1531 +f 1593 1614 502 +f 2455 2431 2400 +f 1755 1680 908 +f 1563 1571 1564 +f 1647 1078 1501 +f 2490 1635 1106 +f 1496 1511 717 +f 2454 2431 516 +f 1478 1153 1093 +f 1870 1426 1411 +f 1426 1723 1744 +f 962 986 1412 +f 717 1511 1509 +f 1825 1704 1824 +f 2225 2234 2253 +f 1490 1557 1188 +f 1635 80 821 +f 805 1454 935 +f 1186 706 695 +f 1194 1161 714 +f 1512 1007 1013 +f 592 97 204 +f 1258 1266 1257 +f 82 1333 471 +f 1694 1710 1505 +f 1643 490 1661 +f 1661 490 1114 +f 1518 2068 2484 +f 1750 1808 1664 +f 1656 1635 2490 +f 935 1521 805 +f 1546 1629 1076 +f 1301 70 1277 +f 966 1441 1194 +f 1148 1825 1824 +f 1614 1609 1643 +f 1114 1092 1921 +f 1770 1739 1670 +f 1631 1632 1646 +f 821 1016 1429 +f 1429 1016 935 +f 1632 1095 1654 +f 1083 262 688 +f 1724 1686 1725 +f 1644 490 1643 +f 1092 1149 1921 +f 3 893 1832 +f 988 1640 1188 +f 916 1107 284 +f 1656 80 1635 +f 1016 821 80 +f 1016 1521 935 +f 1478 1202 1153 +f 1401 1928 29 +f 1440 1478 1928 +f 1849 1700 1865 +f 1595 1611 1612 +f 1208 198 341 +f 1464 1704 1746 +f 2143 984 1721 +f 1848 1849 1868 +f 1662 1114 490 +f 1669 1787 1682 +f 1656 1618 80 +f 198 1208 916 +f 1440 1928 1401 +f 1521 1369 805 +f 1252 1107 916 +f 1745 678 1672 +f 1703 1779 1721 +f 1750 1465 1808 +f 1609 1644 1643 +f 1092 1114 1662 +f 1826 1523 1793 +f 2262 2261 2224 +f 1696 2166 1767 +f 1016 1648 1521 +f 1208 1252 916 +f 833 688 1067 +f 1794 1803 1558 +f 28 17 512 +f 1750 861 1566 +f 1594 1644 1609 +f 1644 1645 490 +f 490 1645 1662 +f 2229 2262 2224 +f 1602 861 1760 +f 1530 1777 1760 +f 872 1706 1673 +f 1696 1668 2166 +f 1708 1809 1798 +f 1581 1716 1814 +f 1709 1794 1680 +f 1233 1421 1257 +f 1724 1476 1686 +f 1469 1481 1965 +f 1965 1481 1492 +f 2073 1549 1559 +f 1594 1615 1644 +f 1799 1706 1755 +f 1725 1686 1837 +f 1720 1797 1572 +f 1618 2467 2022 +f 1618 1579 80 +f 1648 1016 80 +f 2134 2152 1636 +f 1611 1632 1631 +f 1761 1434 1470 +f 1559 1577 1594 +f 1603 1615 1594 +f 1615 1645 1644 +f 1637 1662 1645 +f 1662 1199 1092 +f 1199 1149 1092 +f 1451 1108 1149 +f 665 734 756 +f 1865 1700 1714 +f 1709 1841 1794 +f 1618 2022 1579 +f 1648 1413 1369 +f 1521 1648 1369 +f 1520 11 1401 +f 1446 1470 1434 +f 1798 1691 1754 +f 2063 1544 2073 +f 2073 1544 1549 +f 1594 1577 1603 +f 1615 1637 1645 +f 1637 1199 1662 +f 1427 1149 1199 +f 2167 1108 1451 +f 1997 1673 1705 +f 1706 1799 1705 +f 1841 1709 1757 +f 1604 1579 2022 +f 1579 707 80 +f 80 707 1648 +f 1520 1401 1491 +f 1649 1520 1491 +f 1435 1434 1885 +f 1470 1469 1461 +f 1481 1508 2024 +f 2370 1544 2063 +f 1549 1568 1559 +f 1559 1568 1577 +f 1603 1610 1615 +f 1615 1610 1637 +f 999 1199 1637 +f 1451 1149 1427 +f 1137 1825 1148 +f 1706 1705 1673 +f 1138 1604 2116 +f 1138 1579 1604 +f 1413 1648 707 +f 2360 2024 1508 +f 598 1075 1116 +f 229 93 1468 +f 1839 1479 1684 +f 2216 2229 2224 +f 1610 1625 1637 +f 329 999 1637 +f 1199 1017 1427 +f 1017 303 1427 +f 303 1451 1427 +f 1792 1754 1777 +f 2309 2391 2301 +f 1655 1138 2116 +f 1138 707 1579 +f 1649 1491 206 +f 1406 1885 1398 +f 1406 1419 1885 +f 1419 1435 1885 +f 1434 1435 1446 +f 1470 1481 1469 +f 1577 1583 1603 +f 999 1017 1199 +f 81 67 941 +f 67 1650 941 +f 1259 1815 2164 +f 1619 2116 2045 +f 1424 707 1138 +f 1702 1649 206 +f 1687 1406 1398 +f 1477 1481 1470 +f 1568 1569 1577 +f 1577 1569 1583 +f 1603 1583 1610 +f 1625 329 1637 +f 2167 340 273 +f 81 273 340 +f 81 962 67 +f 1547 1619 1488 +f 1830 1739 1770 +f 938 1424 1138 +f 1424 1413 707 +f 1527 1649 1702 +f 1527 1520 1649 +f 1527 1268 1520 +f 1250 1406 1687 +f 1441 1353 1115 +f 1203 1413 1051 +f 1250 1419 1406 +f 1477 2372 1481 +f 1481 2372 1508 +f 2449 1560 1568 +f 1549 2449 1568 +f 1568 1560 1569 +f 1569 1584 1583 +f 1652 329 1625 +f 329 817 999 +f 285 1017 999 +f 303 10 1451 +f 10 2167 1451 +f 1412 1650 67 +f 1412 1488 1650 +f 1547 1023 1619 +f 1023 1655 1619 +f 1655 938 1138 +f 1456 1413 1424 +f 1457 1470 1446 +f 1457 1477 1470 +f 329 1652 817 +f 10 340 2167 +f 938 1546 1424 +f 1546 1456 1424 +f 1259 1548 1779 +f 2052 2031 1990 +f 1440 1202 1478 +f 1428 1419 1250 +f 1428 1435 1419 +f 1428 1446 1435 +f 1934 1935 1955 +f 1560 1584 1569 +f 1610 1638 1625 +f 1638 1652 1625 +f 817 1077 999 +f 1077 285 999 +f 980 303 1017 +f 962 1412 67 +f 1494 1023 1547 +f 325 271 1270 +f 1443 1511 1496 +f 1450 1268 1527 +f 1514 1353 1441 +f 1287 1446 1428 +f 1446 1287 1457 +f 1305 2372 1477 +f 1992 1990 1991 +f 1992 1991 1971 +f 1971 1991 1955 +f 2449 1549 2418 +f 1583 1616 1610 +f 1610 1616 1638 +f 10 1396 340 +f 340 1445 81 +f 1445 962 81 +f 1790 984 1753 +f 984 2148 1753 +f 1588 1713 1770 +f 969 978 958 +f 1741 1779 1703 +f 1758 1846 1754 +f 1827 1819 1029 +f 1818 1530 1712 +f 1750 1566 2127 +f 2459 2434 2483 +f 1798 1720 1771 +f 1794 1841 1803 +f 216 1755 1810 +f 1098 1735 1748 +f 1735 1497 1748 +f 1502 2102 1601 +f 881 1502 1601 +f 1455 1839 1744 +f 1706 1709 1680 +f 1212 1741 1703 +f 1788 1969 1671 +f 1075 1074 1692 +f 951 2500 881 +f 2490 2486 2463 +f 1748 1497 1781 +f 1721 984 1840 +f 1815 1259 1741 +f 1626 1756 1837 +f 975 987 1542 +f 2230 2236 2235 +f 1772 678 734 +f 1542 1671 975 +f 1806 1772 1780 +f 678 1772 1806 +f 2218 2225 2268 +f 1828 1732 2007 +f 1526 1688 1531 +f 1752 1526 1554 +f 1844 1818 1712 +f 1823 1846 1804 +f 1781 1669 1704 +f 1721 1779 2143 +f 1770 1670 1526 +f 1497 1669 1781 +f 1098 1713 1735 +f 1742 1815 1741 +f 1526 858 1875 +f 1599 1531 1688 +f 1803 1790 1558 +f 1703 1721 1683 +f 1832 1766 957 +f 1542 1679 1671 +f 1679 1788 1671 +f 1927 1819 1827 +f 1718 1745 1739 +f 1684 1022 1839 +f 1459 1283 1299 +f 1022 1410 1418 +f 2368 2393 2326 +f 1669 1497 1776 +f 1875 858 1212 +f 1739 1745 852 +f 1964 1918 1461 +f 1356 133 1331 +f 1765 1829 1468 +f 858 1742 1741 +f 1006 1674 1021 +f 1723 1936 1935 +f 1468 1713 1098 +f 1724 1678 1476 +f 1680 1783 908 +f 1731 1543 520 +f 1683 1721 1840 +f 1467 1679 1542 +f 1812 1708 1846 +f 1679 1975 1788 +f 1713 1830 1770 +f 1803 1722 1790 +f 2301 2391 2349 +f 1713 1588 1735 +f 1836 1530 1818 +f 1837 1756 861 +f 886 571 556 +f 1181 1805 1812 +f 1706 1680 1755 +f 1677 1729 1775 +f 1776 1787 1669 +f 1526 1670 1672 +f 1727 1770 1526 +f 987 1467 1542 +f 1567 1704 1137 +f 1693 1865 1714 +f 897 1762 912 +f 1135 1697 1062 +f 1697 376 1062 +f 1543 1731 1678 +f 1793 1679 1467 +f 1777 1602 1760 +f 1846 1798 1754 +f 1835 1096 1677 +f 1033 1030 940 +f 1450 1527 1702 +f 1717 376 1697 +f 1711 1717 1697 +f 1717 165 376 +f 1840 984 1790 +f 1669 1746 1704 +f 1669 1682 1746 +f 2301 2349 2308 +f 1882 1444 1898 +f 1820 1789 1730 +f 861 1380 1566 +f 2301 2308 2266 +f 1771 1543 1691 +f 1958 1659 1651 +f 1697 1360 1711 +f 1711 1737 1717 +f 1717 1737 165 +f 1790 1753 1558 +f 1668 1696 1663 +f 1360 1702 1711 +f 1702 1707 1711 +f 1707 1737 1711 +f 1737 1751 165 +f 1444 1782 1693 +f 1716 1787 1599 +f 1744 1839 1022 +f 1898 1444 1785 +f 206 1707 1702 +f 1764 2468 1751 +f 316 1844 893 +f 893 1844 915 +f 1845 1804 1758 +f 1380 861 1756 +f 1780 670 1021 +f 1714 2172 1763 +f 1783 1558 1663 +f 1750 2127 1465 +f 1798 1771 1691 +f 1691 1543 1724 +f 1872 1910 839 +f 1737 2044 1751 +f 1751 2044 1764 +f 1757 1701 482 +f 1725 1602 1777 +f 1836 1845 1530 +f 2102 2470 1503 +f 2496 1899 544 +f 763 2484 946 +f 987 1719 1467 +f 1845 1758 1792 +f 1725 1837 1602 +f 1872 1866 1873 +f 1712 1530 1760 +f 489 1799 216 +f 1760 861 1750 +f 2068 2466 2460 +f 1696 2159 2168 +f 377 1377 1280 +f 1797 1676 1572 +f 1581 2053 1572 +f 1676 1581 1572 +f 1764 2498 2468 +f 2468 2498 1994 +f 1861 1695 1860 +f 2481 2004 2495 +f 1826 1677 1523 +f 1670 1739 852 +f 2234 2269 2253 +f 1724 1543 1678 +f 1658 2168 1791 +f 1397 1747 1719 +f 1696 2168 1658 +f 979 519 272 +f 1774 1975 1679 +f 975 1671 932 +f 1787 1716 1682 +f 1835 1826 1747 +f 2501 2469 961 +f 1810 908 1791 +f 1982 1768 191 +f 1137 1704 1825 +f 1804 1846 1758 +f 2004 2044 1737 +f 913 1969 902 +f 2498 1795 1801 +f 915 1844 1712 +f 1689 915 1712 +f 1740 1752 1541 +f 695 661 199 +f 1865 1693 1782 +f 1824 1464 1809 +f 1829 1765 1718 +f 1816 1768 1982 +f 1816 1622 1768 +f 1622 2165 1681 +f 1768 1622 1681 +f 670 1772 228 +f 1283 1459 52 +f 1785 1444 1749 +f 1675 1075 1685 +f 1567 1781 1704 +f 1858 1857 1848 +f 1526 1752 1688 +f 1791 2160 1810 +f 908 1658 1791 +f 1813 1773 1558 +f 1845 1792 1530 +f 69 376 165 +f 3 1832 1834 +f 1722 1516 1507 +f 1801 1821 1994 +f 1833 1982 2046 +f 1821 1833 2046 +f 1833 1816 1982 +f 1022 1785 1749 +f 2160 2170 1810 +f 1147 1719 1726 +f 1683 1840 1507 +f 1467 1719 1793 +f 1795 1802 1801 +f 1802 1811 1801 +f 1801 1811 1821 +f 1690 2165 1622 +f 1934 1480 1925 +f 229 1468 1091 +f 1780 2164 1742 +f 1672 1742 858 +f 1833 1417 1816 +f 1417 1622 1816 +f 1831 2165 1690 +f 1668 1663 1558 +f 1719 1747 1826 +f 1760 1750 1664 +f 1817 1690 1622 +f 1530 1792 1777 +f 948 1796 1802 +f 1796 1811 1802 +f 1515 1817 1622 +f 1695 1861 1831 +f 1783 1663 1658 +f 1749 1410 1022 +f 854 1796 948 +f 1811 1842 1833 +f 1821 1811 1833 +f 1833 1842 1417 +f 1622 1417 1515 +f 127 1804 1845 +f 1686 1626 1837 +f 1608 1690 1817 +f 1523 1775 1762 +f 127 1845 1836 +f 1812 1805 1708 +f 1523 1677 1775 +f 1780 1772 670 +f 1758 1754 1792 +f 1204 1796 854 +f 1822 1842 1811 +f 1608 1831 1690 +f 1822 1811 1796 +f 1842 1416 1417 +f 1417 1416 1515 +f 1515 1608 1817 +f 1728 1831 1608 +f 908 1783 1658 +f 127 1836 316 +f 1805 1148 1824 +f 852 1745 1672 +f 1478 1093 1928 +f 1822 1843 1842 +f 1843 959 1842 +f 1842 959 1416 +f 1728 1695 1831 +f 1728 1860 1695 +f 2346 446 2337 +f 1602 1837 861 +f 1087 1096 1835 +f 1708 1824 1809 +f 2004 1737 505 +f 1567 1748 1781 +f 520 1543 1883 +f 1760 1664 1712 +f 128 1336 72 +f 2053 1883 1543 +f 1822 180 1843 +f 1786 1608 1515 +f 929 2462 519 +f 512 2402 506 +f 1212 1703 1683 +f 1830 1829 1739 +f 2053 1543 1771 +f 1416 1769 1515 +f 1769 1786 1515 +f 1786 1728 1608 +f 1712 1808 1689 +f 1794 1558 1783 +f 1497 1735 1776 +f 1127 1567 1137 +f 1123 1748 1567 +f 36 205 1185 +f 959 1734 1416 +f 1738 1733 1541 +f 1774 1762 1974 +f 1752 1554 1541 +f 1752 1740 1688 +f 1526 1875 1554 +f 1468 1829 1830 +f 1755 908 1810 +f 1716 1599 1814 +f 1806 1780 1742 +f 2308 2349 2340 +f 1832 915 1689 +f 1713 1468 1830 +f 1814 1599 1346 +f 1832 1689 1766 +f 1022 1684 1785 +f 1093 1153 1116 +f 1672 678 1742 +f 1675 1685 1093 +f 1841 1743 1722 +f 1814 2053 1581 +f 1464 1746 1809 +f 2485 2497 2493 +f 1416 1734 1769 +f 1665 1728 1786 +f 1665 1951 1728 +f 1951 1860 1728 +f 1951 2094 1860 +f 1844 1836 1818 +f 316 1836 1844 +f 1776 1531 1787 +f 1719 1826 1793 +f 2147 1401 29 +f 2111 2121 1548 +f 1741 1259 1779 +f 1843 347 1834 +f 1843 1734 959 +f 1766 1769 1734 +f 957 1766 1734 +f 1766 1786 1769 +f 1766 1689 1786 +f 1689 1665 1786 +f 1754 1691 1777 +f 1507 1840 1790 +f 1761 1470 1461 +f 1523 1679 1793 +f 1091 1468 1098 +f 1820 1730 1838 +f 1843 1834 1734 +f 1808 1951 1665 +f 1588 1727 1531 +f 893 915 1832 +f 1523 1774 1679 +f 272 2488 710 +f 1093 1116 1675 +f 2340 2349 2348 +f 1832 1734 1834 +f 1832 957 1734 +f 1951 1808 2094 +f 1685 1692 1505 +f 1043 295 698 +f 2143 1779 2121 +f 1689 1808 1665 +f 1693 1714 1763 +f 1738 2157 1516 +f 1114 1921 236 +f 1268 1333 1520 +f 1149 1108 431 +f 508 2144 1912 +f 1957 1108 1537 +f 431 1108 1957 +f 1018 1108 2167 +f 1338 1957 1681 +f 2163 1957 1338 +f 1983 1390 2093 +f 30 557 37 +f 1714 2173 2172 +f 1983 1984 1390 +f 1984 2065 1390 +f 884 1762 897 +f 2065 1984 1214 +f 1950 1974 1762 +f 884 1950 1762 +f 2012 1698 1861 +f 1214 2116 803 +f 1950 1938 1974 +f 1938 1967 1974 +f 1900 1761 1461 +f 865 1929 884 +f 884 1929 1950 +f 2062 2071 2042 +f 919 1985 1732 +f 1593 502 2146 +f 1995 1213 2098 +f 1522 2476 1651 +f 2174 1849 2175 +f 1480 1989 1499 +f 1929 1938 1950 +f 1605 2058 1574 +f 2097 1605 2133 +f 1912 2014 1886 +f 2092 2082 2083 +f 206 1930 505 +f 2101 2100 2092 +f 2073 2101 2092 +f 839 1910 865 +f 1910 1901 1929 +f 865 1910 1929 +f 1967 1788 1975 +f 2073 2092 2063 +f 2101 1593 2100 +f 2015 1876 1698 +f 1853 1884 2014 +f 1831 1698 2165 +f 1316 273 81 +f 1901 1920 1929 +f 1929 1920 1938 +f 1920 1968 1967 +f 1938 1920 1967 +f 1849 2174 1700 +f 2173 1700 2174 +f 2062 2072 2091 +f 803 2467 2059 +f 2239 1736 2240 +f 1505 1357 1685 +f 1358 1686 1476 +f 1967 1968 1788 +f 1968 1969 1788 +f 2065 2110 2156 +f 2065 1214 2110 +f 2110 1214 503 +f 273 2093 1018 +f 273 1983 2093 +f 532 1886 2155 +f 2034 2021 1947 +f 216 1810 585 +f 1912 543 2014 +f 1390 2051 1537 +f 1872 1873 1910 +f 1984 2045 1214 +f 597 1912 1886 +f 1593 2146 2100 +f 2071 2062 2090 +f 2034 2046 1982 +f 2034 1947 2046 +f 1214 2045 2116 +f 1873 1887 1910 +f 1887 1901 1910 +f 1562 1447 1106 +f 2163 431 1957 +f 1948 1972 1936 +f 1972 1948 1992 +f 2014 2015 2013 +f 1853 2014 2013 +f 1550 1884 1853 +f 1947 2468 1994 +f 1355 1550 2154 +f 1355 1884 1550 +f 2081 2108 2128 +f 2024 1965 1492 +f 2024 2032 1965 +f 2116 1604 803 +f 1901 1911 1920 +f 1939 1968 1920 +f 1911 1939 1920 +f 872 1626 1666 +f 2062 2091 2120 +f 1819 1927 1759 +f 1021 1674 1780 +f 872 1673 1756 +f 1550 501 2171 +f 1378 1550 2171 +f 2146 2162 2145 +f 1358 482 192 +f 2109 2120 2119 +f 1866 1872 2227 +f 1391 2012 1860 +f 2136 2137 2161 +f 2162 1661 236 +f 1887 1894 1901 +f 1901 1894 1911 +f 505 1707 206 +f 2120 2137 2136 +f 2142 2164 1674 +f 1860 2012 1861 +f 1894 1939 1911 +f 2080 2060 2118 +f 2162 236 508 +f 2164 1815 1742 +f 1018 2093 1537 +f 2154 1378 2161 +f 2041 2098 2491 +f 2043 2042 2032 +f 1108 1018 1537 +f 1465 2094 1808 +f 502 1643 1661 +f 2467 1618 1656 +f 2119 2136 2135 +f 2119 2108 2071 +f 878 1183 1195 +f 2101 1594 1593 +f 2033 2370 2063 +f 2482 2491 2098 +f 1282 2406 1275 +f 2003 1948 1956 +f 2043 2032 2024 +f 2025 2043 2024 +f 2154 1550 1378 +f 1795 2498 1764 +f 2142 1548 2164 +f 2431 2454 2422 +f 1981 2011 1993 +f 2349 2391 2362 +f 502 2162 2146 +f 2025 2024 2360 +f 2129 2120 2091 +f 1732 1985 2007 +f 2171 1308 209 +f 1930 1995 2041 +f 1390 1238 2051 +f 1866 1878 1887 +f 1878 1894 1887 +f 1965 2032 2011 +f 874 2480 2492 +f 2071 2108 2069 +f 1358 1731 482 +f 430 2021 2034 +f 1965 2003 1964 +f 1855 1889 831 +f 1668 1773 2150 +f 1390 2156 1238 +f 898 869 1903 +f 2391 2407 2362 +f 2121 2111 2074 +f 1548 1259 2164 +f 2099 2129 2091 +f 1550 1853 501 +f 1853 1852 501 +f 952 2017 969 +f 2085 2121 2074 +f 2130 2006 1391 +f 2144 1367 543 +f 2100 2146 2099 +f 1545 1319 113 +f 1903 1922 898 +f 1922 1931 898 +f 585 2170 1641 +f 2007 2017 952 +f 2017 2074 969 +f 1558 1753 1813 +f 837 2005 1517 +f 2005 2006 2130 +f 1532 1474 1528 +f 2003 1981 1948 +f 2070 2071 2069 +f 1922 919 1931 +f 2017 2085 2074 +f 2085 2104 2121 +f 2100 2099 2082 +f 2156 2110 2034 +f 505 2474 2004 +f 1903 871 1922 +f 1922 1952 919 +f 919 1952 1985 +f 1985 2001 2007 +f 2001 2036 2017 +f 2007 2001 2017 +f 2017 2036 2085 +f 2036 2047 2085 +f 2047 2075 2085 +f 2075 2104 2085 +f 1948 1993 2023 +f 2400 2422 2407 +f 2011 2070 1993 +f 2033 2043 2025 +f 2012 2015 1698 +f 1876 1338 2165 +f 871 1940 1922 +f 1985 1976 2001 +f 2121 2104 2143 +f 1051 1413 1456 +f 2358 1362 2379 +f 1859 1789 1870 +f 2090 2109 2071 +f 1405 1398 1885 +f 1886 1884 1355 +f 1922 1960 1952 +f 1952 1960 1985 +f 1960 1976 1985 +f 1956 1948 1936 +f 2135 209 2128 +f 2157 1875 1212 +f 2160 2168 2169 +f 1900 1461 1918 +f 2001 2018 2036 +f 2075 2086 2104 +f 2111 2142 2103 +f 1937 1956 1936 +f 2023 2070 2061 +f 2135 2128 2108 +f 2042 2071 2011 +f 2138 413 2383 +f 2033 2072 2043 +f 1922 1940 1960 +f 2070 2069 2061 +f 2069 2108 2061 +f 2108 2119 2135 +f 1855 1904 1889 +f 1889 1904 871 +f 871 1904 1940 +f 1976 2018 2001 +f 2036 2018 2047 +f 2122 2143 2104 +f 216 1642 489 +f 2148 984 2143 +f 1975 1974 1967 +f 2157 1683 1516 +f 1614 1593 1594 +f 2269 2270 2276 +f 1926 2147 29 +f 2082 2091 2072 +f 430 503 2059 +f 1904 1905 1940 +f 1940 1961 1960 +f 1961 1976 1960 +f 2087 2086 2075 +f 2065 2156 1390 +f 1820 1838 1900 +f 534 1308 837 +f 2167 273 1018 +f 831 1850 1855 +f 2019 2037 2018 +f 2018 2037 2047 +f 2037 2075 2047 +f 2086 2095 2104 +f 2095 2122 2104 +f 2122 2148 2143 +f 1926 1213 1995 +f 1405 1885 1761 +f 2006 2013 2012 +f 2211 2233 2216 +f 1855 1890 1904 +f 1904 1895 1905 +f 1905 1932 1940 +f 1961 1977 1976 +f 1976 1986 2018 +f 2484 2476 1518 +f 1870 1411 1859 +f 1548 2142 2111 +f 1904 1890 1895 +f 1895 1932 1905 +f 1940 1932 1961 +f 1976 1977 1986 +f 1986 2008 2018 +f 2018 2008 2019 +f 2087 2075 2037 +f 2087 2095 2086 +f 2094 1391 1860 +f 1852 1853 2006 +f 1853 2013 2006 +f 929 979 850 +f 1855 1874 1890 +f 2008 2028 2019 +f 1993 2070 2023 +f 1705 1799 1998 +f 1491 2147 206 +f 1851 1856 1855 +f 1895 1890 1874 +f 2038 2019 2028 +f 2038 2048 2037 +f 2019 2038 2037 +f 2048 2067 2087 +f 2037 2048 2087 +f 2087 2067 2095 +f 2095 2149 2122 +f 2149 2148 2122 +f 1308 2005 837 +f 209 1308 1387 +f 1601 2102 1927 +f 254 170 201 +f 1800 1403 1763 +f 1510 1346 1740 +f 870 871 1903 +f 1919 1650 1619 +f 2148 1667 1753 +f 1932 1923 1961 +f 1977 1953 1986 +f 2067 2112 2095 +f 2112 2149 2095 +f 2148 2149 1667 +f 2422 2421 2407 +f 1926 2026 1213 +f 1912 2144 543 +f 2128 1387 2153 +f 1733 1510 1740 +f 990 853 2489 +f 503 1214 803 +f 1921 431 2163 +f 2146 2145 2129 +f 2144 1921 2163 +f 1855 1856 1874 +f 1895 1923 1932 +f 1923 1941 1961 +f 1961 1941 1977 +f 2048 2076 2067 +f 2076 2113 2067 +f 2067 2113 2112 +f 1723 1900 1937 +f 1870 1900 1723 +f 1367 2163 1338 +f 520 1346 1510 +f 1698 1831 1861 +f 1984 1919 2045 +f 1895 1891 1923 +f 2008 1986 2028 +f 1948 1981 1993 +f 1883 1346 520 +f 1883 1814 1346 +f 1930 206 2147 +f 2499 2486 1447 +f 1891 1906 1923 +f 1923 1953 1941 +f 1953 1977 1941 +f 1953 1987 1986 +f 2113 2123 2112 +f 2123 2149 2112 +f 1387 1308 1226 +f 1599 1688 1346 +f 2093 1390 1537 +f 2003 2011 1981 +f 1987 2028 1986 +f 2038 2049 2048 +f 2048 2049 2076 +f 1813 1667 2149 +f 2123 1813 2149 +f 1461 1469 1964 +f 1757 1510 1743 +f 505 1930 1999 +f 2223 1784 1789 +f 1532 1522 1651 +f 1906 1913 1923 +f 1913 1943 1923 +f 1943 1942 1923 +f 1923 1942 1953 +f 1942 1987 1953 +f 1308 1852 2005 +f 2053 1814 1883 +f 1733 1740 1541 +f 2154 1886 1355 +f 1503 1528 1474 +f 1874 1879 1895 +f 1895 1879 1891 +f 2076 2124 2113 +f 2113 2124 2123 +f 1896 1891 1879 +f 1891 1896 1906 +f 1942 1962 1987 +f 1962 2009 2028 +f 1987 1962 2028 +f 2009 2038 2028 +f 2109 2119 2071 +f 1918 1956 1937 +f 1851 1864 1856 +f 1896 1897 1906 +f 1906 1897 1913 +f 1943 1962 1942 +f 2049 2077 2076 +f 2124 2125 2123 +f 1930 2147 1926 +f 1902 1894 1878 +f 482 1510 1757 +f 2129 2137 2120 +f 503 803 2059 +f 1847 1857 1851 +f 1851 1857 1864 +f 2039 2038 2009 +f 2038 2039 2049 +f 2076 2077 2124 +f 2150 1813 2123 +f 482 520 1510 +f 1994 1821 2046 +f 2044 2004 1764 +f 1864 1867 1856 +f 1867 1874 1856 +f 1897 1944 1913 +f 1943 1944 1962 +f 2124 2126 2125 +f 2150 2123 2125 +f 2099 2146 2129 +f 2041 1995 2098 +f 1605 1641 2151 +f 1847 1959 1857 +f 1874 1867 1879 +f 1913 1944 1943 +f 1944 1963 1962 +f 2077 2096 2124 +f 2096 2126 2124 +f 2126 2150 2125 +f 941 1650 1919 +f 2135 2136 209 +f 1884 1886 2014 +f 2049 2029 2077 +f 1388 2127 1389 +f 1389 2127 1566 +f 1930 1926 1995 +f 941 1919 1316 +f 2110 503 430 +f 1867 1880 1879 +f 1879 1880 1896 +f 1897 1907 1944 +f 1963 1978 1962 +f 1962 1978 2009 +f 2039 2029 2049 +f 2077 2078 2096 +f 822 823 827 +f 2166 1668 2150 +f 81 941 1316 +f 2204 2216 2203 +f 2011 2071 2070 +f 1880 1892 1896 +f 1892 1907 1897 +f 1896 1892 1897 +f 1907 1914 1944 +f 1978 2010 2009 +f 2010 2039 2009 +f 1688 1740 1346 +f 1789 1820 1870 +f 2130 1391 2094 +f 1944 1945 1963 +f 2029 2078 2077 +f 1767 2150 2126 +f 1767 2166 2150 +f 803 2022 2467 +f 1503 1927 2102 +f 1914 1954 1944 +f 1944 1954 1945 +f 1963 1970 1978 +f 2078 2105 2096 +f 2105 2126 2096 +f 1965 2011 2003 +f 192 1626 1358 +f 2101 1559 1594 +f 1930 2041 1999 +f 1698 1876 2165 +f 1398 1871 891 +f 2165 1338 1681 +f 1970 2010 1978 +f 2010 2030 2029 +f 2039 2010 2029 +f 2030 2055 2078 +f 2029 2030 2078 +f 1849 1848 2175 +f 1871 1862 891 +f 543 2015 2014 +f 1857 1858 1864 +f 1864 1858 1867 +f 1963 1945 1970 +f 2055 2088 2078 +f 2078 2088 2105 +f 2105 2131 2126 +f 2126 2131 1767 +f 2063 2083 2033 +f 2161 2171 209 +f 2032 2042 2011 +f 1813 2150 1773 +f 1914 1908 1954 +f 1970 1979 2010 +f 2088 2131 2105 +f 2015 543 1876 +f 1694 1692 1048 +f 1395 2207 1859 +f 1395 1393 2207 +f 1730 1784 1736 +f 2500 2466 2470 +f 1709 1701 1757 +f 1945 1979 1970 +f 2030 2050 2055 +f 2350 2317 2286 +f 2154 2155 1886 +f 871 860 1889 +f 2161 209 2136 +f 2497 2463 2493 +f 2190 2204 2203 +f 1800 2179 1404 +f 2477 2469 1385 +f 1385 1715 2477 +f 2128 209 1387 +f 1858 1868 1867 +f 1867 1881 1880 +f 1893 1892 1880 +f 1881 1893 1880 +f 1893 1907 1892 +f 1907 1908 1914 +f 1954 1979 1945 +f 1979 1980 2010 +f 2131 2159 1767 +f 1765 93 339 +f 1761 1877 1405 +f 523 1347 515 +f 1541 2157 1738 +f 2144 2163 1367 +f 1380 1389 1566 +f 2317 2392 2316 +f 1994 2498 1801 +f 1867 1868 1881 +f 1980 2050 2030 +f 2010 1980 2030 +f 2050 2089 2055 +f 2055 2089 2088 +f 2088 2114 2131 +f 1538 1651 1659 +f 2145 2155 2129 +f 2140 29 1928 +f 2370 2033 2025 +f 2252 2239 2240 +f 2239 2252 1862 +f 2392 2391 2316 +f 2469 2501 1385 +f 2477 1715 1710 +f 502 1614 1643 +f 2438 1227 2431 +f 1915 1907 1893 +f 1915 1908 1907 +f 1954 1908 1979 +f 1908 1988 1979 +f 1979 1988 1980 +f 2114 2159 2131 +f 2155 2154 2129 +f 508 1966 2144 +f 872 1756 1626 +f 1710 1715 1505 +f 236 1966 508 +f 2272 2284 1398 +f 2325 2355 2319 +f 1548 2121 1779 +f 1532 1528 1522 +f 1980 2056 2050 +f 2050 2056 2089 +f 2013 2015 2012 +f 1964 2003 1956 +f 2006 2012 1391 +f 1565 1927 1503 +f 2244 2243 2226 +f 5 1715 1385 +f 1858 1848 1868 +f 1915 1946 1908 +f 1946 1988 1908 +f 1980 2020 2056 +f 2115 2159 2114 +f 2092 2083 2063 +f 1398 2284 1687 +f 2162 2155 2145 +f 519 2475 2488 +f 2158 5 1385 +f 5 1505 1715 +f 1692 1694 1505 +f 1988 2020 1980 +f 2115 2169 2159 +f 2169 2168 2159 +f 2083 2082 2072 +f 1316 1984 1983 +f 1488 1619 1650 +f 2083 2072 2033 +f 2361 1210 1233 +f 1933 1946 1915 +f 2056 2079 2089 +f 2088 2115 2114 +f 2099 2091 2082 +f 2162 532 2155 +f 1852 2006 2005 +f 2023 2061 2052 +f 2176 2184 2175 +f 2162 985 532 +f 1909 1893 1881 +f 1909 1915 1893 +f 1988 2040 2020 +f 2040 2056 2020 +f 2089 2079 2088 +f 2088 2079 2115 +f 1782 1444 1882 +f 1216 1215 2320 +f 867 1939 1894 +f 867 903 1939 +f 1372 2398 1379 +f 1863 504 2027 +f 2158 1385 504 +f 1868 1782 1881 +f 1909 1933 1915 +f 2040 1988 1946 +f 1481 2024 1492 +f 2120 2136 2119 +f 1522 1528 1518 +f 1871 1398 1405 +f 1221 1408 1399 +f 1357 5 2158 +f 2179 1800 1763 +f 1868 1865 1782 +f 1882 1881 1782 +f 1882 1909 1881 +f 2040 2057 2056 +f 2106 2079 2056 +f 2057 2106 2056 +f 2106 2132 2079 +f 2132 2115 2079 +f 2115 2132 2169 +f 532 985 597 +f 2092 2100 2082 +f 1210 1221 1399 +f 1399 1233 1210 +f 2130 2002 1517 +f 1849 1865 1868 +f 1933 2040 1946 +f 52 1269 30 +f 1667 1813 1753 +f 1997 1380 1673 +f 940 1008 1088 +f 1947 1994 2046 +f 1882 1916 1909 +f 1924 1933 1909 +f 1533 2040 1933 +f 1533 1534 2040 +f 2058 2040 1534 +f 2058 2057 2040 +f 1238 191 1768 +f 1997 1389 1380 +f 1875 1541 1554 +f 1854 504 1863 +f 1854 2158 504 +f 2396 1275 2406 +f 2426 2443 153 +f 1916 1924 1909 +f 1925 1935 1934 +f 1870 1723 1426 +f 2058 2097 2057 +f 2097 2106 2057 +f 2132 2151 2169 +f 2151 2160 2169 +f 1106 1635 1562 +f 1957 1768 1681 +f 1957 2051 1768 +f 526 535 33 +f 1614 1594 1609 +f 2233 2229 2216 +f 2496 2027 2084 +f 2496 1863 2027 +f 2117 1854 1863 +f 2016 2158 1854 +f 2016 1504 1357 +f 2158 2016 1357 +f 1114 236 1661 +f 2129 2154 2137 +f 2133 2106 2097 +f 2491 1999 2041 +f 2051 1238 1768 +f 2061 2108 2081 +f 2189 2195 2186 +f 2348 2349 2362 +f 1701 192 482 +f 505 1737 1707 +f 2133 2132 2106 +f 2132 2133 2151 +f 2151 2170 2160 +f 502 1661 2162 +f 1998 1389 1997 +f 2297 2352 2329 +f 2352 2364 2329 +f 2394 2414 2364 +f 2352 2394 2364 +f 2402 512 2415 +f 2255 2254 2243 +f 2446 1365 2456 +f 2271 2282 2298 +f 846 2283 2264 +f 2293 2310 2318 +f 2254 2295 2294 +f 2283 2290 2278 +f 2270 2294 2293 +f 2423 2455 2400 +f 2281 2287 2267 +f 2190 2191 2204 +f 2271 2263 2282 +f 2334 2329 2364 +f 2424 2432 2409 +f 2282 2263 2298 +f 1409 1659 1958 +f 2263 2302 2298 +f 2297 2329 2296 +f 1256 446 2346 +f 1958 2502 2478 +f 2437 2399 2444 +f 263 2366 2359 +f 849 827 823 +f 2311 2325 2290 +f 2499 2379 2434 +f 2446 2456 2423 +f 947 2358 2379 +f 2499 947 2379 +f 2205 2195 2212 +f 2245 2237 2227 +f 2245 2256 2237 +f 2256 2263 2271 +f 556 571 2305 +f 1528 2068 1518 +f 2424 2439 2432 +f 2302 2352 2297 +f 1866 2237 826 +f 2248 2242 2211 +f 2334 2364 2363 +f 2235 2244 2226 +f 2255 2295 2254 +f 2329 2324 2296 +f 2439 2447 1973 +f 2329 2334 2324 +f 2409 2432 2414 +f 2293 2318 2276 +f 866 2425 2416 +f 1487 1493 2372 +f 2237 2231 2230 +f 2415 512 17 +f 2035 1236 26 +f 921 2138 688 +f 2491 2482 2462 +f 6 181 197 +f 2481 948 1795 +f 2138 2383 2382 +f 2377 2394 2352 +f 2377 506 2394 +f 2394 506 2402 +f 2401 2402 2415 +f 2394 2402 2401 +f 2318 2326 2276 +f 2439 2457 2432 +f 2298 2302 2297 +f 2244 2249 2243 +f 2404 1100 2382 +f 2238 2245 2227 +f 2245 2257 2256 +f 2257 2263 2256 +f 2324 2334 2328 +f 2257 2289 2263 +f 2289 2302 2263 +f 2236 2231 2250 +f 2138 2382 688 +f 2383 2404 2382 +f 1100 2404 2343 +f 2353 2352 2302 +f 2353 2377 2352 +f 2237 2230 2220 +f 2335 2355 2325 +f 2308 2340 2315 +f 2253 2269 2276 +f 2311 2335 2325 +f 2439 2424 511 +f 2268 2267 2248 +f 2383 413 2404 +f 123 971 832 +f 2234 2243 2269 +f 2225 2213 2234 +f 2219 2213 2225 +f 2195 2196 2212 +f 1544 2418 1549 +f 413 866 2404 +f 2404 866 2416 +f 2416 2417 2404 +f 2404 2417 2343 +f 2415 2409 2401 +f 2196 2219 2212 +f 2268 2248 2218 +f 2206 2214 2197 +f 2417 2332 2343 +f 2343 2332 832 +f 2330 2302 2289 +f 2330 2353 2302 +f 2453 2454 515 +f 2218 2248 2217 +f 2218 2217 2205 +f 2276 2281 2268 +f 2178 2197 2177 +f 2197 2189 2177 +f 2332 2066 832 +f 832 2066 123 +f 2231 2236 2230 +f 669 950 1144 +f 2217 2211 2199 +f 1216 1209 1217 +f 2066 2365 123 +f 2230 2226 2214 +f 2290 2325 2304 +f 2325 2319 2304 +f 2217 2248 2211 +f 2191 2192 2199 +f 510 525 2035 +f 2417 1917 2332 +f 2332 1917 2066 +f 2408 2413 2341 +f 2248 2267 2242 +f 2326 2333 2281 +f 1340 2365 2066 +f 2440 1302 1340 +f 2226 2230 2235 +f 1153 1163 1116 +f 2431 2455 2438 +f 2416 2425 2417 +f 2495 2474 2462 +f 2290 2304 2277 +f 825 2227 1872 +f 151 239 1038 +f 9 151 1038 +f 545 928 2381 +f 2440 2406 1384 +f 928 1596 2381 +f 2186 2188 2185 +f 2456 26 1888 +f 2287 2333 2262 +f 2425 2342 2417 +f 2342 1917 2417 +f 1917 877 2066 +f 2336 1340 2066 +f 2336 2440 1340 +f 2328 2351 2327 +f 825 2238 2227 +f 2351 2368 2327 +f 1222 2388 1211 +f 678 756 734 +f 428 263 1343 +f 2188 2191 2190 +f 2341 2376 2333 +f 2066 877 2336 +f 2290 2277 2278 +f 739 634 592 +f 675 304 14 +f 2384 675 14 +f 2199 2211 2204 +f 2191 2199 2204 +f 2322 2318 2310 +f 2287 2262 2233 +f 2185 2188 2184 +f 2386 2425 845 +f 2384 572 675 +f 1128 123 2365 +f 832 971 2343 +f 2188 2186 2191 +f 2185 2184 2176 +f 2345 1917 2342 +f 2345 877 1917 +f 2336 2406 2440 +f 971 1100 2343 +f 2299 2289 2257 +f 2299 2303 2289 +f 2249 2255 2243 +f 506 513 512 +f 2437 955 1219 +f 1587 2398 1324 +f 877 2396 2336 +f 2336 2396 2406 +f 2463 2479 879 +f 2376 2412 2350 +f 2281 2267 2268 +f 2303 2330 2289 +f 624 635 159 +f 1996 2356 1561 +f 2449 2436 1996 +f 2356 2054 2451 +f 928 2398 1587 +f 2333 2350 2262 +f 2035 26 2456 +f 2346 2342 2425 +f 2346 2345 2342 +f 1544 2380 2418 +f 2412 2392 2350 +f 622 509 1151 +f 2436 2054 1996 +f 545 2451 928 +f 2326 2341 2333 +f 2346 2425 2386 +f 1365 2035 2456 +f 2369 2377 2353 +f 2369 506 2377 +f 2451 900 928 +f 900 2398 928 +f 1235 1888 1244 +f 2337 2345 2346 +f 877 772 2396 +f 772 1275 2396 +f 2432 2446 2414 +f 2294 2295 2310 +f 2369 2330 828 +f 2418 2419 2436 +f 2450 2429 2436 +f 2436 2429 2054 +f 2490 2494 1656 +f 1321 155 2338 +f 1256 2346 2386 +f 2448 877 2345 +f 877 2448 772 +f 2446 2423 2414 +f 2351 2334 2363 +f 2243 2254 2269 +f 2380 2419 2418 +f 2419 2450 2436 +f 2283 2278 2264 +f 822 2197 823 +f 1008 1759 1565 +f 2448 2345 2337 +f 2270 2293 2276 +f 2323 2324 2328 +f 2429 1012 2054 +f 2226 2243 2213 +f 2395 325 772 +f 2370 2367 2380 +f 2054 2435 2451 +f 2435 2397 2451 +f 2451 2397 900 +f 1774 1974 1975 +f 2305 2290 2283 +f 846 2305 2283 +f 2320 1215 2285 +f 2139 2448 2337 +f 2448 2395 772 +f 1232 1231 1216 +f 2272 2285 2284 +f 2367 2371 2380 +f 2371 2405 2380 +f 2380 2405 2419 +f 2419 2429 2450 +f 2429 176 1012 +f 2397 2373 900 +f 2373 2398 900 +f 2373 1379 2398 +f 2372 1500 1508 +f 1133 1303 1142 +f 2252 2273 2272 +f 891 2252 2272 +f 2419 2405 2429 +f 2405 2430 2429 +f 2429 2430 176 +f 2189 2186 2181 +f 2212 2219 2218 +f 2312 2139 2337 +f 2139 2384 2448 +f 2448 2384 2395 +f 899 855 843 +f 2272 2273 2285 +f 2331 2303 2299 +f 176 2435 2054 +f 1012 176 2054 +f 2177 2185 2176 +f 2218 2219 2225 +f 1216 1220 1215 +f 2378 2139 2312 +f 2384 14 2395 +f 2324 2295 2255 +f 2240 2273 2252 +f 2371 2387 2405 +f 2410 2430 2405 +f 2430 2442 176 +f 2435 2344 2397 +f 2397 2344 2373 +f 2456 1888 2455 +f 2242 2267 2233 +f 2233 2262 2229 +f 2378 2384 2139 +f 2323 2310 2295 +f 2323 2322 2310 +f 2240 2274 2273 +f 974 841 990 +f 2490 1447 2486 +f 2387 2410 2405 +f 2442 2141 176 +f 2344 1778 2373 +f 972 1379 2373 +f 1778 972 2373 +f 1379 972 428 +f 1211 2437 1223 +f 1228 1215 1220 +f 702 2378 2312 +f 17 518 2415 +f 1888 26 1244 +f 2324 2323 2295 +f 2305 2311 2290 +f 2307 2285 2273 +f 2274 2307 2273 +f 2307 2320 2285 +f 2369 531 506 +f 2435 2258 2344 +f 2296 2324 2288 +f 1233 1217 2361 +f 2360 2371 2367 +f 2410 2442 2430 +f 176 2141 2258 +f 176 2258 2435 +f 539 2331 66 +f 2350 2392 2317 +f 2268 2225 2253 +f 1508 1500 2371 +f 2360 1508 2371 +f 2371 1500 2387 +f 972 2366 428 +f 1626 1686 1358 +f 1759 1807 1819 +f 2277 2257 2245 +f 2277 2299 2257 +f 1784 2228 1736 +f 2265 2240 1736 +f 2228 2265 1736 +f 2265 2274 2240 +f 1209 2320 2307 +f 2320 1209 1216 +f 1555 1584 1560 +f 2387 1500 2372 +f 2410 2420 2442 +f 2433 972 1778 +f 2433 2366 972 +f 955 522 1225 +f 2339 2307 2274 +f 2372 1493 2387 +f 2411 2420 2410 +f 2420 954 2442 +f 2442 954 2141 +f 2344 2433 1778 +f 2205 2212 2218 +f 2328 2334 2351 +f 2394 2401 2414 +f 2250 2256 2271 +f 2339 1209 2307 +f 2328 2322 2323 +f 866 845 2425 +f 3 316 893 +f 2387 2411 2410 +f 2441 2141 954 +f 2141 2441 2258 +f 2354 2433 2344 +f 2254 2294 2270 +f 2269 2254 2270 +f 863 2305 846 +f 2441 2354 2258 +f 2258 2354 2344 +f 2319 2355 51 +f 2223 2228 1784 +f 1493 2411 2387 +f 1560 2449 1555 +f 2288 2324 2255 +f 825 2251 2238 +f 2251 2245 2238 +f 1299 84 1312 +f 2246 2265 2228 +f 2313 2274 2265 +f 2313 2339 2274 +f 2251 2277 2245 +f 2319 51 2331 +f 891 1862 2252 +f 2443 954 2420 +f 2443 2441 954 +f 511 2447 2439 +f 2242 2233 2211 +f 188 15 814 +f 2443 2426 2441 +f 2426 2354 2441 +f 2306 2403 2433 +f 2433 2403 2366 +f 539 2303 2331 +f 2246 2228 2223 +f 1030 1819 1807 +f 2354 2306 2433 +f 2413 2412 2376 +f 2438 2455 1888 +f 1848 1857 2176 +f 2207 2208 2223 +f 2208 2246 2223 +f 1209 2339 1217 +f 2339 2361 1217 +f 1221 1210 2388 +f 554 109 78 +f 386 1375 95 +f 2327 2326 2318 +f 2179 2182 1393 +f 2182 2208 1393 +f 1393 2208 2207 +f 2361 2399 2388 +f 2388 2399 1211 +f 2306 2354 2426 +f 2403 2359 2366 +f 2214 2226 2213 +f 2268 2253 2276 +f 889 2200 2179 +f 2200 2182 2179 +f 2200 2221 2182 +f 2221 2208 2182 +f 2314 2265 2246 +f 2314 2313 2265 +f 2339 2374 2361 +f 2478 2434 2379 +f 2205 2217 2199 +f 2208 2259 2246 +f 2259 2275 2246 +f 2314 2321 2313 +f 2313 2347 2339 +f 2347 2374 2339 +f 2374 2399 2361 +f 153 154 2426 +f 154 2306 2426 +f 2385 2359 2403 +f 2221 2259 2208 +f 2306 2357 2403 +f 2357 2385 2403 +f 2237 2256 2231 +f 2172 2180 889 +f 2180 2200 889 +f 2200 2201 2221 +f 2246 2291 2314 +f 2374 2444 2399 +f 571 555 2311 +f 2192 2205 2199 +f 2173 2180 2172 +f 2279 2246 2275 +f 2279 2291 2246 +f 2292 2314 2291 +f 2321 2362 2313 +f 2362 2347 2313 +f 2347 2389 2374 +f 2444 955 2437 +f 2292 2291 2279 +f 2452 2444 2374 +f 2054 2356 1996 +f 2338 2306 154 +f 2186 2192 2191 +f 2193 2201 2200 +f 2259 2221 2201 +f 2247 2259 2201 +f 2452 955 2444 +f 2278 2277 2251 +f 2338 2357 2306 +f 2181 2186 2185 +f 2276 2326 2281 +f 2432 2457 2446 +f 2198 2201 2193 +f 2198 2232 2201 +f 2232 2247 2201 +f 2389 2452 2374 +f 2452 1630 955 +f 1403 1749 1444 +f 1555 1996 1561 +f 2357 2427 2385 +f 2385 2428 230 +f 2409 2415 2424 +f 2304 2331 2299 +f 2193 2200 2180 +f 2445 2452 2389 +f 1565 1759 1927 +f 2380 1544 2370 +f 2338 2427 2357 +f 2427 2428 2385 +f 230 222 253 +f 2202 2198 2193 +f 2202 2209 2198 +f 2209 2241 2198 +f 2241 2232 2198 +f 2266 2275 2259 +f 2365 1340 1128 +f 2415 518 2424 +f 2338 170 2427 +f 170 2428 2427 +f 2181 2185 2177 +f 2196 2195 2189 +f 2183 2193 2180 +f 2453 1630 2452 +f 2197 2214 2189 +f 2401 2409 2414 +f 822 2220 2197 +f 1210 2361 2388 +f 2187 2193 2183 +f 2187 2202 2193 +f 2266 2279 2275 +f 2279 2300 2292 +f 2375 2347 2362 +f 2375 2390 2347 +f 2390 2389 2347 +f 2453 2452 2445 +f 1347 1630 2453 +f 1630 1347 522 +f 2220 2206 2197 +f 2262 2350 2286 +f 170 254 2428 +f 2457 1973 2446 +f 1973 1365 2446 +f 2174 2183 2180 +f 2194 2202 2187 +f 2222 2241 2209 +f 2222 2260 2241 +f 2266 2259 2247 +f 2390 2445 2389 +f 2264 2251 825 +f 2363 2368 2351 +f 2326 2393 2341 +f 1855 1850 1851 +f 2210 2209 2202 +f 2210 2222 2209 +f 2261 2260 2222 +f 2280 2279 2266 +f 2280 2300 2279 +f 251 263 2359 +f 2277 2304 2299 +f 2220 2230 2206 +f 2202 2194 2210 +f 2213 2243 2234 +f 2328 2327 2322 +f 2294 2310 2293 +f 2214 2196 2189 +f 2196 2213 2219 +f 2224 2222 2210 +f 2421 2390 2375 +f 2206 2230 2214 +f 2194 2203 2210 +f 2224 2261 2222 +f 2421 2445 2390 +f 2322 2327 2318 +f 2393 2408 2341 +f 1365 1973 510 +f 2216 2210 2203 +f 2216 2224 2210 +f 2266 2308 2280 +f 2280 2308 2300 +f 2407 2421 2375 +f 2175 2183 2174 +f 2194 2190 2203 +f 2454 2445 2421 +f 522 1347 523 +f 2456 2455 2423 +f 823 2197 2178 +f 2281 2333 2287 +f 2188 2187 2183 +f 2188 2190 2194 +f 2187 2188 2194 +f 2308 2315 2300 +f 2407 2375 2362 +f 2443 2420 2503 +f 2420 2411 2503 +f 2411 1493 2503 +f 1493 1487 2503 +f 1487 1318 2503 +f 1318 1320 2503 +f 1320 2443 2503 diff --git a/demos/model3D/files/Duck.glb b/demos/model3D/files/Duck.glb new file mode 100644 index 0000000000000000000000000000000000000000..217170d2bd67051270be974292dc3b834eefe206 Binary files /dev/null and b/demos/model3D/files/Duck.glb differ diff --git a/demos/model3D/files/Fox.gltf b/demos/model3D/files/Fox.gltf new file mode 100644 index 0000000000000000000000000000000000000000..ff3115c05d97ac673c511affe1b3fecc64e1c3d3 --- /dev/null +++ b/demos/model3D/files/Fox.gltf @@ -0,0 +1,1777 @@ +{ + "asset": { + "copyright": "CC-BY 4.0 Model by PixelMannen https://opengameart.org/content/fox-and-shiba and @tomkranis https://sketchfab.com/3d-models/low-poly-fox-by-pixelmannen-animated-371dea88d7e04a76af5763f2a36866bc and @AsoboStudio with @scurest https://github.com/KhronosGroup/glTF-Sample-Models/pull/150#issuecomment-406300118", + "version": "2.0" + }, + "accessors": [ + { + "bufferView": 0, + "componentType": 5126, + "count": 1728, + "type": "VEC3", + "byteOffset": 0, + "min": [ + -12.592718124389648, + -0.12174476683139801, + -88.09500122070312 + ], + "max": [ + 12.592718124389648, + 78.90718841552734, + 66.62486267089844 + ] + }, + { + "bufferView": 1, + "componentType": 5126, + "count": 1728, + "type": "VEC2", + "byteOffset": 0 + }, + { + "bufferView": 1, + "componentType": 5123, + "count": 1728, + "type": "VEC4", + "byteOffset": 13824 + }, + { + "bufferView": 2, + "byteOffset": 0, + "componentType": 5126, + "count": 1728, + "type": "VEC4" + }, + { + "bufferView": 3, + "byteOffset": 0, + "componentType": 5126, + "count": 24, + "type": "MAT4" + }, + { + "bufferView": 4, + "byteOffset": 0, + "componentType": 5126, + "count": 83, + "type": "SCALAR", + "min": [ + 0.0 + ], + "max": [ + 3.4166667461395264 + ] + }, + { + "bufferView": 5, + "byteOffset": 0, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 1328, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 2656, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 3984, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 5312, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 6640, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 7968, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 9296, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 10624, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 11952, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 13280, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 14608, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 15936, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 17264, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 18592, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 19920, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 21248, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 22576, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 23904, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 6, + "byteOffset": 0, + "componentType": 5126, + "count": 83, + "type": "VEC3" + }, + { + "bufferView": 5, + "byteOffset": 25232, + "componentType": 5126, + "count": 83, + "type": "VEC4" + }, + { + "bufferView": 4, + "byteOffset": 332, + "componentType": 5126, + "count": 18, + "type": "SCALAR", + "min": [ + 0.0 + ], + "max": [ + 0.7083333134651184 + ] + }, + { + "bufferView": 5, + "byteOffset": 26560, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 26848, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 27136, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 27424, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 27712, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 28000, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 28288, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 28576, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 28864, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 29152, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 29440, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 29728, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 30016, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 30304, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 30592, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 30880, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 31168, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 31456, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 31744, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 6, + "byteOffset": 996, + "componentType": 5126, + "count": 18, + "type": "VEC3" + }, + { + "bufferView": 5, + "byteOffset": 32032, + "componentType": 5126, + "count": 18, + "type": "VEC4" + }, + { + "bufferView": 4, + "byteOffset": 404, + "componentType": 5126, + "count": 25, + "type": "SCALAR", + "min": [ + 0.0 + ], + "max": [ + 1.1583333015441895 + ] + }, + { + "bufferView": 5, + "byteOffset": 32320, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 32720, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 33120, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 33520, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 33920, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 34320, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 34720, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 35120, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 35520, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 35920, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 36320, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 36720, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 37120, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 37520, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 37920, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 38320, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 38720, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 39120, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 5, + "byteOffset": 39520, + "componentType": 5126, + "count": 25, + "type": "VEC4" + }, + { + "bufferView": 6, + "byteOffset": 1212, + "componentType": 5126, + "count": 25, + "type": "VEC3" + }, + { + "bufferView": 5, + "byteOffset": 39920, + "componentType": 5126, + "count": 25, + "type": "VEC4" + } + ], + "animations": [ + { + "channels": [ + { + "sampler": 0, + "target": { + "node": 8, + "path": "rotation" + } + }, + { + "sampler": 1, + "target": { + "node": 7, + "path": "rotation" + } + }, + { + "sampler": 2, + "target": { + "node": 11, + "path": "rotation" + } + }, + { + "sampler": 3, + "target": { + "node": 10, + "path": "rotation" + } + }, + { + "sampler": 4, + "target": { + "node": 9, + "path": "rotation" + } + }, + { + "sampler": 5, + "target": { + "node": 14, + "path": "rotation" + } + }, + { + "sampler": 6, + "target": { + "node": 13, + "path": "rotation" + } + }, + { + "sampler": 7, + "target": { + "node": 12, + "path": "rotation" + } + }, + { + "sampler": 8, + "target": { + "node": 6, + "path": "rotation" + } + }, + { + "sampler": 9, + "target": { + "node": 5, + "path": "rotation" + } + }, + { + "sampler": 10, + "target": { + "node": 17, + "path": "rotation" + } + }, + { + "sampler": 11, + "target": { + "node": 16, + "path": "rotation" + } + }, + { + "sampler": 12, + "target": { + "node": 15, + "path": "rotation" + } + }, + { + "sampler": 13, + "target": { + "node": 20, + "path": "rotation" + } + }, + { + "sampler": 14, + "target": { + "node": 19, + "path": "rotation" + } + }, + { + "sampler": 15, + "target": { + "node": 18, + "path": "rotation" + } + }, + { + "sampler": 16, + "target": { + "node": 24, + "path": "rotation" + } + }, + { + "sampler": 17, + "target": { + "node": 23, + "path": "rotation" + } + }, + { + "sampler": 18, + "target": { + "node": 22, + "path": "rotation" + } + }, + { + "sampler": 19, + "target": { + "node": 4, + "path": "translation" + } + }, + { + "sampler": 20, + "target": { + "node": 4, + "path": "rotation" + } + } + ], + "samplers": [ + { + "input": 5, + "output": 6 + }, + { + "input": 5, + "output": 7 + }, + { + "input": 5, + "output": 8 + }, + { + "input": 5, + "output": 9 + }, + { + "input": 5, + "output": 10 + }, + { + "input": 5, + "output": 11 + }, + { + "input": 5, + "output": 12 + }, + { + "input": 5, + "output": 13 + }, + { + "input": 5, + "output": 14 + }, + { + "input": 5, + "output": 15 + }, + { + "input": 5, + "output": 16 + }, + { + "input": 5, + "output": 17 + }, + { + "input": 5, + "output": 18 + }, + { + "input": 5, + "output": 19 + }, + { + "input": 5, + "output": 20 + }, + { + "input": 5, + "output": 21 + }, + { + "input": 5, + "output": 22 + }, + { + "input": 5, + "output": 23 + }, + { + "input": 5, + "output": 24 + }, + { + "input": 5, + "output": 25 + }, + { + "input": 5, + "output": 26 + } + ], + "name": "Survey" + }, + { + "channels": [ + { + "sampler": 0, + "target": { + "node": 8, + "path": "rotation" + } + }, + { + "sampler": 1, + "target": { + "node": 7, + "path": "rotation" + } + }, + { + "sampler": 2, + "target": { + "node": 11, + "path": "rotation" + } + }, + { + "sampler": 3, + "target": { + "node": 10, + "path": "rotation" + } + }, + { + "sampler": 4, + "target": { + "node": 9, + "path": "rotation" + } + }, + { + "sampler": 5, + "target": { + "node": 14, + "path": "rotation" + } + }, + { + "sampler": 6, + "target": { + "node": 13, + "path": "rotation" + } + }, + { + "sampler": 7, + "target": { + "node": 12, + "path": "rotation" + } + }, + { + "sampler": 8, + "target": { + "node": 6, + "path": "rotation" + } + }, + { + "sampler": 9, + "target": { + "node": 5, + "path": "rotation" + } + }, + { + "sampler": 10, + "target": { + "node": 17, + "path": "rotation" + } + }, + { + "sampler": 11, + "target": { + "node": 16, + "path": "rotation" + } + }, + { + "sampler": 12, + "target": { + "node": 15, + "path": "rotation" + } + }, + { + "sampler": 13, + "target": { + "node": 20, + "path": "rotation" + } + }, + { + "sampler": 14, + "target": { + "node": 19, + "path": "rotation" + } + }, + { + "sampler": 15, + "target": { + "node": 18, + "path": "rotation" + } + }, + { + "sampler": 16, + "target": { + "node": 24, + "path": "rotation" + } + }, + { + "sampler": 17, + "target": { + "node": 23, + "path": "rotation" + } + }, + { + "sampler": 18, + "target": { + "node": 22, + "path": "rotation" + } + }, + { + "sampler": 19, + "target": { + "node": 4, + "path": "translation" + } + }, + { + "sampler": 20, + "target": { + "node": 4, + "path": "rotation" + } + } + ], + "samplers": [ + { + "input": 27, + "output": 28 + }, + { + "input": 27, + "output": 29 + }, + { + "input": 27, + "output": 30 + }, + { + "input": 27, + "output": 31 + }, + { + "input": 27, + "output": 32 + }, + { + "input": 27, + "output": 33 + }, + { + "input": 27, + "output": 34 + }, + { + "input": 27, + "output": 35 + }, + { + "input": 27, + "output": 36 + }, + { + "input": 27, + "output": 37 + }, + { + "input": 27, + "output": 38 + }, + { + "input": 27, + "output": 39 + }, + { + "input": 27, + "output": 40 + }, + { + "input": 27, + "output": 41 + }, + { + "input": 27, + "output": 42 + }, + { + "input": 27, + "output": 43 + }, + { + "input": 27, + "output": 44 + }, + { + "input": 27, + "output": 45 + }, + { + "input": 27, + "output": 46 + }, + { + "input": 27, + "output": 47 + }, + { + "input": 27, + "output": 48 + } + ], + "name": "Walk" + }, + { + "channels": [ + { + "sampler": 0, + "target": { + "node": 8, + "path": "rotation" + } + }, + { + "sampler": 1, + "target": { + "node": 7, + "path": "rotation" + } + }, + { + "sampler": 2, + "target": { + "node": 11, + "path": "rotation" + } + }, + { + "sampler": 3, + "target": { + "node": 10, + "path": "rotation" + } + }, + { + "sampler": 4, + "target": { + "node": 9, + "path": "rotation" + } + }, + { + "sampler": 5, + "target": { + "node": 14, + "path": "rotation" + } + }, + { + "sampler": 6, + "target": { + "node": 13, + "path": "rotation" + } + }, + { + "sampler": 7, + "target": { + "node": 12, + "path": "rotation" + } + }, + { + "sampler": 8, + "target": { + "node": 6, + "path": "rotation" + } + }, + { + "sampler": 9, + "target": { + "node": 5, + "path": "rotation" + } + }, + { + "sampler": 10, + "target": { + "node": 17, + "path": "rotation" + } + }, + { + "sampler": 11, + "target": { + "node": 16, + "path": "rotation" + } + }, + { + "sampler": 12, + "target": { + "node": 15, + "path": "rotation" + } + }, + { + "sampler": 13, + "target": { + "node": 20, + "path": "rotation" + } + }, + { + "sampler": 14, + "target": { + "node": 19, + "path": "rotation" + } + }, + { + "sampler": 15, + "target": { + "node": 18, + "path": "rotation" + } + }, + { + "sampler": 16, + "target": { + "node": 24, + "path": "rotation" + } + }, + { + "sampler": 17, + "target": { + "node": 23, + "path": "rotation" + } + }, + { + "sampler": 18, + "target": { + "node": 22, + "path": "rotation" + } + }, + { + "sampler": 19, + "target": { + "node": 4, + "path": "translation" + } + }, + { + "sampler": 20, + "target": { + "node": 4, + "path": "rotation" + } + } + ], + "samplers": [ + { + "input": 49, + "output": 50 + }, + { + "input": 49, + "output": 51 + }, + { + "input": 49, + "output": 52 + }, + { + "input": 49, + "output": 53 + }, + { + "input": 49, + "output": 54 + }, + { + "input": 49, + "output": 55 + }, + { + "input": 49, + "output": 56 + }, + { + "input": 49, + "output": 57 + }, + { + "input": 49, + "output": 58 + }, + { + "input": 49, + "output": 59 + }, + { + "input": 49, + "output": 60 + }, + { + "input": 49, + "output": 61 + }, + { + "input": 49, + "output": 62 + }, + { + "input": 49, + "output": 63 + }, + { + "input": 49, + "output": 64 + }, + { + "input": 49, + "output": 65 + }, + { + "input": 49, + "output": 66 + }, + { + "input": 49, + "output": 67 + }, + { + "input": 49, + "output": 68 + }, + { + "input": 49, + "output": 69 + }, + { + "input": 49, + "output": 70 + } + ], + "name": "Run" + } + ], + "bufferViews": [ + { + "buffer": 0, + "byteOffset": 0, + "byteLength": 20736, + "byteStride": 12 + }, + { + "buffer": 0, + "byteOffset": 20736, + "byteLength": 27648, + "byteStride": 8 + }, + { + "buffer": 0, + "byteOffset": 48384, + "byteLength": 27648, + "byteStride": 16 + }, + { + "buffer": 0, + "byteOffset": 76032, + "byteLength": 1536 + }, + { + "buffer": 0, + "byteOffset": 77568, + "byteLength": 504, + "byteStride": 4 + }, + { + "buffer": 0, + "byteOffset": 78072, + "byteLength": 40320, + "byteStride": 16 + }, + { + "buffer": 0, + "byteOffset": 118392, + "byteLength": 1512, + "byteStride": 12 + } + ], + "buffers": [ + { + "uri": "data:application/octet-stream;base64,nZsDQJHbDEJnXLjB/NytHBbkDkLh1czBgpDNvb3RK0IkPSPCx6VTnGmWT0IYnlFCNonWQIGrVUJD0lFC4O6cQI8HUkL5dGVC9ierQC7yZkIYwWlCkKFAQHQ8bEIGx3VCOXWanDIUYEKpP4VC7apvQA2rUkJ/TndC9ierQC7yZkIYwWlC1rvFP6UrXEKYO4VCNonWQIGrVUJD0lFCyDggQUlwakLr5ExC9ierQC7yZkIYwWlCZ7AEQUOMUUIm4CxC6M4fQbrSY0KLzihCyDggQUlwakLr5ExCIM2hQDmF7UGbCLRBdMZ1QHsO7UFCqa9BBgOQQBR02UGqO6dBp0yYQJr7i0LecUxCfmYYQTBxhEIHr0NCxntJQXvQnUIGeEpCgQqHnCpwSkKWQmxC4O6cQI8HUkL5dGVC7apvQA2rUkJ/TndCgQqHnCpwSkKWQmxC7apvQA2rUkJ/TndC9w6fnMrhVkLuP4VC3zoXnFezQUIbdyxCZ7AEQUOMUUIm4CxCx6VTnGmWT0IYnlFC91XhQJiaK0JFqxbCNFZhQGGEKUL3DRTCgpDNvb3RK0IkPSPCdo7aQEQ8C0LDS4TBpOGtQIH7CEJIWB/BAY9SHOtkA0IsVB7BAY9SHOtkA0IsVB7BV5JdHB+QA0JwBDTBdo7aQEQ8C0LDS4TBnZsDQJHbDEJnXLjBF8JwP1TQB0K/KIXBn32GHPbRB0JIKYXBn32GHPbRB0JIKYXB/NytHBbkDkLh1czBnZsDQJHbDEJnXLjBnZsDQJHbDEJnXLjBNFZhQGGEKUL3DRTCHwGQQCfC3EGMtgjC3YhFQEPu6kHynZtBICHaP0wA6EFi/X9BlMVnQNaEzEF5NINBo595QC/wckFy54vCDyAZHSC+ZEEt1IrChec7QK5ibEH4A6zCMubMQL+tjkHNrZHCo595QC/wckFy54vChec7QK5ibEH4A6zCnEUuHSy2GEIRGIjCKqKYQNb2v0F3KpzCJEsmQDPDk0FN4q7CKqKYQNb2v0F3KpzCMubMQL+tjkHNrZHChec7QK5ibEH4A6zC3/HMQHJjCUI5ax/BBmQNQVpSEkL+CiHBpN+gQKRoA0LqFzVBNFZhQGGEKUL3DRTCnZsDQJHbDEJnXLjBgpDNvb3RK0IkPSPCal6bm+RVEkIZBeBBLcMLQNEfD0J8z8RBYYPYQByeFUKvZttBx6VTnGmWT0IYnlFCZ7AEQUOMUUIm4CxCNonWQIGrVUJD0lFCgQqHnCpwSkKWQmxCx6VTnGmWT0IYnlFC4O6cQI8HUkL5dGVC1rvFP6UrXEKYO4VC9ierQC7yZkIYwWlCOXWanDIUYEKpP4VC7apvQA2rUkJ/TndC4O6cQI8HUkL5dGVC9ierQC7yZkIYwWlC9w6fnMrhVkLuP4VC7apvQA2rUkJ/TndC1rvFP6UrXEKYO4VC4O6cQI8HUkL5dGVCNonWQIGrVUJD0lFC9ierQC7yZkIYwWlCQobgQIykOEJ/HRBCYYPYQByeFUKvZttBIkcKQZhhREKe5g5CNonWQIGrVUJD0lFCZ7AEQUOMUUIm4CxCyDggQUlwakLr5ExCdo7aQEQ8C0LDS4TBV5JdHB+QA0JwBDTBG/lsQPhuCUKmp4XBal6bm+RVEkIZBeBBwKVEGco2AEJmSHpBLcMLQNEfD0J8z8RBA8qGQL5mL0LypSPC91XhQJiaK0JFqxbCgpDNvb3RK0IkPSPC3/HMQHJjCUI5ax/BpOGtQIH7CEJIWB/Bdo7aQEQ8C0LDS4TBG/lsQPhuCUKmp4XBV5JdHB+QA0JwBDTBF8JwP1TQB0K/KIXBdMZ1QHsO7UFCqa9BLcMLQNEfD0J8z8RB3YhFQEPu6kHynZtBwlVEHfIooUGkMLDCnEUuHSy2GEIRGIjCJEsmQDPDk0FN4q7Chec7QK5ibEH4A6zCDyAZHSC+ZEEt1IrCPF85HSXsX0F6YKvCJEsmQDPDk0FN4q7CKqKYQNb2v0F3KpzChec7QK5ibEH4A6zCPF85HSXsX0F6YKvCwlVEHfIooUGkMLDCJEsmQDPDk0FN4q7Chec7QK5ibEH4A6zCPF85HSXsX0F6YKvCJEsmQDPDk0FN4q7CnZsDwJHbDEJnXLjBgpDNvb3RK0IkPSPC/NytHBbkDkLh1czBYYPYQByeFUKvZttBQobgQIykOEJ/HRBCfq/nmxl9LkJsKhFCfq/nmxl9LkJsKhFCal6bm+RVEkIZBeBBYYPYQByeFUKvZttBx6VTnGmWT0IYnlFC4O6cwI8HUkL5dGVCNonWwIGrVUJD0lFC9ierwC7yZkIYwWlCOXWanDIUYEKpP4VCkKFAwHQ8bEIGx3VCZ6tvwA2rUkJ/TndCyrzFv6UrXEKYO4VC9ierwC7yZkIYwWlCNonWwIGrVUJD0lFC9ierwC7yZkIYwWlCyDggwUlwakLr5ExCZ7AEwUOMUUIm4CxCyDggwUlwakLr5ExC6M4fwbrSY0KLzihCIM2hwDmF7UGbCLRBBgOQwBR02UGqO6dBdMZ1wHsO7UFCqa9Bp0yYwJr7i0LecUxCxntJwXvQnUIGeEpCfmYYwTBxhEIHr0NCgQqHnCpwSkKWQmxCZ6tvwA2rUkJ/TndC4O6cwI8HUkL5dGVCgQqHnCpwSkKWQmxC9w6fnMrhVkLuP4VCZ6tvwA2rUkJ/TndC3zoXnFezQUIbdyxCx6VTnGmWT0IYnlFCZ7AEwUOMUUIm4CxC91XhwJiaK0JFqxbCgpDNvb3RK0IkPSPCulVhwGGEKUL3DRTCV5JdHB+QA0JwBDTBAY9SHOtkA0IsVB7BaOGtwIH7CEJIWB/BaOGtwIH7CEJIWB/Bdo7awEQ8C0LDS4TBV5JdHB+QA0JwBDTB/NytHBbkDkLh1czBn32GHPbRB0JIKYXBF8Jwv1TQB0LPKIXBF8Jwv1TQB0LPKIXBnZsDwJHbDEJnXLjB/NytHBbkDkLh1czBnZsDwJHbDEJnXLjBHwGQwCfC3EGMtgjCulVhwGGEKUL3DRTC3YhFwEPu6kHynZtBlMVnwNaEzEF5NINBICHav0wA6EFi/X9Bo595wC/wckFy54vChec7wK5ibEH4A6zCDyAZHSC+ZEEt1IrC9eXMwL+tjkHNrZHChec7wK5ibEH4A6zCo595wC/wckFy54vCnEUuHSy2GEIRGIjCqkomwDPDk0FN4q7CKqKYwNb2v0F3KpzCKqKYwNb2v0F3KpzChec7wK5ibEH4A6zC9eXMwL+tjkHNrZHC3/HMwHJjCUI5ax/BpN+gwKRoA0LqFzVBBmQNwVpSEkL+CiHBulVhwGGEKUL3DRTCgpDNvb3RK0IkPSPCnZsDwJHbDEJnXLjBal6bm+RVEkIZBeBBnoPYwByeFUKvZttBLcMLwNEfD0J8z8RBx6VTnGmWT0IYnlFCNonWwIGrVUJD0lFCZ7AEwUOMUUIm4CxCgQqHnCpwSkKWQmxC4O6cwI8HUkL5dGVCx6VTnGmWT0IYnlFCyrzFv6UrXEKYO4VCOXWanDIUYEKpP4VC9ierwC7yZkIYwWlCZ6tvwA2rUkJ/TndC9ierwC7yZkIYwWlC4O6cwI8HUkL5dGVC9w6fnMrhVkLuP4VCyrzFv6UrXEKYO4VCZ6tvwA2rUkJ/TndC4O6cwI8HUkL5dGVC9ierwC7yZkIYwWlCNonWwIGrVUJD0lFCQobgwIykOEJ/HRBCIkcKwZhhREKe5g5CnoPYwByeFUKvZttBNonWwIGrVUJD0lFCyDggwUlwakLr5ExCZ7AEwUOMUUIm4CxCdo7awEQ8C0LDS4TBG/lswPhuCUKmp4XBV5JdHB+QA0JwBDTBal6bm+RVEkIZBeBBLcMLwNEfD0J8z8RBwKVEGco2AEJmSHpBhzaNwL5mL0LypSPCgpDNvb3RK0IkPSPC91XhwJiaK0JFqxbC3/HMwHJjCUI5ax/Bdo7awEQ8C0LDS4TBaOGtwIH7CEJIWB/BG/lswPhuCUKmp4XBnZsDwJHbDEJnXLjBF8Jwv1TQB0LPKIXBdMZ1wHsO7UFCqa9B3YhFwEPu6kHynZtBLcMLwNEfD0J8z8RBwlVEHfIooUGkMLDCqkomwDPDk0FN4q7CnEUuHSy2GEIRGIjChec7wK5ibEH4A6zCPF85HSXsX0F6YKvCDyAZHSC+ZEEt1IrCqkomwDPDk0FN4q7Chec7wK5ibEH4A6zCKqKYwNb2v0F3KpzCPF85HSXsX0F6YKvCqkomwDPDk0FN4q7CwlVEHfIooUGkMLDChec7wK5ibEH4A6zCqkomwDPDk0FN4q7CPF85HSXsX0F6YKvCnoPYwByeFUKvZttBal6bm+RVEkIZBeBBfq/nmxl9LkJsKhFCfq/nmxl9LkJsKhFCQobgwIykOEJ/HRBCnoPYwByeFUKvZttBdMZ1QHsO7UFCqa9BIM2hQDmF7UGbCLRBYYPYQByeFUKvZttBYYPYQByeFUKvZttBLcMLQNEfD0J8z8RBdMZ1QHsO7UFCqa9B3YhFQEPu6kHynZtBlMVnQNaEzEF5NINBBgOQQBR02UGqO6dBBgOQQBR02UGqO6dBdMZ1QHsO7UFCqa9B3YhFQEPu6kHynZtBdMZ1wHsO7UFCqa9BLcMLwNEfD0J8z8RBnoPYwByeFUKvZttBnoPYwByeFUKvZttBIM2hwDmF7UGbCLRBdMZ1wHsO7UFCqa9BICHaP0wA6EFi/X9B3YhFQEPu6kHynZtBLcMLQNEfD0J8z8RBLcMLQNEfD0J8z8RBwKVEGco2AEJmSHpBICHaP0wA6EFi/X9BICHav0wA6EFi/X9BwKVEGco2AEJmSHpBLcMLwNEfD0J8z8RBLcMLwNEfD0J8z8RB3YhFwEPu6kHynZtBICHav0wA6EFi/X9B3YhFwEPu6kHynZtBdMZ1wHsO7UFCqa9BBgOQwBR02UGqO6dBBgOQwBR02UGqO6dBlMVnwNaEzEF5NINB3YhFwEPu6kHynZtBBmQNwVpSEkL+CiHBLeUfwVzZFkKOdITBdo7awEQ8C0LDS4TBdo7awEQ8C0LDS4TB3/HMwHJjCUI5ax/BBmQNwVpSEkL+CiHBwKVEGco2AEJmSHpBaOGtwIH7CEJIWB/BAY9SHOtkA0IsVB7BaOGtwIH7CEJIWB/BwKVEGco2AEJmSHpBpN+gwKRoA0LqFzVBpN+gwKRoA0LqFzVB3/HMwHJjCUI5ax/BaOGtwIH7CEJIWB/BBmQNQVpSEkL+CiHB3/HMQHJjCUI5ax/Bdo7aQEQ8C0LDS4TBdo7aQEQ8C0LDS4TBLeUfQVzZFkKOdITBBmQNQVpSEkL+CiHBwKVEGco2AEJmSHpBAY9SHOtkA0IsVB7BpOGtQIH7CEJIWB/BpOGtQIH7CEJIWB/B3/HMQHJjCUI5ax/BpN+gQKRoA0LqFzVBpN+gQKRoA0LqFzVBwKVEGco2AEJmSHpBpOGtQIH7CEJIWB/BV5JdHB+QA0JwBDTBn32GHPbRB0JIKYXBF8JwP1TQB0K/KIXBV5JdHB+QA0JwBDTBF8Jwv1TQB0LPKIXBn32GHPbRB0JIKYXBV5JdHB+QA0JwBDTBG/lswPhuCUKmp4XBF8Jwv1TQB0LPKIXBnZsDQJHbDEJnXLjBG/lsQPhuCUKmp4XBF8JwP1TQB0K/KIXBIkcKwZhhREKe5g5CQobgwIykOEJ/HRBCZ7AEwUOMUUIm4CxCZ7AEwUOMUUIm4CxC6M4fwbrSY0KLzihCIkcKwZhhREKe5g5CQobgwIykOEJ/HRBCfq/nmxl9LkJsKhFC3zoXnFezQUIbdyxC3zoXnFezQUIbdyxCZ7AEwUOMUUIm4CxCQobgwIykOEJ/HRBCIkcKQZhhREKe5g5C6M4fQbrSY0KLzihCZ7AEQUOMUUIm4CxCZ7AEQUOMUUIm4CxCQobgQIykOEJ/HRBCIkcKQZhhREKe5g5CQobgQIykOEJ/HRBCZ7AEQUOMUUIm4CxC3zoXnFezQUIbdyxC3zoXnFezQUIbdyxCfq/nmxl9LkJsKhFCQobgQIykOEJ/HRBCA8qGQL5mL0LypSPCgpDNvb3RK0IkPSPCbtvwHG7GA0I3+C7CQSO/QBggCULpxTPCA8qGQL5mL0LypSPCbtvwHG7GA0I3+C7CpN+gQKRoA0LqFzVBBmQNQVpSEkL+CiHBCVcgQawGFULhiCHBCVcgQawGFULhiCHBgcohQWYTD0KU4C9BpN+gQKRoA0LqFzVB2W29HGkRgkLAcW3Bji2vHFbFgULhoDXBQIO/QFGEc0L2tjLBQIO/QFGEc0L2tjLBwLgfQWAGa0INTMDB2W29HGkRgkLAcW3BlD0VQSPEYkID4RbCnCwrQcgXRUIqLBfCOQrhQIpsQkKVyyPCwLgfQWAGa0INTMDBpYM4QfiVRkLsO8XBnCwrQcgXRUIqLBfCnCwrQcgXRUIqLBfC91XhQJiaK0JFqxbCA8qGQL5mL0LypSPCpN+gQKRoA0LqFzVBgcohQWYTD0KU4C9BY0EVQSna30H1n1ZBABUhQdaickJPj7VB+ietG33PhUL9CrVBwDjnGtMJj0JHlgBCylEzQa9KV0L5V69BABUhQdaickJPj7VBWzb5QE8DhULzzAJCkUImQQKQgEJ7/SJCWzb5QE8DhULzzAJCremVQLI9kELXCyVC6M4fQbrSY0KLzihCkUImQQKQgEJ7/SJCfmYYQTBxhEIHr0NCremVQLI9kELXCyVC0H4Lm8JAk0KcsCRCzBv5m992jkLSvUxCWzb5QE8DhULzzAJCwDjnGtMJj0JHlgBC0H4Lm8JAk0KcsCRCyDggQUlwakLr5ExCfmYYQTBxhEIHr0NC9ierQC7yZkIYwWlCkUImQQKQgEJ7/SJCremVQLI9kELXCyVCxntJQXvQnUIGeEpCfmYYQTBxhEIHr0NCp0yYQJr7i0LecUxCRJYcQL71eEIts2ZCkKFAQHQ8bEIGx3VCT5JenO08dkKeZ2pCOXWanDIUYEKpP4VC9ierQC7yZkIYwWlCRJYcQL71eEIts2ZCkKFAQHQ8bEIGx3VCIkcKQZhhREKe5g5CvPofQQY7TUJK/A1C6M4fQbrSY0KLzihCfmYYQTBxhEIHr0NCkUImQQKQgEJ7/SJCxntJQXvQnUIGeEpCremVQLI9kELXCyVCp0yYQJr7i0LecUxCxntJQXvQnUIGeEpCOQrhQIpsQkKVyyPCA8qGQL5mL0LypSPCQSO/QBggCULpxTPCpYM4QfiVRkLsO8XBLeUfQVzZFkKOdITBFAsVQQbpAULh9pDBQSO/QBggCULpxTPCbtvwHG7GA0I3+C7CeETQQKjGqUEruGPCp0yYQJr7i0LecUxCzBv5m992jkLSvUxCRJYcQL71eEIts2ZCyDggQV4LZ0KGfAFBZXw/HFQdgEKGfAFBPqUIHAt1hELYRIBBuM7nHMhjgULh1czBwLgfQWAGa0INTMDBlD0VQSPEYkID4RbC3KYIHeZEdUJFqxbClD0VQSPEYkID4RbCgpDNvSfxYEIIfyPCnCwrQcgXRUIqLBfCpYM4QfiVRkLsO8XB8405QVxe9EEN9dXBLeUfQVzZFkKOdITBdo7aQEQ8C0LDS4TB+kziQMlVAUJX7ofB91XhQJiaK0JFqxbCnCwrQcgXRUIqLBfC48ERQehC30FdDwnCNFZhQGGEKUL3DRTC91XhQJiaK0JFqxbCuy/fQFOV4EFgHxLCKYACQR5umkHEoBjCuw0MQRZ/l0H7hBbCzQ4KQXzHfEFwOhvCNxWZQN/EfkGfOxnCakGfQCj2jUGs/QfCK8qUQLmvkUGqgg7C+kziQMlVAUJX7ofBG/lsQPhuCUKmp4XBakGfQCj2jUGs/QfCaC3JQMGcnEFPMhrCEQzgQCfon0F9kBzCWHDgQH6DgkFbTyHCKtWNQPtGk0EJXRHCTuiWQGLDlUEQRhXCNxWZQN/EfkGfOxnCFAsVQQbpAULh9pDB+kziQMlVAUJX7ofBCez4QKs8pUGVtPPB8405QVxe9EEN9dXBFAsVQQbpAULh9pDBCez4QKs8pUGVtPPBK8qUQLmvkUGqgg7CKtWNQPtGk0EJXRHCNxWZQN/EfkGfOxnCY0EVQSna30H1n1ZBN/AmQQVU50FnL4BBpJ8QQUrqh0F9FnhBlMVnQNaEzEF5NINBPcePQAVU50GoSFZBBna9QG+sjUHJzGhBnoPYwByeFUKvZttByDggwbI2KkJivtVB+BQXwVbl7EE7Ja5B+BQXwVbl7EE7Ja5BWXXgwBzc7kHmqcBBnoPYwByeFUKvZttBwKVEGco2AEJmSHpBpN+gQKRoA0LqFzVBPcePQAVU50GoSFZBPcePQAVU50GoSFZBY0EVQSna30H1n1ZBBna9QG+sjUHJzGhBlngUHfkDTkIw70HCmmSxQHBoUEI88iXCpeTKQDCkN0LOvUbCQSO/QBggCULpxTPCb/UJQWsRyUFizGzC0gvzQPAxIULKoT3CvHbnwIpsQkKVyyPCHtG3wHBoUEI88iXCPgvPwDCkN0LOvUbCPgvPwDCkN0LOvUbCLjL3wPAxIULKoT3CvHbnwIpsQkKVyyPCJHL5QLltCkIqToHCb/UJQWsRyUFizGzCMubMQL+tjkHNrZHCeETQQKjGqUEruGPC1CgFHZgyoUEDBWLCDyAZHSC+ZEEt1IrCb/UJQWsRyUFizGzCeETQQKjGqUEruGPCo595QC/wckFy54vCZ4i2QHygFUL7dYTCJHL5QLltCkIqToHCKqKYQNb2v0F3KpzCnEUuHSy2GEIRGIjCZ4i2QHygFUL7dYTCKqKYQNb2v0F3KpzC+kziQMlVAUJX7ofBdo7aQEQ8C0LDS4TBG/lsQPhuCUKmp4XB2W29HGkRgkLAcW3BwLgfQWAGa0INTMDBuM7nHMhjgULh1czBmmSxQHBoUEI88iXClD0VQSPEYkID4RbCOQrhQIpsQkKVyyPCgpDNvSfxYEIIfyPClD0VQSPEYkID4RbCmmSxQHBoUEI88iXClD0VQSPEYkID4RbCwLgfQWAGa0INTMDBnCwrQcgXRUIqLBfCABUhQdaickJPj7VBPqUIHAt1hELYRIBB+ietG33PhUL9CrVBOQrhQIpsQkKVyyPCnCwrQcgXRUIqLBfCA8qGQL5mL0LypSPCWzb5QE8DhULzzAJCABUhQdaickJPj7VBwDjnGtMJj0JHlgBCRBorQbqccUJjDwdCylEzQa9KV0L5V69BWzb5QE8DhULzzAJCPcePQAVU50GoSFZBpN+gQKRoA0LqFzVBY0EVQSna30H1n1ZByDggQUlwakLr5ExC6M4fQbrSY0KLzihCfmYYQTBxhEIHr0NCremVQLI9kELXCyVCWzb5QE8DhULzzAJC0H4Lm8JAk0KcsCRCRJYcQL71eEIts2ZCzBv5m992jkLSvUxCT5JenO08dkKeZ2pC9ierQC7yZkIYwWlCfmYYQTBxhEIHr0NCRJYcQL71eEIts2ZCkKFAQHQ8bEIGx3VCRJYcQL71eEIts2ZCT5JenO08dkKeZ2pCY0EVQSna30H1n1ZBgcohQWYTD0KU4C9BN/AmQQVU50FnL4BBWXXgQBzc7kHmqcBBYYPYQByeFUKvZttBIM2hQDmF7UGbCLRBCVcgQawGFULhiCHBuG4vQURmMEL/gibBgcohQWYTD0KU4C9BlngUHfkDTkIw70HCgpDNvSfxYEIIfyPCmmSxQHBoUEI88iXC8405QVxe9EEN9dXBpYM4QfiVRkLsO8XBFAsVQQbpAULh9pDBb/UJQWsRyUFizGzCQSO/QBggCULpxTPCeETQQKjGqUEruGPCp0yYQJr7i0LecUxCremVQLI9kELXCyVCzBv5m992jkLSvUxCHaYgQQ7MbEJxbnVByDggQV4LZ0KGfAFBPqUIHAt1hELYRIBB3KYIHeZEdUJFqxbCuM7nHMhjgULh1czBlD0VQSPEYkID4RbC48ERQehC30FdDwnCnCwrQcgXRUIqLBfC8405QVxe9EEN9dXBQIO/QFGEc0L2tjLBcewfQahqaULh4DDBwLgfQWAGa0INTMDBFAsVQQbpAULh9pDBLeUfQVzZFkKOdITB+kziQMlVAUJX7ofBuy/fQFOV4EFgHxLC91XhQJiaK0JFqxbC48ERQehC30FdDwnCHwGQQCfC3EGMtgjCNFZhQGGEKUL3DRTCuy/fQFOV4EFgHxLCakGfQCj2jUGs/QfCG/lsQPhuCUKmp4XBK8qUQLmvkUGqgg7CICHaP0wA6EFi/X9BwKVEGco2AEJmSHpBPcePQAVU50GoSFZBpJ8QQUrqh0F9FnhBN/AmQQVU50FnL4BB77sTQTD6xkGBpJ9BZ4i2QHygFUL7dYTClngUHfkDTkIw70HCJHL5QLltCkIqToHCeETQQKjGqUEruGPCbtvwHG7GA0I3+C7C1CgFHZgyoUEDBWLCnEUuHSy2GEIRGIjClngUHfkDTkIw70HCZ4i2QHygFUL7dYTCJHL5QLltCkIqToHClngUHfkDTkIw70HCpeTKQDCkN0LOvUbCKqKYQNb2v0F3KpzCJHL5QLltCkIqToHCMubMQL+tjkHNrZHCo595QC/wckFy54vCeETQQKjGqUEruGPCDyAZHSC+ZEEt1IrCMubMQL+tjkHNrZHCb/UJQWsRyUFizGzCo595QC/wckFy54vChzaNwL5mL0LypSPCbtvwHG7GA0I3+C7CgpDNvb3RK0IkPSPCBCO/wBggCULpxTPCbtvwHG7GA0I3+C7ChzaNwL5mL0LypSPCgcohwWYTD0KU4C9BCVcgwawGFULhiCHBBmQNwVpSEkL+CiHBBmQNwVpSEkL+CiHBpN+gwKRoA0LqFzVBgcohwWYTD0KU4C9BwLgfwWAGa0INTMDBQIO/wFGEc0L2tjLBji2vHFbFgULhoDXBji2vHFbFgULhoDXB2W29HGkRgkLAcW3BwLgfwWAGa0INTMDBHBA0wcHmVELiEHRBXWMhwf4KFkJweXBByDggwbI2KkJivtVByDggwbI2KkJivtVBylEzwa9KV0L5V69BHBA0wcHmVELiEHRBlD0VwSPEYkID4RbCvHbnwIpsQkKVyyPCfSwrwcgXRUIqLBfCwLgfwWAGa0INTMDBfSwrwcgXRUIqLBfCpYM4wfiVRkLsO8XBfSwrwcgXRUIqLBfChzaNwL5mL0LypSPC91XhwJiaK0JFqxbCpN+gwKRoA0LqFzVBY0EVwSna30H1n1ZBgcohwWYTD0KU4C9BHhUhwdaickJPj7VBwDjnGtMJj0JHlgBC+ietG33PhUL9CrVBylEzwa9KV0L5V69BWzb5wE8DhULzzAJCHhUhwdaickJPj7VBkUImwQKQgEJ7/SJC6umVwLI9kELXCyVCWzb5wE8DhULzzAJCylEzQa9KV0L5V69BRBorQbqccUJjDwdCvPofQQY7TUJK/A1CvPofQQY7TUJK/A1CyDggQbI2KkJivtVBylEzQa9KV0L5V69B6M4fwbrSY0KLzihCfmYYwTBxhEIHr0NCkUImwQKQgEJ7/SJC6umVwLI9kELXCyVCzBv5m992jkLSvUxC0H4Lm8JAk0KcsCRCWzb5wE8DhULzzAJC0H4Lm8JAk0KcsCRCwDjnGtMJj0JHlgBCyDggwUlwakLr5ExC9ierwC7yZkIYwWlCfmYYwTBxhEIHr0NCkUImwQKQgEJ7/SJCxntJwXvQnUIGeEpC6umVwLI9kELXCyVCfmYYwTBxhEIHr0NCRJYcwL71eEIts2ZCp0yYwJr7i0LecUxCkKFAwHQ8bEIGx3VCOXWanDIUYEKpP4VCT5JenO08dkKeZ2pC9ierwC7yZkIYwWlCkKFAwHQ8bEIGx3VCRJYcwL71eEIts2ZCIkcKwZhhREKe5g5C6M4fwbrSY0KLzihCvPofwQY7TUJK/A1CfmYYwTBxhEIHr0NCxntJwXvQnUIGeEpCkUImwQKQgEJ7/SJC6umVwLI9kELXCyVCxntJwXvQnUIGeEpCp0yYwJr7i0LecUxCvHbnwIpsQkKVyyPCBCO/wBggCULpxTPChzaNwL5mL0LypSPCpYM4wfiVRkLsO8XBFAsVwQbpAULh9pDBLeUfwVzZFkKOdITBBCO/wBggCULpxTPCeETQwKjGqUEruGPCbtvwHG7GA0I3+C7Cp0yYwJr7i0LecUxCRJYcwL71eEIts2ZCzBv5m992jkLSvUxCyDggwV4LZ0KGfAFBPqUIHAt1hELYRIBBZXw/HFQdgEKGfAFBuM7nHMhjgULh1czBlD0VwSPEYkID4RbCwLgfwWAGa0INTMDB3KYIHeZEdUJFqxbCgpDNvSfxYEIIfyPClD0VwSPEYkID4RbCfSwrwcgXRUIqLBfC8405wVxe9EEN9dXBpYM4wfiVRkLsO8XBLeUfwVzZFkKOdITB+kziwMlVAUJX7ofBdo7awEQ8C0LDS4TB91XhwJiaK0JFqxbC48ERwehC30FdDwnCfSwrwcgXRUIqLBfCulVhwGGEKUL3DRTCfi/fwFOV4EFgHxLC91XhwJiaK0JFqxbCCoACwR5umkHEoBjCzQ4KwXzHfEFwOhvCnQ0MwSV/l0H7hBbC+kziwMlVAUJX7ofBLkGfwCj2jUGs/QfCG/lswPhuCUKmp4XBKy3JwMGcnEFPMhrCG3DgwH6DgkFbTyHCEQzgwCfon0F9kBzCKtWNwPtGk0EJXRHCNxWZwN/EfkGfOxnCTuiWwGLDlUEQRhXCFAsVwQbpAULh9pDBCez4wKs8pUGVtPPB+kziwMlVAUJX7ofB8405wVxe9EEN9dXBCez4wKs8pUGVtPPBFAsVwQbpAULh9pDBK8qUwLmvkUGqgg7CNxWZwN/EfkGfOxnCKtWNwPtGk0EJXRHCY0EVwSna30H1n1ZBpJ8QwUrqh0F9FnhBN/AmwQVU50FnL4BBlMVnwNaEzEF5NINBBna9wG+sjUHJzGhBPcePwAVU50GoSFZBwKVEGco2AEJmSHpBPcePwAVU50GoSFZBpN+gwKRoA0LqFzVBPcePwAVU50GoSFZBBna9wG+sjUHJzGhBY0EVwSna30H1n1ZBlngUHfkDTkIw70HCJHL5wLltCkIqToHCPgvPwDCkN0LOvUbCLjL3wPAxIULKoT3Cb/UJwWsRyUFizGzCBCO/wBggCULpxTPC0gvzQPAxIULKoT3Cb/UJQWsRyUFizGzCJHL5QLltCkIqToHCJHL5QLltCkIqToHCpeTKQDCkN0LOvUbC0gvzQPAxIULKoT3CJHL5wLltCkIqToHC9eXMwL+tjkHNrZHCb/UJwWsRyUFizGzCeETQwKjGqUEruGPCDyAZHSC+ZEEt1IrC1CgFHZgyoUEDBWLCb/UJwWsRyUFizGzCo595wC/wckFy54vCeETQwKjGqUEruGPCZ4i2wHygFUL7dYTCKqKYwNb2v0F3KpzCJHL5wLltCkIqToHCnEUuHSy2GEIRGIjCKqKYwNb2v0F3KpzCZ4i2wHygFUL7dYTC+kziwMlVAUJX7ofBG/lswPhuCUKmp4XBdo7awEQ8C0LDS4TB2W29HGkRgkLAcW3BuM7nHMhjgULh1czBwLgfwWAGa0INTMDBHtG3wHBoUEI88iXCvHbnwIpsQkKVyyPClD0VwSPEYkID4RbCgpDNvSfxYEIIfyPCHtG3wHBoUEI88iXClD0VwSPEYkID4RbClD0VwSPEYkID4RbCfSwrwcgXRUIqLBfCwLgfwWAGa0INTMDBHhUhwdaickJPj7VB+ietG33PhUL9CrVBPqUIHAt1hELYRIBBvHbnwIpsQkKVyyPChzaNwL5mL0LypSPCfSwrwcgXRUIqLBfCWzb5wE8DhULzzAJCwDjnGtMJj0JHlgBCHhUhwdaickJPj7VBWzb5wE8DhULzzAJCylEzwa9KV0L5V69BYhorwbqccUJjDwdCPcePwAVU50GoSFZBY0EVwSna30H1n1ZBpN+gwKRoA0LqFzVByDggwUlwakLr5ExCfmYYwTBxhEIHr0NC6M4fwbrSY0KLzihC6umVwLI9kELXCyVC0H4Lm8JAk0KcsCRCWzb5wE8DhULzzAJCRJYcwL71eEIts2ZCT5JenO08dkKeZ2pCzBv5m992jkLSvUxC9ierwC7yZkIYwWlCRJYcwL71eEIts2ZCfmYYwTBxhEIHr0NCkKFAwHQ8bEIGx3VCT5JenO08dkKeZ2pCRJYcwL71eEIts2ZCY0EVwSna30H1n1ZBN/AmwQVU50FnL4BBgcohwWYTD0KU4C9BWXXgwBzc7kHmqcBBIM2hwDmF7UGbCLRBnoPYwByeFUKvZttBCVcgwawGFULhiCHBgcohwWYTD0KU4C9BuG4vwURmMEL/gibBlngUHfkDTkIw70HCHtG3wHBoUEI88iXCgpDNvSfxYEIIfyPC8405wVxe9EEN9dXBFAsVwQbpAULh9pDBpYM4wfiVRkLsO8XBb/UJwWsRyUFizGzCeETQwKjGqUEruGPCBCO/wBggCULpxTPCp0yYwJr7i0LecUxCzBv5m992jkLSvUxC6umVwLI9kELXCyVCPqUIHAt1hELYRIBByDggwV4LZ0KGfAFBHaYgwQ7MbEJxbnVB3KYIHeZEdUJFqxbClD0VwSPEYkID4RbCuM7nHMhjgULh1czB48ERwehC30FdDwnC8405wVxe9EEN9dXBfSwrwcgXRUIqLBfCQIO/wFGEc0L2tjLBwLgfwWAGa0INTMDBcewfwahqaULh4DDBFAsVwQbpAULh9pDB+kziwMlVAUJX7ofBLeUfwVzZFkKOdITBfi/fwFOV4EFgHxLC48ERwehC30FdDwnC91XhwJiaK0JFqxbCHwGQwCfC3EGMtgjCfi/fwFOV4EFgHxLCulVhwGGEKUL3DRTCLkGfwCj2jUGs/QfCNxWZwN/EfkGfOxnCK8qUwLmvkUGqgg7CPcePwAVU50GoSFZBwKVEGco2AEJmSHpBICHav0wA6EFi/X9BpJ8QwUrqh0F9FnhB77sTwTD6xkGBpJ9BN/AmwQVU50FnL4BBZ4i2wHygFUL7dYTCJHL5wLltCkIqToHClngUHfkDTkIw70HCeETQwKjGqUEruGPC1CgFHZgyoUEDBWLCbtvwHG7GA0I3+C7CnEUuHSy2GEIRGIjCZ4i2wHygFUL7dYTClngUHfkDTkIw70HCLjL3wPAxIULKoT3CPgvPwDCkN0LOvUbCJHL5wLltCkIqToHCJHL5wLltCkIqToHCb/UJwWsRyUFizGzCLjL3wPAxIULKoT3CKqKYwNb2v0F3KpzC9eXMwL+tjkHNrZHCJHL5wLltCkIqToHCo595wC/wckFy54vCDyAZHSC+ZEEt1IrCeETQwKjGqUEruGPC9eXMwL+tjkHNrZHCo595wC/wckFy54vCb/UJwWsRyUFizGzCKtWNQPtGk0EJXRHCK8qUQLmvkUGqgg7CG/lsQPhuCUKmp4XBG/lsQPhuCUKmp4XBnZsDQJHbDEJnXLjBKtWNQPtGk0EJXRHCyDggwV4LZ0KGfAFBcewfwahqaULh4DDBnvU2weuVS0JsdCvBnvU2weuVS0JsdCvBhsw0waGIUkI6dQpByDggwV4LZ0KGfAFBgcohQWYTD0KU4C9BuG4vQURmMEL/gibBnvU2QeuVS0JsdCvBnvU2QeuVS0JsdCvBhsw0QaGIUkI6dQpBgcohQWYTD0KU4C9BgcohwWYTD0KU4C9BN/AmwQVU50FnL4BBXWMhwf4KFkJweXBBhsw0waGIUkI6dQpBnvU2weuVS0JsdCvBuG4vwURmMEL/gibBuG4vwURmMEL/gibBgcohwWYTD0KU4C9Bhsw0waGIUkI6dQpByDggQV4LZ0KGfAFBhsw0QaGIUkI6dQpBnvU2QeuVS0JsdCvBnvU2QeuVS0JsdCvBcewfQahqaULh4DDByDggQV4LZ0KGfAFBYYPYQByeFUKvZttBWXXgQBzc7kHmqcBB2hQXQVbl7EE7Ja5B2hQXQVbl7EE7Ja5ByDggQbI2KkJivtVBYYPYQByeFUKvZttBN/AmwQVU50FnL4BB77sTwTD6xkGBpJ9B+BQXwVbl7EE7Ja5BIM2hwDmF7UGbCLRBWXXgwBzc7kHmqcBBJc7jwPts1UFmZrVBJc7jwPts1UFmZrVBBgOQwBR02UGqO6dBIM2hwDmF7UGbCLRBIM2hQDmF7UGbCLRBBgOQQBR02UGqO6dBJc7jQPts1UFmZrVBJc7jQPts1UFmZrVBWXXgQBzc7kHmqcBBIM2hQDmF7UGbCLRBWXXgQBzc7kHmqcBBJc7jQPts1UFmZrVB77sTQTD6xkGBpJ9B77sTQTD6xkGBpJ9B2hQXQVbl7EE7Ja5BWXXgQBzc7kHmqcBBWXXgwBzc7kHmqcBB+BQXwVbl7EE7Ja5B77sTwTD6xkGBpJ9B77sTwTD6xkGBpJ9BJc7jwPts1UFmZrVBWXXgwBzc7kHmqcBBlMVnQNaEzEF5NINBICHaP0wA6EFi/X9BPcePQAVU50GoSFZBlMVnwNaEzEF5NINBPcePwAVU50GoSFZBICHav0wA6EFi/X9BN/AmQQVU50FnL4BB2hQXQVbl7EE7Ja5B77sTQTD6xkGBpJ9B2hQXQVbl7EE7Ja5BN/AmQQVU50FnL4BBXWMhQf4KFkJTeXBBXWMhQf4KFkJTeXBByDggQbI2KkJivtVB2hQXQVbl7EE7Ja5BHBA0QcHmVELiEHRBylEzQa9KV0L5V69ByDggQbI2KkJivtVByDggQbI2KkJivtVBXWMhQf4KFkJTeXBBHBA0QcHmVELiEHRBXWMhQf4KFkJTeXBBgcohQWYTD0KU4C9Bhsw0QaGIUkI6dQpBhsw0QaGIUkI6dQpBHBA0QcHmVELiEHRBXWMhQf4KFkJTeXBBHaYgQQ7MbEJxbnVBHBA0QcHmVELiEHRBhsw0QaGIUkI6dQpBhsw0QaGIUkI6dQpByDggQV4LZ0KGfAFBHaYgQQ7MbEJxbnVBHaYgwQ7MbEJxbnVBHBA0wcHmVELiEHRBylEzwa9KV0L5V69BylEzwa9KV0L5V69BHhUhwdaickJPj7VBHaYgwQ7MbEJxbnVByDggwbI2KkJivtVBXWMhwf4KFkJweXBBN/AmwQVU50FnL4BBN/AmwQVU50FnL4BB+BQXwVbl7EE7Ja5ByDggwbI2KkJivtVBgcohQWYTD0KU4C9BXWMhQf4KFkJTeXBBN/AmQQVU50FnL4BBHaYgwQ7MbEJxbnVByDggwV4LZ0KGfAFBhsw0waGIUkI6dQpBhsw0waGIUkI6dQpBHBA0wcHmVELiEHRBHaYgwQ7MbEJxbnVBHhUhwdaickJPj7VBPqUIHAt1hELYRIBBHaYgwQ7MbEJxbnVBABUhQdaickJPj7VBHaYgQQ7MbEJxbnVBPqUIHAt1hELYRIBBHaYgQQ7MbEJxbnVBABUhQdaickJPj7VBylEzQa9KV0L5V69BylEzQa9KV0L5V69BHBA0QcHmVELiEHRBHaYgQQ7MbEJxbnVBHBA0wcHmVELiEHRBhsw0waGIUkI6dQpBgcohwWYTD0KU4C9BgcohwWYTD0KU4C9BXWMhwf4KFkJweXBBHBA0wcHmVELiEHRBEQzgQCfon0F9kBzCaC3JQMGcnEFPMhrCHwGQQCfC3EGMtgjCHwGQQCfC3EGMtgjCuy/fQFOV4EFgHxLCEQzgQCfon0F9kBzCTuiWQGLDlUEQRhXCKtWNQPtGk0EJXRHCnZsDQJHbDEJnXLjBnZsDQJHbDEJnXLjBHwGQQCfC3EGMtgjCTuiWQGLDlUEQRhXCuw0MQRZ/l0H7hBbCKYACQR5umkHEoBjCuy/fQFOV4EFgHxLCuy/fQFOV4EFgHxLC48ERQehC30FdDwnCuw0MQRZ/l0H7hBbCnQ0MwSV/l0H7hBbC48ERwehC30FdDwnCfi/fwFOV4EFgHxLCfi/fwFOV4EFgHxLCCoACwR5umkHEoBjCnQ0MwSV/l0H7hBbCEQzgwCfon0F9kBzCfi/fwFOV4EFgHxLCHwGQwCfC3EGMtgjCHwGQwCfC3EGMtgjCKy3JwMGcnEFPMhrCEQzgwCfon0F9kBzC48ERwehC30FdDwnCQO4SwafzjEHX+hDC8405wVxe9EEN9dXB48ERQehC30FdDwnC8405QVxe9EEN9dXBQO4SQafzjEHX+hDCKtWNwPtGk0EJXRHCnZsDwJHbDEJnXLjBG/lswPhuCUKmp4XBG/lswPhuCUKmp4XBK8qUwLmvkUGqgg7CKtWNwPtGk0EJXRHCTuiWwGLDlUEQRhXCHwGQwCfC3EGMtgjCnZsDwJHbDEJnXLjBnZsDwJHbDEJnXLjBKtWNwPtGk0EJXRHCTuiWwGLDlUEQRhXCG/lswPhuCUKmp4XBLkGfwCj2jUGs/QfCK8qUwLmvkUGqgg7COQrhQIpsQkKVyyPC0gvzQPAxIULKoT3CpeTKQDCkN0LOvUbCpeTKQDCkN0LOvUbCmmSxQHBoUEI88iXCOQrhQIpsQkKVyyPCHtG3wHBoUEI88iXClngUHfkDTkIw70HCPgvPwDCkN0LOvUbCvHbnwIpsQkKVyyPCLjL3wPAxIULKoT3CBCO/wBggCULpxTPCOQrhQIpsQkKVyyPCQSO/QBggCULpxTPC0gvzQPAxIULKoT3CZXw/HFQdgEKGfAFBji2vHFbFgULhoDXBQIO/wFGEc0L2tjLBZXw/HFQdgEKGfAFBQIO/QFGEc0L2tjLBji2vHFbFgULhoDXBcewfQahqaULh4DDBQIO/QFGEc0L2tjLBZXw/HFQdgEKGfAFBZXw/HFQdgEKGfAFByDggQV4LZ0KGfAFBcewfQahqaULh4DDBcewfQahqaULh4DDBnvU2QeuVS0JsdCvBpYM4QfiVRkLsO8XBpYM4QfiVRkLsO8XBwLgfQWAGa0INTMDBcewfQahqaULh4DDBuG4vQURmMEL/gibBCVcgQawGFULhiCHBLeUfQVzZFkKOdITBLeUfQVzZFkKOdITBpYM4QfiVRkLsO8XBuG4vQURmMEL/gibBpYM4QfiVRkLsO8XBnvU2QeuVS0JsdCvBuG4vQURmMEL/gibBLeUfQVzZFkKOdITBCVcgQawGFULhiCHBBmQNQVpSEkL+CiHBpYM4wfiVRkLsO8XBuG4vwURmMEL/gibBnvU2weuVS0JsdCvBcewfwahqaULh4DDByDggwV4LZ0KGfAFBZXw/HFQdgEKGfAFBZXw/HFQdgEKGfAFBQIO/wFGEc0L2tjLBcewfwahqaULh4DDBcewfwahqaULh4DDBwLgfwWAGa0INTMDBpYM4wfiVRkLsO8XBpYM4wfiVRkLsO8XBnvU2weuVS0JsdCvBcewfwahqaULh4DDBLeUfwVzZFkKOdITBBmQNwVpSEkL+CiHBCVcgwawGFULhiCHBuG4vwURmMEL/gibBpYM4wfiVRkLsO8XBLeUfwVzZFkKOdITBLeUfwVzZFkKOdITBCVcgwawGFULhiCHBuG4vwURmMEL/gibBylEzwa9KV0L5V69ByDggwbI2KkJivtVBvPofwQY7TUJK/A1CvPofwQY7TUJK/A1CYhorwbqccUJjDwdCylEzwa9KV0L5V69BRBorQbqccUJjDwdCkUImQQKQgEJ7/SJC6M4fQbrSY0KLzihC6M4fQbrSY0KLzihCvPofQQY7TUJK/A1CRBorQbqccUJjDwdCvPofQQY7TUJK/A1CIkcKQZhhREKe5g5CYYPYQByeFUKvZttBYYPYQByeFUKvZttByDggQbI2KkJivtVBvPofQQY7TUJK/A1CvPofwQY7TUJK/A1CyDggwbI2KkJivtVBnoPYwByeFUKvZttBnoPYwByeFUKvZttBIkcKwZhhREKe5g5CvPofwQY7TUJK/A1CYhorwbqccUJjDwdCvPofwQY7TUJK/A1C6M4fwbrSY0KLzihC6M4fwbrSY0KLzihCkUImwQKQgEJ7/SJCYhorwbqccUJjDwdCkUImQQKQgEJ7/SJCRBorQbqccUJjDwdCWzb5QE8DhULzzAJCkUImwQKQgEJ7/SJCWzb5wE8DhULzzAJCYhorwbqccUJjDwdCQO4SQafzjEHX+hDCCez4QKs8pUGVtPPB38v0QG42gEGfPQXCakGfQCj2jUGs/QfCNxWZQN/EfkGfOxnC6zORQBO2i0CurgfCQO4SQafzjEHX+hDC38v0QG42gEGfPQXCj08VQaH06UBTygvCA9PdQH0U1j2WjgnCj08VQaH06UBTygvCaN0VQeSSTUBu9APCNxWZQN/EfkGfOxnCWHDgQH6DgkFbTyHCA9PdQH0U1j2WjgnC38v0QG42gEGfPQXCakGfQCj2jUGs/QfCCNikQJKZ0UBZ7QXCzQ4KQXzHfEFwOhvCQO4SQafzjEHX+hDCj08VQaH06UBTygvCWHDgQH6DgkFbTyHCzQ4KQXzHfEFwOhvCj08VQaH06UBTygvCRr2yQFbRcD5EAN7B6zORQBO2i0CurgfCnEGPQFJV+b11p//BRr2yQFbRcD5EAN7BnEGPQFJV+b11p//BvgIVQaK70b3cZ//BA9PdQH0U1j2WjgnCaN0VQeSSTUBu9APCvgIVQaK70b3cZ//BaN0VQeSSTUBu9APCj08VQaH06UBTygvCnSP+QI+KkD5XHt7Bj08VQaH06UBTygvCOHDeQIvDzkATvQHCnSP+QI+KkD5XHt7BOHDeQIvDzkATvQHCCNikQJKZ0UBZ7QXCRr2yQFbRcD5EAN7BBna9QG+sjUHJzGhBpJ8QQUrqh0F9FnhBCQwAQUfp8kCN+nJBBna9QG+sjUHJzGhBC2a1QFXPokA/AIJBJJmNQMw5jEGHu4JB7UUEQVz1hUHskKJBXGzhQI41hkEcWq5Bc8beQFaCuEDkg6ZBby2+QKDVh0GjkaJBVmSSQOLgiEHm/5pBF++UQEooy0DS7Y1BVmSSQOLgiEHm/5pBFtuBQP+Ii0H5vIdBF++UQEooy0DS7Y1BpJ8QQUrqh0F9FnhB77sTQTD6xkGBpJ9BMe8OQePvhkEWTptBxe2lQMULTD8Y8LtBF++UQEooy0DS7Y1BagydQHE5db08dolBagydQHE5db08dolBNzoLQYzvNr3ypolBLL8GQV7zED/PqLpBF++UQEooy0DS7Y1BC2a1QFXPokA/AIJBagydQHE5db08dolBC2a1QFXPokA/AIJBOGoNQYk7pEAgaYdBNzoLQYzvNr3ypolBql8IQZCivUB5YJVBc8beQFaCuEDkg6ZBiQvjQDzQZj65rMlBc8beQFaCuEDkg6ZBF++UQEooy0DS7Y1Bxe2lQMULTD8Y8LtBOGoNQYk7pEAgaYdBql8IQZCivUB5YJVBLL8GQV7zED/PqLpBEQzgQCfon0F9kBzCuy/fQFOV4EFgHxLCKYACQR5umkHEoBjCCez4QKs8pUGVtPPB+kziQMlVAUJX7ofBakGfQCj2jUGs/QfCTuiWQGLDlUEQRhXCHwGQQCfC3EGMtgjCaC3JQMGcnEFPMhrC38v0QG42gEGfPQXCCez4QKs8pUGVtPPBakGfQCj2jUGs/QfCQO4SQafzjEHX+hDC8405QVxe9EEN9dXBCez4QKs8pUGVtPPBCNikQJKZ0UBZ7QXCakGfQCj2jUGs/QfC6zORQBO2i0CurgfCj08VQaH06UBTygvC38v0QG42gEGfPQXCOHDeQIvDzkATvQHC6zORQBO2i0CurgfCNxWZQN/EfkGfOxnCA9PdQH0U1j2WjgnCOHDeQIvDzkATvQHC38v0QG42gEGfPQXCCNikQJKZ0UBZ7QXCA9PdQH0U1j2WjgnCWHDgQH6DgkFbTyHCj08VQaH06UBTygvCnEGPQFJV+b11p//B6zORQBO2i0CurgfCA9PdQH0U1j2WjgnCnSP+QI+KkD5XHt7BRr2yQFbRcD5EAN7BvgIVQaK70b3cZ//BA9PdQH0U1j2WjgnCvgIVQaK70b3cZ//BnEGPQFJV+b11p//BvgIVQaK70b3cZ//BaN0VQeSSTUBu9APCnSP+QI+KkD5XHt7BRr2yQFbRcD5EAN7BCNikQJKZ0UBZ7QXC6zORQBO2i0CurgfCnSP+QI+KkD5XHt7BOHDeQIvDzkATvQHCRr2yQFbRcD5EAN7BBna9QG+sjUHJzGhBY0EVQSna30H1n1ZBpJ8QQUrqh0F9FnhBCQwAQUfp8kCN+nJBpJ8QQUrqh0F9FnhBOGoNQYk7pEAgaYdBFtuBQP+Ii0H5vIdBlMVnQNaEzEF5NINBJJmNQMw5jEGHu4JBMe8OQePvhkEWTptB77sTQTD6xkGBpJ9B7UUEQVz1hUHskKJBXGzhQI41hkEcWq5BJc7jQPts1UFmZrVBby2+QKDVh0GjkaJBC2a1QFXPokA/AIJBBna9QG+sjUHJzGhBCQwAQUfp8kCN+nJBOGoNQYk7pEAgaYdBpJ8QQUrqh0F9FnhBql8IQZCivUB5YJVBNzoLQYzvNr3ypolBOGoNQYk7pEAgaYdBLL8GQV7zED/PqLpBC2a1QFXPokA/AIJBCQwAQUfp8kCN+nJBOGoNQYk7pEAgaYdBxe2lQMULTD8Y8LtBagydQHE5db08dolBiQvjQDzQZj65rMlBiQvjQDzQZj65rMlBagydQHE5db08dolBLL8GQV7zED/PqLpBagydQHE5db08dolBC2a1QFXPokA/AIJBNzoLQYzvNr3ypolBLL8GQV7zED/PqLpBql8IQZCivUB5YJVBiQvjQDzQZj65rMlBiQvjQDzQZj65rMlBc8beQFaCuEDkg6ZBxe2lQMULTD8Y8LtBQO4SwafzjEHX+hDC38v0wG42gEGfPQXCCez4wKs8pUGVtPPBLkGfwCj2jUGs/QfC6zORwBO2i0CurgfCNxWZwN/EfkGfOxnCQO4SwafzjEHX+hDCcU8VwaH06UBTygvC38v0wG42gEGfPQXCA9PdwH0U1j2WjgnCSt0VweSSTUBu9APCcU8VwaH06UBTygvCNxWZwN/EfkGfOxnCA9PdwH0U1j2WjgnCG3DgwH6DgkFbTyHC38v0wG42gEGfPQXCCNikwJKZ0UBZ7QXCLkGfwCj2jUGs/QfCzQ4KwXzHfEFwOhvCcU8VwaH06UBTygvCQO4SwafzjEHX+hDCG3DgwH6DgkFbTyHCcU8VwaH06UBTygvCzQ4KwXzHfEFwOhvCRr2ywFbRcD5EAN7BnEGPwFJV+b11p//B6zORwBO2i0CurgfCRr2ywFbRcD5EAN7BnwIVwaK70b3cZ//BnEGPwFJV+b11p//BA9PdwH0U1j2WjgnCnwIVwaK70b3cZ//BSt0VweSSTUBu9APCSt0VweSSTUBu9APCnSP+wI+KkD5XHt7BcU8VwaH06UBTygvCcU8VwaH06UBTygvCnSP+wI+KkD5XHt7BOHDewIvDzkATvQHCOHDewIvDzkATvQHCRr2ywFbRcD5EAN7BCNikwJKZ0UBZ7QXCBna9wG+sjUHJzGhBJwwAwUfp8kCN+nJBpJ8QwUrqh0F9FnhBJJmNwMw5jEGHu4JBSGa1wFXPokA/AIJBBna9wG+sjUHJzGhB7UUEwVz1hUHskKJBc8bewFaCuEDkg6ZBXGzhwI41hkEcWq5Bby2+wKDVh0GjkaJBVO+UwEooy0DS7Y1BVmSSwOLgiEHm/5pBVmSSwOLgiEHm/5pBVO+UwEooy0DS7Y1BFtuBwA+Ji0H5vIdBpJ8QwUrqh0F9FnhBql8IwZCivUB5YJVBMe8OwePvhkEWTptBxe2lwMULTD8Y8LtBagydwHE5db08dolBVO+UwEooy0DS7Y1BagydwHE5db08dolBLL8GwV7zED/PqLpBNzoLwYzvNr3ypolBVO+UwEooy0DS7Y1BagydwHE5db08dolBSGa1wFXPokA/AIJBSGa1wFXPokA/AIJBNzoLwYzvNr3ypolBOGoNwYk7pEAgaYdBql8IwZCivUB5YJVBiQvjwDzQZj65rMlBc8bewFaCuEDkg6ZBc8bewFaCuEDkg6ZBxe2lwMULTD8Y8LtBVO+UwEooy0DS7Y1BOGoNwYk7pEAgaYdBLL8GwV7zED/PqLpBql8IwZCivUB5YJVBEQzgwCfon0F9kBzCCoACwR5umkHEoBjCfi/fwFOV4EFgHxLCCez4wKs8pUGVtPPBLkGfwCj2jUGs/QfC+kziwMlVAUJX7ofBTuiWwGLDlUEQRhXCKy3JwMGcnEFPMhrCHwGQwCfC3EGMtgjC38v0wG42gEGfPQXCLkGfwCj2jUGs/QfCCez4wKs8pUGVtPPBQO4SwafzjEHX+hDCCez4wKs8pUGVtPPB8405wVxe9EEN9dXBCNikwJKZ0UBZ7QXC6zORwBO2i0CurgfCLkGfwCj2jUGs/QfCcU8VwaH06UBTygvCOHDewIvDzkATvQHC38v0wG42gEGfPQXC6zORwBO2i0CurgfCA9PdwH0U1j2WjgnCNxWZwN/EfkGfOxnCOHDewIvDzkATvQHCCNikwJKZ0UBZ7QXC38v0wG42gEGfPQXCA9PdwH0U1j2WjgnCcU8VwaH06UBTygvCG3DgwH6DgkFbTyHCnEGPwFJV+b11p//BA9PdwH0U1j2WjgnC6zORwBO2i0CurgfCnSP+wI+KkD5XHt7BnwIVwaK70b3cZ//BRr2ywFbRcD5EAN7BA9PdwH0U1j2WjgnCnEGPwFJV+b11p//BnwIVwaK70b3cZ//BnwIVwaK70b3cZ//BnSP+wI+KkD5XHt7BSt0VweSSTUBu9APCRr2ywFbRcD5EAN7B6zORwBO2i0CurgfCCNikwJKZ0UBZ7QXCnSP+wI+KkD5XHt7BRr2ywFbRcD5EAN7BOHDewIvDzkATvQHCBna9wG+sjUHJzGhBpJ8QwUrqh0F9FnhBY0EVwSna30H1n1ZBJwwAwUfp8kCN+nJBOGoNwYk7pEAgaYdBpJ8QwUrqh0F9FnhBFtuBwA+Ji0H5vIdBJJmNwMw5jEGHu4JBlMVnwNaEzEF5NINBMe8OwePvhkEWTptB7UUEwVz1hUHskKJB77sTwTD6xkGBpJ9BXGzhwI41hkEcWq5Bby2+wKDVh0GjkaJBJc7jwPts1UFmZrVBSGa1wFXPokA/AIJBJwwAwUfp8kCN+nJBBna9wG+sjUHJzGhBOGoNwYk7pEAgaYdBql8IwZCivUB5YJVBpJ8QwUrqh0F9FnhBNzoLwYzvNr3ypolBLL8GwV7zED/PqLpBOGoNwYk7pEAgaYdBSGa1wFXPokA/AIJBOGoNwYk7pEAgaYdBJwwAwUfp8kCN+nJBxe2lwMULTD8Y8LtBiQvjwDzQZj65rMlBagydwHE5db08dolBiQvjwDzQZj65rMlBLL8GwV7zED/PqLpBagydwHE5db08dolBagydwHE5db08dolBNzoLwYzvNr3ypolBSGa1wFXPokA/AIJBLL8GwV7zED/PqLpBiQvjwDzQZj65rMlBql8IwZCivUB5YJVBiQvjwDzQZj65rMlBxe2lwMULTD8Y8LtBc8bewFaCuEDkg6ZB7UUEQVz1hUHskKJBc8beQFaCuEDkg6ZBql8IQZCivUB5YJVBql8IQZCivUB5YJVBMe8OQePvhkEWTptB7UUEQVz1hUHskKJBJJmNwMw5jEGHu4JBFtuBwA+Ji0H5vIdBVO+UwEooy0DS7Y1BVO+UwEooy0DS7Y1BSGa1wFXPokA/AIJBJJmNwMw5jEGHu4JBby2+wKDVh0GjkaJBXGzhwI41hkEcWq5Bc8bewFaCuEDkg6ZBc8bewFaCuEDkg6ZBVO+UwEooy0DS7Y1Bby2+wKDVh0GjkaJBXGzhQI41hkEcWq5B7UUEQVz1hUHskKJB77sTQTD6xkGBpJ9B77sTQTD6xkGBpJ9BJc7jQPts1UFmZrVBXGzhQI41hkEcWq5Bby2+QKDVh0GjkaJBF++UQEooy0DS7Y1Bc8beQFaCuEDkg6ZBc8beQFaCuEDkg6ZBXGzhQI41hkEcWq5Bby2+QKDVh0GjkaJBJJmNQMw5jEGHu4JBC2a1QFXPokA/AIJBF++UQEooy0DS7Y1BF++UQEooy0DS7Y1BFtuBQP+Ii0H5vIdBJJmNQMw5jEGHu4JBVmSSwOLgiEHm/5pBBgOQwBR02UGqO6dBJc7jwPts1UFmZrVBJc7jwPts1UFmZrVBby2+wKDVh0GjkaJBVmSSwOLgiEHm/5pBFtuBwA+Ji0H5vIdBlMVnwNaEzEF5NINBBgOQwBR02UGqO6dBBgOQwBR02UGqO6dBVmSSwOLgiEHm/5pBFtuBwA+Ji0H5vIdBVmSSQOLgiEHm/5pBby2+QKDVh0GjkaJBJc7jQPts1UFmZrVBJc7jQPts1UFmZrVBBgOQQBR02UGqO6dBVmSSQOLgiEHm/5pBFtuBQP+Ii0H5vIdBVmSSQOLgiEHm/5pBBgOQQBR02UGqO6dBBgOQQBR02UGqO6dBlMVnQNaEzEF5NINBFtuBQP+Ii0H5vIdBXGzhwI41hkEcWq5BJc7jwPts1UFmZrVB77sTwTD6xkGBpJ9B77sTwTD6xkGBpJ9B7UUEwVz1hUHskKJBXGzhwI41hkEcWq5B7UUEwVz1hUHskKJBMe8OwePvhkEWTptBql8IwZCivUB5YJVBql8IwZCivUB5YJVBc8bewFaCuEDkg6ZB7UUEwVz1hUHskKJBql8IQZCivUB5YJVBpJ8QQUrqh0F9FnhBMe8OQePvhkEWTptBlMVnQNaEzEF5NINBBna9QG+sjUHJzGhBJJmNQMw5jEGHu4JBlMVnwNaEzEF5NINBJJmNwMw5jEGHu4JBBna9wG+sjUHJzGhB77sTwTD6xkGBpJ9BpJ8QwUrqh0F9FnhBMe8OwePvhkEWTptBKy3JwMGcnEFPMhrCTuiWwGLDlUEQRhXCNxWZwN/EfkGfOxnCNxWZwN/EfkGfOxnCG3DgwH6DgkFbTyHCKy3JwMGcnEFPMhrCaC3JQMGcnEFPMhrCWHDgQH6DgkFbTyHCNxWZQN/EfkGfOxnCNxWZQN/EfkGfOxnCTuiWQGLDlUEQRhXCaC3JQMGcnEFPMhrCKYACQR5umkHEoBjCzQ4KQXzHfEFwOhvCWHDgQH6DgkFbTyHCWHDgQH6DgkFbTyHCEQzgQCfon0F9kBzCKYACQR5umkHEoBjCCoACwR5umkHEoBjCEQzgwCfon0F9kBzCG3DgwH6DgkFbTyHCG3DgwH6DgkFbTyHCzQ4KwXzHfEFwOhvCCoACwR5umkHEoBjCnQ0MwSV/l0H7hBbCQO4SwafzjEHX+hDC48ERwehC30FdDwnCzQ4KwXzHfEFwOhvCQO4SwafzjEHX+hDCnQ0MwSV/l0H7hBbCuw0MQRZ/l0H7hBbC48ERQehC30FdDwnCQO4SQafzjEHX+hDCzQ4KQXzHfEFwOhvCuw0MQRZ/l0H7hBbCQO4SQafzjEHX+hDC1rvFP6UrXEKYO4VCOXWanDIUYEKpP4VC9w6fnMrhVkLuP4VCyrzFv6UrXEKYO4VC9w6fnMrhVkLuP4VCOXWanDIUYEKpP4VCq1kHP5W1LT9zoAs/bxAtP9ArHj8g1Tg/A33CPUwYNT8QA909lSk+P1DHoz3g9T0/xAihPTdPRT8K1ng9jzlHPzIg+zyKA0Q/b39uPZASPz/ECKE9N09FP6/rFz3ZQEI/EAPdPZUpPj+NX/g9qDlFP8QIoT03T0U/Q3IiPqbtOz/CiSg+bapCP41f+D2oOUU/9UppPsrAMT7dfGM+yZM0PrOXXT5n1Sc+X3kQPhq/cD9Zayg+x4FrP7ixOT6BIXs/YodxPeONOD9Qx6M94PU9P29/bj2QEj8/YodxPeONOD9vf249kBI/P8uf7zyLb0A/bZEUPvJcLz9DciI+pu07PwN9wj1MGDU/+S4VP2H7PT8d4xY/Z+45P9ArHj8g1Tg/HqX6PqFILz9KJew+Gw4rPz+n8D5CziM/P6fwPkLOIz8jMvQ+0GMkPx6l+j6hSC8/q1kHP5W1LT9aZwA/A3coP5XwAD9YVSc/lfAAP1hVJz9zoAs/bxAtP6tZBz+VtS0/EcPOPl4sbD7tDqk+J756Pus5uT7SwjU+tJJWPhdHNT76YUQ+oWY4PrCpQz66TiM+XRZjP7STLT+asWQ/c4QoP3XodD8cQDc/7MJjP28pMz9dFmM/tJMtP3XodD8cQDc/KXtTP0s+Sj9l42U/19k8P/1NdD8Xgjw/ZeNlP9fZPD/swmM/bykzP3XodD8cQDc/53LrPlpILD/Nlek+AHQwP1GHtT7TUCM/HeMWP2fuOT+rWQc/lbUtP9ArHj8g1Tg/WtluPnx+ID/mBoM+tYggP5BNgj65cCg/A33CPUwYNT9DciI+pu07PxAD3T2VKT4/YodxPeONOD8DfcI9TBg1P1DHoz3g9T0/r+sXPdlAQj/ECKE9N09FPzIg+zyKA0Q/b39uPZASPz9Qx6M94PU9P8QIoT03T0U/y5/vPItvQD9vf249kBI/P6/rFz3ZQEI/UMejPeD1PT8QA909lSk+P8QIoT03T0U/8ztNPs8yMz+QTYI+uXAoP8aGTj7T+jc/EAPdPZUpPj9DciI+pu07P41f+D2oOUU/HqX6PqFILz8jMvQ+0GMkP74U/j7u0Ss/WtluPnx+ID/nxJY+cJoWP+YGgz61iCA/a/AaPysTPj/5LhU/Yfs9P9ArHj8g1Tg/53LrPlpILD9KJew+Gw4rPx6l+j6hSC8/vhT+Pu7RKz8jMvQ+0GMkP1pnAD8Ddyg/3XxjPsmTND6P/HE+rkpSPrSSVj4XRzU+UaN0P86KQD8pe1M/Sz5KP/1NdD8Xgjw/deh0PxxANz+asWQ/c4QoPzOodj/7rzM//U10PxeCPD9l42U/19k8P3XodD8cQDc/CvV4PxTtNj/8N3c/DYk/P/1NdD8Xgjw/deh0PxxANz8K9Xg/FO02P/1NdD8Xgjw/uHMBPuEJtT47jwo90jnHPn9O4T3y7LI+kE2CPrlwKD/zO00+zzIzP5vIPD70Tik/m8g8PvROKT9a2W4+fH4gP5BNgj65cCg/cjEOP+z41z7KNRE/Ck3qPpATCj/5aOk+N+MQPyL7+D4mOB0/Yp/4PkZEFT9Bnv0+QKUWP7KE7T57vRs/1NL0PjfjED8i+/g+kBMKP/lo6T434xA/Ivv4PngJBj9i1/Y+OLr6PpCe4j54CQY/Ytf2Phx79j4fv+8+pfNhPzav+j6Px2Q/BoH1PsptYz/f+/s+9FDbPWuCbD9tWZ49VP94P9kFoz1HzGg/0AsXP8eE4D5ApRY/soTtPso1ET8KTeo+0AsXP8eE4D5o5h0//5HxPkClFj+yhO0+H/MBP7hAyj5yMQ4/7PjXPji6+j6QnuI+aXSHPeLo0j47jwo90jnHPj1Jej06dMo+csE5Pp32pD6fBUE+GCGkPmZORz6p+bI+Zk5HPqn5sj5V3Cg+Hw66PnLBOT6d9qQ+f07hPfLssj74bB0+coupPsAiHz775as+wCIfPvvlqz64cwE+4Qm1Pn9O4T3y7LI+HcxiP5HUcj41RWw/V7E4PnXndT97aXo+calmPzcW/D7ONms/Er/yPnE8az93TP0+p61BP/rtWz+Txy8/DWxlP6weQD883FY/3PNAPwaBYT+Txy8/DWxlP6etQT/67Vs/hv9QP5C/eD9pVDA/CK5qP1a7Pj/xKms/Vrs+P/Eqaz+Txy8/DWxlP9zzQD8GgWE/vD1IPup7tT7jb5s+uJOoPgFqSj4S9r0+PUl6PTp0yj47jwo90jnHPrhzAT7hCbU+ELHZPtSYqD6Xb80+f2u3PiAlzj6UoKc+cjEOP+z41z6QEwo/+WjpPji6+j6QnuI+0AsXP8eE4D7KNRE/Ck3qPnIxDj/s+Nc+e70bP9TS9D4mOB0/Yp/4PjfjED8i+/g+QKUWP7KE7T434xA/Ivv4Pso1ET8KTeo+aOYdP/+R8T57vRs/1NL0PkClFj+yhO0+yjURPwpN6j434xA/Ivv4PpATCj/5aOk+9wbnPlRSzz44heU+DcbYPpdvzT5/a7c+kBMKP/lo6T54CQY/Ytf2Pji6+j6QnuI+VdwoPh8Ouj79TiM+v9WyPnLBOT6d9qQ+ELHZPtSYqD4gJc4+lKCnPg5OvD4JF5I+XVI1PR5U0j47jwo90jnHPml0hz3i6NI+vD1IPup7tT5V3Cg+Hw66PmZORz6p+bI+/U4jPr/Vsj64cwE+4Qm1PsAiHz775as+ym1jP9/7+z5xqWY/Nxb8PmUXYD/OjQU/ZvQvP4C1bj9pVDA/CK5qP4b/UD+Qv3g/k8cvPw1sZT8SES4/c9hhP6weQD883FY/aVQwPwiuaj+Txy8/DWxlP1a7Pj/xKms/9bwrP7sOZT9pVDA/CK5qP3hjLT+9rG0/k8cvPw1sZT9pVDA/CK5qP/W8Kz+7DmU/l2/NPn9rtz4Qsdk+1JioPs7+8D5WZLw+zv7wPlZkvD73Buc+VFLPPpdvzT5/a7c+3XxjPsmTND71Smk+ysAxPhHjhT4Pf00+EeOFPg9/TT6P/HE+rkpSPt18Yz7JkzQ+tJJWPhdHNT6wqUM+uk4jPrOXXT5n1Sc+s5ddPmfVJz7dfGM+yZM0PrSSVj4XRzU+ym1jP9/7+z5lF2A/zo0FP3SaWT9WmgQ/dJpZP1aaBD+l82E/Nq/6PsptYz/f+/s++mFEPqFmOD60klY+F0c1Po/8cT6uSlI+j/xxPq5KUj5gdUQ+RgZJPvphRD6hZjg+cTxrP3dM/T5bYGs/js0CP2UXYD/OjQU/ZRdgP86NBT9xqWY/Nxb8PnE8az93TP0+calmPzcW/D7KbWM/3/v7Po/HZD8GgfU+j8dkPwaB9T7ONms/Er/yPnGpZj83Fvw+AWpKPhL2vT68Ayw+wCHEPlXcKD4fDro+VdwoPh8Ouj68PUg+6nu1PgFqSj4S9r0+td2kPvMcmT5mTkc+qfmyPp8FQT4YIaQ+Zk5HPqn5sj613aQ+8xyZPuNvmz64k6g+42+bPriTqD68PUg+6nu1PmZORz6p+bI+zZXpPgB0MD/ncus+WkgsPx6l+j6hSC8/HqX6PqFILz+zJPg+BDk0P82V6T4AdDA/m42tPrItGz8/p/A+Qs4jP0ol7D4bDis/SiXsPhsOKz/ncus+WkgsP1GHtT7TUCM/UYe1PtNQIz+bja0+si0bP0ol7D4bDis/IzL0PtBjJD+V8AA/WFUnP1pnAD8Ddyg/csE5Pp32pD7AIh8+++WrPvhsHT5yi6k+csE5Pp32pD79TiM+v9WyPsAiHz775as+q1kHP5W1LT++FP4+7tErP1pnAD8Ddyg/OIXlPg3G2D73Buc+VFLPPji6+j6QnuI+OLr6PpCe4j4ce/Y+H7/vPjiF5T4Nxtg+9wbnPlRSzz7O/vA+VmS8Ph/zAT+4QMo+H/MBP7hAyj44uvo+kJ7iPvcG5z5UUs8+xoZOPtP6Nz/CiSg+bapCP0NyIj6m7Ts/Q3IiPqbtOz/zO00+zzIzP8aGTj7T+jc/8ztNPs8yMz9DciI+pu07P22RFD7yXC8/bZEUPvJcLz+byDw+9E4pP/M7TT7PMjM/W+kxP6VJNT9r8y8/cM8vPyLhOz9X6yg/bD4+P6qeMD9b6TE/pUk1PyLhOz9X6yg/UYe1PtNQIz/Nlek+AHQwP/3c6D7kLjI//dzoPuQuMj+jyLI+6DArP1GHtT7TUCM/aAXuPsZrXj+QMOQ+NgVeP4bJ5D4TC1Q/hsnkPhMLVD+3QwM/18BOP2gF7j7Ga14/QdMSP1A6TT/dJxM/LqpFP2XgGD+TAEU/t0MDP9fATj/wxAQ/iJ9DP90nEz8uqkU/3ScTPy6qRT/5LhU/Yfs9P2vwGj8rEz4/bFsEPh07aD44Ed09zyx5PiTV1z00ElE+btuHPnJTSz96w4U+JnBbPz1EUz6Dpl0/FciMPt/5QT9u24c+clNLP+ymVD6jj1E/UpotPvgYTD/splQ+o49RP2pQJD4+W1c/wokoPm2qQj9Smi0++BhMP2GkBz50lk0/alAkPj5bVz8tYCI+ZaldP2tF2z1ma1k/7KZUPqOPUT89RFM+g6ZdPy1gIj5lqV0/jV/4Pag5RT9hpAc+dJZNP8QIoT03T0U/7s5KPjunZT9cymk+ysNuP7ixOT6BIXs/YaQHPnSWTT+CdPE9j6VTP2KFmz2dSEw/CtZ4PY85Rz/rp3892nNNPzIg+zyKA0Q/xAihPTdPRT9ihZs9nUhMPwrWeD2POUc/xoZOPtP6Nz9B9U8+/aM7P8KJKD5tqkI/WWsoPseBaz/uzko+O6dlP7ixOT6BIXs/XMppPsrDbj+gNHQ+deZ6P7ixOT6BIXs/5SkvP3QMPD9b6TE/pUk1P2w+Pj+qnjA/YLALP5eqjD7VtPs+rRVtPoj0+z5lHFM+bD4+P6qeMD8i4Ts/V+soPyofUj9xWiw/gnTxPY+lUz9rRds9ZmtZP2KFmz2dSEw/n1axPhuDSj+yf64+wvtaP4nwlz47qVs/P28GP3IaXj+3QwM/18BOP0HTEj9QOk0/HOsWP2yVWD9B0xI/UDpNP4HOHD/8x1I/ZycbP9qpgT5gsAs/l6qMPkZCBz8glj0+1bT7Pq0VbT7ZsvQ+ibRdPmjq9T7mslE+ZycbP0p/Xz5nJxs/2qmBPtnqDj9GsyI+7Q6pPie+ej6+a6A+Z5l1PrOYsD719zI+NC8PPzgx5D0wEg4/TFDjPcHlDT8JMsI9Y0a4PvJ37z2+2sE+R3YFPjNUvT60qgU+GyzkPvtzYT6ME98+3lhwPr7awT5HdgU+K4azPjMyCD6sGbE+qikJPoMTsT6Qae09eGG7PlneBT44vLg+2PMFPmNGuD7yd+89iPT7PmUcUz5o6vU+5rJRPm2rBT99kwY+RkIHPyCWPT6I9Ps+ZRxTPm2rBT99kwY+M1S9PrSqBT54Ybs+Wd4FPmNGuD7yd+89JNXXPTQSUT474Lo9541TPjSc0j11eBg+sKlDPrpOIz4S9TI+SMEzPm2sND6eX/Q9JJdPP9EeDz8zpkw/at4VP3bhRz/+0wU/duFHP/7TBT/L9Es/8N4FPySXTz/RHg8/YHVEPkYGST7Q0iU+HO5DPhL1Mj5IwTM+bFsEPhL1Uj4k1dc9NBJRPsSV8z1DcBw+S+o0Pw/UST+E9Cw/o69AP4KOOj+hLEA/bD4+P6qeMD890VE/GRsyPwFoPD9OnDg/3Xp1P5Tbaj9uoXc/OINvPwoPaj964W4/Cg9qP3rhbj9mSWg/bkxnP916dT+U22o/mS1RPz9zPj890VE/GRsyP+zCYz9vKTM/Kh9SP3FaLD9CmVI/DHkkP5qxZD9zhCg/PdFRPxkbMj8qH1I/cVosP10WYz+0ky0/TDdRP2UBQz+ZLVE/P3M+P2XjZT/X2Tw/KXtTP0s+Sj9MN1E/ZQFDP2XjZT/X2Tw/GyzkPvtzYT5bDOY+nWdsPowT3z7eWHA+aAXuPsZrXj+3QwM/18BOPz9vBj9yGl4/i94ZP4/hST9B0xI/UDpNP2XgGD+TAEU/gc4cP/zHUj9B0xI/UDpNP4veGT+P4Uk/QdMSP1A6TT+3QwM/18BOP90nEz8uqkU/btuHPnJTSz+J8Jc+O6lbP3rDhT4mcFs/ZeAYP5MART/dJxM/LqpFP2vwGj8rEz4/7KZUPqOPUT9u24c+clNLPz1EUz6Dpl0/yatTPo1fSD8VyIw+3/lBP+ymVD6jj1E/bFsEPhL1Uj5sWwQ+HTtoPiTV1z00ElE+jV/4Pag5RT/CiSg+bapCP2GkBz50lk0/alAkPj5bVz/splQ+o49RPy1gIj5lqV0/YoWbPZ1ITD9rRds9ZmtZP+unfz3ac00/xAihPTdPRT9hpAc+dJZNP2KFmz2dSEw/CtZ4PY85Rz9ihZs9nUhMP+unfz3ac00/JNXXPTQSUT44Ed09zyx5Pjvguj3njVM+5NZ0PsUaLj4R44U+D39NPvVKaT7KwDE+/dzoPuQuMj/D1OY+Vwg7P6PIsj7oMCs/S+o0Pw/UST+4ySg/Uz1JP4T0LD+jr0A/RkIHPyCWPT5gsAs/l6qMPoj0+z5lHFM+PdFRPxkbMj9sPj4/qp4wPyofUj9xWiw/gnTxPY+lUz9qUCQ+PltXP2tF2z1ma1k/eJqcPt7lSj+fVrE+G4NKP4nwlz47qVs/HOsWP2yVWD8/bwY/chpeP0HTEj9QOk0/2eoOP0azIj5nJxs/2qmBPkZCBz8glj0+hsnkPhMLVD9FY+U+ZK1NP7dDAz/XwE4/iPT7PmUcUz7VtPs+rRVtPmjq9T7mslE+KqoSPzl9HT5nJxs/Sn9fPtnqDj9GsyI+6zm5PtLCNT7tDqk+J756PrOYsD719zI+vtrBPkd2BT6ME98+3lhwPjNUvT60qgU++mFEPqFmOD5gdUQ+RgZJPhL1Mj5IwTM+NJzSPXV4GD474Lo9541TPjUomj3z5zs+TDdRP2UBQz9L6jQ/D9RJP5ktUT8/cz4/Kh9SP3FaLD8i4Ts/V+soP0KZUj8MeSQ/KXtTP0s+Sj9L6jQ/D9RJP0w3UT9lAUM/mS1RPz9zPj9L6jQ/D9RJP4KOOj+hLEA/ZeNlP9fZPD+ZLVE/P3M+P+zCYz9vKTM/XRZjP7STLT8qH1I/cVosP5qxZD9zhCg/7MJjP28pMz890VE/GRsyP10WYz+0ky0/pbxyP4IcZD8M6Wg/VIxXP2ywdD92pF4/7IVmPxQ+Xz8M6Wg/VIxXP6W8cj+CHGQ/qrmcPlKAuD6GN0s+OnnBPgFqSj4S9r0+AWpKPhL2vT7jb5s+uJOoPqq5nD5SgLg+VrgFPhXJ9z6wHkc+WacCP2HGRD6Vmww/YcZEPpWbDD8KFDE+NpIMP1a4BT4Vyfc+BMmrPgO16D5xWqg+eJq8PhYYyj7Thcg+FhjKPtOFyD44Zb4+qkTpPgTJqz4Dteg+y9WPPdcS8j6hR0w9O4ngPpc4kj2gxeI+VrgFPhXJ9z6XOJI9oMXiPtOhAz7YReE+lziSPaDF4j5dUjU9HlTSPml0hz3i6NI+uB02P4cYBz95dj0/rfwCP7NcOj8ziww/yJrBPkhQ/D6OW9w+ar8RP1zHwD4TRw4/OGW+PqpE6T4G2t0+MbEFP8iawT5IUPw+B0LyPsQjAT/x1/Q+LowMPwba3T4xsQU/FciMPt/5QT/Jq1M+jV9IP0H1Tz79ozs/QfVPPv2jOz/0FYQ+lx4xPxXIjD7f+UE/HHv2Ph+/7z7rbgI/onoDPwdC8j7EIwE/8df0Pi6MDD+/1Ac/iNUPPx2r9D7C3BI/BtrdPjGxBT8dq/Q+wtwSP45b3D5qvxE/eAkGP2LX9j434xA/Ivv4PutuAj+iegM/g4oqPfgXZT9tWZ49VP94PxR4pzw8wG8/624CP6J6Az9e8RA/QX0DPzmYBT+I1wk/RkQVP0Ge/T4mOB0/Yp/4PsNHFD/g9gQ/N+MQPyL7+D5GRBU/QZ79Pl7xED9BfQM/OIXlPg3G2D4ce/Y+H7/vPo0l5D7G/d8+2QWjPUfMaD9tWZ49VP94P4OKKj34F2U/FHinPDzAbz9tWZ49VP94PwFRsDzDKHw/3Xp1P5Tbaj/shWY/FD5fP6W8cj+CHGQ/9DE/P/d0jT7/50w/JbFUPtkHTT+wqm4+7IVmPxQ+Xz/XpVI/VdpaPwzpaD9UjFc/OZgFP4jXCT9e8RA/QX0DP7/UBz+I1Q8//nuYPk3z9j4eqa4+660NPxVYmD4//Qs/OrHnPRzrCj/L1Y891xLyPla4BT4Vyfc+D/FPPQETBD9/ifg8PV/7PsvVjz3XEvI+7bovP1x0gj4OoEM/4Co/PvQxPz/3dI0+2QdNP7Cqbj4g7U8/pkdTPteIUD9JSV8+7bovP00UYT5q9zs/SUgkPu26Lz9cdII+ded1P3tpej62gHA/TFM0Pi8Wej8ttHM+ELM7Pz5b5z2D/Dw/ilvFPRTQPD9TeuY9JuRXP98WbD6L3WY/fy4KPjvFWj/n+3k+FxBuP9RFCj5I4W4/4c/wPctKbz82ygo+ERlqP7JlCT7OUWs/jIH1PbZqaz/v/gg+/+dMPyWxVD7WNkU/PSgIPiDtTz+mR1M+DqBDP+AqPz7WNkU/PSgIPv/nTD8lsVQ+gh9pPxGOCT7OUWs/jIH1PREZaj+yZQk+eXY9P638Aj+jk0E/Wd3qPoXRQD+vegQ/zjZrPxK/8j6KkG4/4undPmmLbz+6pPo+W2BrP47NAj9pi28/uqT6Pgn7cj+bPAE/rWw3P9TwAT9tVj0/WcLqPnl2PT+t/AI/845vP5C/eD8icVM/AftsPwoPaj964W4/ZkloP25MZz8U6VI/pptgP+yFZj8UPl8/AWg8P06cOD890VE/GRsyP5ktUT8/cz4/mS1RPz9zPj+Cjjo/oSxAPwFoPD9OnDg/InFTPwH7bD/c80A/BoFhPxTpUj+mm2A/16VSP1XaWj+sHkA/PNxWP206Uj/P+FI/FOlSP6abYD+nrUE/+u1bP9elUj9V2lo/aFlTP/CJcT9Wuz4/8SprPyJxUz8B+2w/hv9QP5C/eD9Wuz4/8SprP2hZUz/wiXE/JuRXP98WbD47xVo/5/t5Pm41Vz8MV3c+ChQxPjaSDD86sec9HOsKP1a4BT4Vyfc+TRM2PQ0a6j6hR0w9O4ngPsvVjz3XEvI+f4n4PD1f+z5NEzY9DRrqPsvVjz3XEvI+y9WPPdcS8j6XOJI9oMXiPla4BT4Vyfc+yJrBPkhQ/D5cx8A+E0cOPx6prj7rrQ0/oUdMPTuJ4D5dUjU9HlTSPpc4kj2gxeI+BtrdPjGxBT+OW9w+ar8RP8iawT5IUPw+BtrdPjGxBT84Zb4+qkTpPr3/3z7IJvk+rWw3P9TwAT95dj0/rfwCP7gdNj+HGAc/eAkGP2LX9j7rbgI/onoDPxx79j4fv+8+8df0Pi6MDD8dq/Q+wtwSPwba3T4xsQU/XvEQP0F9Az/DRxQ/4PYEP7/UBz+I1Q8/N+MQPyL7+D5e8RA/QX0DP+tuAj+iegM/RkQVP0Ge/T7DRxQ/4PYEP17xED9BfQM/eXY9P638Aj+F0UA/r3oEP7NcOj8ziww/RghfPxYV+T6l82E/Nq/6PnSaWT9WmgQ/hjdLPjp5wT6quZw+UoC4PtUFTD7gSdM+845vP5C/eD9uoXc/OINvPz+oez9hHHg/DqBDP+AqPz7/50w/JbFUPvQxPz/3dI0+FOlSP6abYD/XpVI/VdpaP+yFZj8UPl8/OZgFP4jXCT+/1Ac/iNUPP/HX9D4ujAw/HqmuPuutDT/+e5g+TfP2PlILrT7Zlvk+D/FPPQETBD/L1Y891xLyPjqx5z0c6wo/avc7P0lIJD4OoEM/4Co/Pu26Lz9cdII+sB5HPlmnAj9WuAU+Fcn3PicxSD4yk/g+/+dMPyWxVD4g7U8/pkdTPtkHTT+wqm4+GTg4P/kRHz5q9zs/SUgkPu26Lz9NFGE+NUVsP1exOD62gHA/TFM0PnXndT97aXo+i91mP38uCj7OUWs/jIH1PYIfaT8Rjgk+aYtvP7qk+j5bYGs/js0CP3E8az93TP0+o5NBP1nd6j64PEY/kIL/PoXRQD+vegQ/aFlTP/CJcT8icVM/AftsP/OObz+Qv3g/16VSP1XaWj9tOlI/z/hSPwzpaD9UjFc/hv9QP5C/eD9oWVM/8IlxP/OObz+Qv3g/ZkloP25MZz8KD2o/euFuPyJxUz8B+2w/InFTPwH7bD8U6VI/pptgP2ZJaD9uTGc/Vrs+P/Eqaz/c80A/BoFhPyJxUz8B+2w/p61BP/rtWz+sHkA/PNxWP9elUj9V2lo/3PNAPwaBYT+nrUE/+u1bPxTpUj+mm2A/eGG7PlneBT4zVL0+tKoFPowT3z7eWHA+jBPfPt5YcD4Rw84+XixsPnhhuz5Z3gU+/nuYPk3z9j4nMUg+MpP4PnakSj4FxOQ+dqRKPgXE5D4TY5k+xyvoPv57mD5N8/Y+o8iyPugwKz/D1OY+Vwg7P07w5T4Nw0M/TvDlPg3DQz+PxrE+NxtDP6PIsj7oMCs/s1w6PzOLDD+F0UA/r3oEP1gfPz8O2w4/E2OZPscr6D52pEo+BcTkPtUFTD7gSdM+1QVMPuBJ0z6quZw+UoC4PhNjmT7HK+g+n1axPhuDSj+PxrE+NxtDP07w5T4Nw0M/TvDlPg3DQz9FY+U+ZK1NP59WsT4bg0o/vY3NPEpGbj4RjEM9af1NPkt1gT2A1VE+S3WBPYDVUT6Yp/M8k6qFPr2NzTxKRm4+hdFAP696BD+4PEY/kIL/PnbhRz/+0wU/pfNhPzav+j5GCF8/FhX5PsAgYT/oFvI+wCBhP+gW8j6Px2Q/BoH1PqXzYT82r/o+9UppPsrAMT6zl10+Z9UnPnTtaz4VcyA+dO1rPhVzID7k1nQ+xRouPvVKaT7KwDE+EYxDPWn9TT6mtWk9SUxAPjUomj3z5zs+NSiaPfPnOz5LdYE9gNVRPhGMQz1p/U0+y/RLP/DeBT924Uc//tMFP7g8Rj+Qgv8+uDxGP5CC/z58fEo/YvcBP8v0Sz/w3gU/sKlDPrpOIz76YUQ+oWY4PhL1Mj5IwTM+zjZrPxK/8j5pi28/uqT6PnE8az93TP0+O+C6PeeNUz5LdYE9gNVRPjUomj3z5zs+S3WBPYDVUT474Lo9541TPgKbsz0MdH0+ApuzPQx0fT6Yp/M8k6qFPkt1gT2A1VE+G2OfPh6KQj8VyIw+3/lBP/QVhD6XHjE/9BWEPpceMT/V0KY+JLUsPxtjnz4eikI/1dCmPiS1LD+jyLI+6DArP4/GsT43G0M/j8axPjcbQz8bY58+HopCP9XQpj4ktSw/eJqcPt7lSj8bY58+HopCP4/GsT43G0M/j8axPjcbQz+fVrE+G4NKP3ianD7e5Uo/UgutPtmW+T4Eyas+A7XoPjhlvj6qROk+OGW+PqpE6T7ImsE+SFD8PlILrT7Zlvk+M6ZMP2reFT9YHz8/DtsOP4XRQD+vegQ/hdFAP696BD924Uc//tMFPzOmTD9q3hU/OBHdPc8seT4Cm7M9DHR9Pjvguj3njVM+UgutPtmW+T7+e5g+TfP2PhNjmT7HK+g+E2OZPscr6D4Eyas+A7XoPlILrT7Zlvk+yJrBPkhQ/D4eqa4+660NP1ILrT7Zlvk+btuHPnJTSz94mpw+3uVKP4nwlz47qVs/eJqcPt7lSj9u24c+clNLPxXIjD7f+UE/FciMPt/5QT8bY58+HopCP3ianD7e5Uo/BMmrPgO16D4TY5k+xyvoPqq5nD5SgLg+qrmcPlKAuD5xWqg+eJq8PgTJqz4Dteg+rBmxPqopCT4rhrM+MzIIPus5uT7SwjU+6zm5PtLCNT6zmLA+9fcyPqwZsT6qKQk+OLy4PtjzBT54Ybs+Wd4FPhHDzj5eLGw+EcPOPl4sbD7rObk+0sI1Pji8uD7Y8wU+MBIOP0xQ4z00Lw8/ODHkPSqqEj85fR0+KqoSPzl9HT7Z6g4/RrMiPjASDj9MUOM9FNA8P1N65j1q9zs/SUgkPhk4OD/5ER8+GTg4P/kRHz4Qszs/PlvnPRTQPD9TeuY9y0pvPzbKCj62gHA/TFM0PjVFbD9XsTg+NUVsP1exOD4XEG4/1EUKPstKbz82ygo+avc7P0lIJD7XMD8/Jc3fPQ6gQz/gKj8+2eoOP0azIj5GQgc/IJY9PmyxCz+lo9w9ERlqP7JlCT4dzGI/kdRyPjvFWj/n+3k+O8VaP+f7eT6CH2k/EY4JPhEZaj+yZQk+tmprP+/+CD41RWw/V7E4Ph3MYj+R1HI+HcxiP5HUcj4RGWo/smUJPrZqaz/v/gg+O8VaP+f7eT6L3WY/fy4KPoIfaT8Rjgk+5SkvP3QMPD8BaDw/Tpw4P4KOOj+hLEA/go46P6EsQD+E9Cw/o69AP+UpLz90DDw/bqF3PziDbz/zjm8/kL94PwoPaj964W4/3Xp1P5Tbaj9mSWg/bkxnP+yFZj8UPl8/5SkvP3QMPD9sPj4/qp4wPwFoPD9OnDg/FViYPj/9Cz9hxkQ+lZsMP7AeRz5ZpwI/sn+uPsL7Wj+GyeQ+EwtUP5Aw5D42BV4/RWPlPmStTT+GyeQ+EwtUP7J/rj7C+1o/sn+uPsL7Wj+fVrE+G4NKP0Vj5T5krU0/RWPlPmStTT9O8OU+DcNDP/DEBD+In0M/8MQEP4ifQz+3QwM/18BOP0Vj5T5krU0/w9TmPlcIOz/93Og+5C4yP7Mk+D4EOTQ/syT4PgQ5ND/wxAQ/iJ9DP8PU5j5XCDs/8MQEP4ifQz9O8OU+DcNDP8PU5j5XCDs/syT4PgQ5ND/93Og+5C4yP82V6T4AdDA/06EDPthF4T7VBUw+4EnTPnakSj4FxOQ+JzFIPjKT+D7+e5g+TfP2PhVYmD4//Qs/FViYPj/9Cz+wHkc+WacCPycxSD4yk/g+JzFIPjKT+D5WuAU+Fcn3PtOhAz7YReE+06EDPthF4T52pEo+BcTkPicxSD4yk/g+vAMsPsAhxD4Bako+Eva9PoY3Sz46ecE+1QVMPuBJ0z7ToQM+2EXhPrwDLD7AIcQ+vAMsPsAhxD6GN0s+OnnBPtUFTD7gSdM+OGW+PqpE6T4WGMo+04XIPo0l5D7G/d8+jSXkPsb93z69/98+yCb5Pjhlvj6qROk+yatTPo1fSD9Smi0++BhMP8KJKD5tqkI/wokoPm2qQj9B9U8+/aM7P8mrUz6NX0g/QfVPPv2jOz/Ghk4+0/o3P5BNgj65cCg/kE2CPrlwKD/0FYQ+lx4xP0H1Tz79ozs/jSXkPsb93z4WGMo+04XIPpdvzT5/a7c+l2/NPn9rtz44heU+DcbYPo0l5D7G/d8+vf/fPsgm+T6NJeQ+xv3fPhx79j4fv+8+HHv2Ph+/7z4HQvI+xCMBP73/3z7IJvk+UpotPvgYTD/Jq1M+jV9IP+ymVD6jj1E/B0LyPsQjAT8G2t0+MbEFP73/3z7IJvk+bLELP6Wj3D1tqwU/fZMGPigPBz/Hgdc9vtrBPkd2BT5jRrg+8nfvPQu3xD4Ul4M9bLELP6Wj3D0oDwc/x4HXPQACBj/vkng9oSwEP0rtxTwAAgY/75J4PXZuAj+ndDA9Y0a4PvJ37z2DE7E+kGntPfhwwT4EIC49xAjJPnIZ9z2+2sE+R3YFPpHwxT7oE5k9weUNPwkywj1ssQs/paPcPQACBj/vkng90bAQPzz3vj3B5Q0/CTLCPQACBj/vkng9NBDTPszQOD0Lt8Q+FJeDPfFHyT40nDI909jOPrAf4jzxR8k+NJwyPW0fwj7KG+A8oSwEP0rtxTx2bgI/p3QwPfEtAD+kUuw8dm4CP6d0MD0AAgY/75J4PYE99j4YIxI9AAIGP++SeD2wjAE/lueBPYE99j4YIxI9G/PKPuOonD2R8MU+6BOZPTQQ0z7M0Dg9xJXzPUNwHD40nNI9dXgYPjUp5T0o7tg9baw0Pp5f9D2zszg+HLZtPQwBQD5tH/I9zc6iPa1oEz4dlJA9NbQRPuF8qj18Kbw93/xWPgBW5z0wLE8+ZHXrPUAWQj5Qi4E9MCxPPmR16z1FgEM+xvjwPUAWQj5Qi4E9NJzSPXV4GD41KJo98+c7PjFBrT3YCxU+5jtYPtXKBD1AFkI+UIuBPYjxOj5ETwo9ZRwDPmzrhz2tM949S1mGPVZG4z1I/Ao9QBZCPlCLgT2zszg+HLZtPYjxOj5ETwo9j9/7PTzBvj1fmdc9omK8Pa0z3j1LWYY9kNrEPSelwD3hfKo9fCm8PX2wjD1Hcnk9nMBUPnI1cj1AFkI+UIuBPeY7WD7VygQ9X5nXPaJivD2Q2sQ9J6XAPR6Koj3obIE9qkgRP+au5T0qqhI/OX0dPjQvDz84MeQ9B3zOPisVFD4bLOQ++3NhPr7awT5HdgU+OLy4PtjzBT7rObk+0sI1PiuGsz4zMgg+xAjJPnIZ9z0HfM4+KxUUPr7awT5HdgU+bLELP6Wj3D1GQgc/IJY9Pm2rBT99kwY+kfDFPugTmT2+2sE+R3YFPgu3xD4Ul4M9AAIGP++SeD0oDwc/x4HXPbCMAT+W54E9C7fEPhSXgz1jRrg+8nfvPfhwwT4EIC49G/PKPuOonD3ECMk+chn3PZHwxT7oE5k9oSwEP0rtxTzRsBA/PPe+PQACBj/vkng98UfJPjScMj0Lt8Q+FJeDPfhwwT4EIC49TFDLPuvjoTzT2M4+sB/iPG0fwj7KG+A8+HDBPgQgLj1tH8I+yhvgPPFHyT40nDI98S0AP6RS7Dx2bgI/p3QwPYE99j4YIxI9NBDTPszQOD2R8MU+6BOZPQu3xD4Ul4M9x0vXPgslUz0b88o+46icPTQQ0z7M0Dg9xJXzPUNwHD4k1dc9NBJRPjSc0j11eBg+NSnlPSju2D00nNI9dXgYPl+Z1z2iYrw9RYBDPsb48D2wqUM+uk4jPgwBQD5tH/I9MUGtPdgLFT41KJo98+c7Ps3Ooj2taBM+i8VfPl+a4j107Ws+FXMgPt/8Vj4AVuc9j9/7PTzBvj3ElfM9Q3AcPjUp5T0o7tg9X5nXPaJivD00nNI9dXgYPpDaxD0npcA9rTPePUtZhj1fmdc9omK8PR6Koj3obIE9j9/7PTzBvj01KeU9KO7YPV+Z1z2iYrw9Ja4DPlFNCT1lHAM+bOuHPS+G8j1gI8k8L4byPWAjyTxlHAM+bOuHPVZG4z1I/Ao9ZRwDPmzrhz2P3/s9PMG+Pa0z3j1LWYY9HoqiPehsgT2Q2sQ9J6XAPX2wjD1Hcnk9t2FkPppB/DycwFQ+cjVyPeY7WD7VygQ91zA/PyXN3z0c00M/R6vaPdY2RT89KAg+i91mP38uCj4Z42M/zqeOPc5Raz+MgfU91zA/PyXN3z0z4EQ/++Z+PRzTQz9Hq9o9orVGP2SV0jy9c0g/qMc2PTPgRD/75n49zlFrP4yB9T1+AWU/bTpCPUjhbj/hz/A9ExBjP1WhAT4rhmM/Y4CkPYvdZj9/Lgo+g/w8P4pbxT0z4EQ/++Z+PdcwPz8lzd89cjE6P0Ihwj0z4EQ/++Z+PYP8PD+KW8U9G0tcPznSWT3iIGE/rHNMPRnjYz/Op449HvtdPyRGDz1uT2Q/V+sEPeIgYT+sc0w9orVGP2SV0jxCtEo/pfj4PL1zSD+oxzY9vXNIP6jHNj2Dw08/GXYYPTPgRD/75n49M+BEP/vmfj2Dw08/GXYYPYJVST8XEYU9NBJhPwjpqT0bS1w/OdJZPSuGYz9jgKQ9bVY9P1nC6j4kCUI/pWXUPqOTQT9Z3eo+OblrP4qR3T4b9Ww/bqK+PoqQbj/i6d0+861HP/9Z6z5wB0o/5gjRPkP+ST9/pes+E+5lP0xQ2z74qWo/+nvBPubmZz+cMdw+5uZnP5wx3D74qWo/+nvBPhvYaj8MWd0+o5NBP1nd6j5bskY/zH/QPkBQRj+qgOs+NdRkPwwisj7UKGw/8kKyPvipaj/6e8E+f4VAP7q7vj5gzEY/dcmwPiNrRT9o0MA++KlqP/p7wT7UKGw/8kKyPhv1bD9uor4+vhZAP12ozD4ja0U/aNDAPnqORD9hUM4+W7JGP8x/0D4kl08/1H7DPnAHSj/mCNE+8fVlP7a7vz411GQ/DCKyPvipaj/6e8E+eo5EP2FQzj5ozEw/ZkrDPluyRj/Mf9A+mpk5P2bY6D0Qszs/PlvnPRk4OD/5ER8+o+lgP64PGz6L3WY/fy4KPibkVz/fFmw+tmprP+/+CD4XEG4/1EUKPjVFbD9XsTg+ExBjP1WhAT6L3WY/fy4KPqPpYD+uDxs+1zA/PyXN3z3WNkU/PSgIPg6gQz/gKj8+K4ZjP2OApD0Z42M/zqeOPYvdZj9/Lgo+M+BEP/vmfj2CVUk/FxGFPRzTQz9Hq9o9GeNjP86njj1+AWU/bTpCPc5Raz+MgfU9NBJhPwjpqT0rhmM/Y4CkPRMQYz9VoQE+orVGP2SV0jwz4EQ/++Z+PXIxOj9CIcI94iBhP6xzTD1+AWU/bTpCPRnjYz/Op449O45fPx9k2TxuT2Q/V+sEPR77XT8kRg89fgFlP206Qj3iIGE/rHNMPW5PZD9X6wQ9QrRKP6X4+DyDw08/GXYYPb1zSD+oxzY9G0tcPznSWT0Z42M/zqeOPSuGYz9jgKQ9WFZaPwcmdz0bS1w/OdJZPTQSYT8I6ak9bVY9P1nC6j6jk0E/Wd3qPnl2PT+t/AI/JAlCP6Vl1D56jkQ/YVDOPqOTQT9Z3eo+G9hqPwxZ3T45uWs/ipHdPs42az8Sv/I+QFBGP6qA6z7zrUc//1nrPrg8Rj+Qgv8+ibZjP8dM2j4T7mU/TFDbPsAgYT/oFvI+vhZAP12ozD4kCUI/pWXUPm1WPT9Zwuo+eo5EP2FQzj5bskY/zH/QPqOTQT9Z3eo+I2tFP2jQwD5ozEw/ZkrDPnqORD9hUM4+vhZAP12ozD56jkQ/YVDOPiQJQj+lZdQ+xXNCP/Zcrj6YikU/wjGrPn+FQD+6u74+mIpFP8Ixqz5gzEY/dcmwPn+FQD+6u74+f4VAP7q7vj4ja0U/aNDAPr4WQD9dqMw+aMxMP2ZKwz4kl08/1H7DPluyRj/Mf9A+R8dhP5CIsT411GQ/DCKyPvH1ZT+2u78+zc6iPa1oEz7hfKo9fCm8PZDaxD0npcA9kNrEPSelwD0xQa092AsVPs3Ooj2taBM+OblrP4qR3T4b2Go/DFndPvipaj/6e8E++KlqP/p7wT4b9Ww/bqK+Pjm5az+Kkd0+E+5lP0xQ2z6JtmM/x0zaPvH1ZT+2u78+8fVlP7a7vz74qWo/+nvBPhPuZT9MUNs+HZSQPTW0ET7NzqI9rWgTPjUomj3z5zs+NSiaPfPnOz6mtWk9SUxAPh2UkD01tBE+3/xWPgBW5z1AFkI+UIuBPZzAVD5yNXI9nMBUPnI1cj2LxV8+X5riPd/8Vj4AVuc9DAFAPm0f8j2zszg+HLZtPUAWQj5Qi4E9QBZCPlCLgT1FgEM+xvjwPQwBQD5tH/I95uZnP5wx3D6Px2Q/BoH1PsAgYT/oFvI+wCBhP+gW8j4T7mU/TFDbPubmZz+cMdw+G9hqPwxZ3T7ONms/Er/yPo/HZD8GgfU+j8dkPwaB9T7m5mc/nDHcPhvYaj8MWd0+MCxPPmR16z3f/FY+AFbnPXTtaz4VcyA+dO1rPhVzID6zl10+Z9UnPjAsTz5kdes9RYBDPsb48D0wLE8+ZHXrPbOXXT5n1Sc+s5ddPmfVJz6wqUM+uk4jPkWAQz7G+PA9Q/5JP3+l6z58fEo/YvcBP7g8Rj+Qgv8+uDxGP5CC/z7zrUc//1nrPkP+ST9/pes+861HP/9Z6z5AUEY/qoDrPluyRj/Mf9A+W7JGP8x/0D5wB0o/5gjRPvOtRz//Wes+kNrEPSelwD00nNI9dXgYPjFBrT3YCxU+sKlDPrpOIz5trDQ+nl/0PQwBQD5tH/I9zjZrPxK/8j45uWs/ipHdPoqQbj/i6d0+uDxGP5CC/z6jk0E/Wd3qPkBQRj+qgOs+FxBuP9RFCj62ams/7/4IPs5Raz+MgfU9zlFrP4yB9T1I4W4/4c/wPRcQbj/URQo+K4azPjMyCD6DE7E+kGntPWNGuD7yd+89Y0a4PvJ37z04vLg+2PMFPiuGsz4zMgg+NC8PPzgx5D3B5Q0/CTLCPdGwED8897490bAQPzz3vj2qSBE/5q7lPTQvDz84MeQ9ELM7Pz5b5z2amTk/ZtjoPXIxOj9CIcI9cjE6P0Ihwj2D/Dw/ilvFPRCzOz8+W+c9FNA8P1N65j3XMD8/Jc3fPWr3Oz9JSCQ+g/w8P4pbxT3XMD8/Jc3fPRTQPD9TeuY9MBIOP0xQ4z3Z6g4/RrMiPmyxCz+lo9w9weUNPwkywj0wEg4/TFDjPWyxCz+lo9w9r+sXPdlAQj8yIPs8igNEP8uf7zyLb0A/e70bP9TS9D5o5h0//5HxPiY4HT9in/g+AgAQAAIAAgACABAAFAACAAIADQACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIACgACAAIAAgAKAAIAAgACAAoACwACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIAAgAQAAIAAgACABAAAgACAAIADQACAAIAAgAQAAIAAgADAAIAAgACAAMAAgACAAIAAwACAAIAAgADAAIAAgACAAIAEAACAAIAAgAQAAIAAgACAAIAAgACAAIAAgACAAIAAgACAAIAAgACABAAFAACAAIAEAACAAIAAgAQAAIAAgACABAAAgACABEAEAACAAIACgACAAIAAgAKAAsAAgACAAsACgACAAIADwACAAIAAgAPAAIAAgACAA8AAgACAAIADwACAAIAAgAPAAIAAgACAA8AAgACAAIADwAOAAIAAgAPAAIAAgACAA8AAgACAAIADwACAAIAAgAPAAIAAgACAA8AAgACAAIAAwACAAIAAgADABAAAgACAAoABAACAAIAAgAQAAIAAgACABAAAgACAAIADQACAAIABAAFAAcACgAKAAQAAgACAAoAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABQAEAAIAAgAKAAIAAgACAAUABAACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIAAgAQAAIAAgADAAIAAgACAAIAEAARAAIABAAFAAcACgAEAAoABwACAAoABAACAAIAAgANAAIAAgACABAAAgACAAIADQACAAIAAwACAAIAAgADAAIAAgACAAIAEAACAAIAAgAQABEAAgADAAIAAgACAAIAAgACAAIACgACAAIAAgAKAAQAAgACAAoAAgACAAIADwACAAIAAgAPAA4AAgACAA8AAgACAAIADwACAAIAAgAPAAIAAgACAA8AAgACAAIADwACAAIAAgAPAAIAAgACAA8AAgACAAIADwACAAIAAgAPAAIAAgACAA8AAgACAAIADwACAAIAAgAPAAIAAgACAA8AAgACAAIAAgAUAAIAAgACAA0AAgACAAIAEAAUAAIACgACAAIAAgAFAAQAAgACAAUABAACAAIABQAEAAIAAgAEAAUABwAKAAoAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABwACAAIAAgAHAAgAAgACAAcAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIAAgAUAAIAAgACAA0AAgACAAIAFAACAAIAAwACAAIAAgADAAIAAgACAAMAAgACAAIAAwACAAIAAgACABQAAgACAAMAAgACAAIAAgAQABQAAgACAAIAAgACAAIAAgACAAIAAgACAAIAAgACABQAAgACAAIAEAAUAAIAAgAUAAIAAgAVABQAAgACAAIAFAACAAIABwACAAIAAgAIAAcAAgACAAcACAACAAIADwACAAIAAgAPAAIAAgACAA8AAgACAAIADwACAAIAAgAPAAIAAgACAA8AAgACAAIADwAOAAIAAgAPAAIAAgACAA8AAgACAAIADwACAAIAAgAPAAIAAgACAA8AAgACAAIAAwACAAIAAgAHAAQAAgACAAMAFAACAAIAAgAUAAIAAgACAA0AAgACAAIAFAACAAIABAAFAAcACgAHAAIAAgACAAcABAACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABQAEAAIAAgAFAAQAAgACAAcAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIAAgAUAAIAAgACABQAFQACAAMAAgACAAIABAAFAAcACgAHAAQAAgACAAQACgAHAAIAAgANAAIAAgACAA0AAgACAAIAFAACAAIAAwACAAIAAgACABQAAgACAAMAAgACAAIAAgAUABUAAgACABQAAgACAAIAAgACAAIABwACAAIAAgAHAAIAAgACAAcABAACAAIADwACAAIAAgAPAAIAAgACAA8ADgACAAIADwACAAIAAgAPAAIAAgACAA8AAgACAAIADwACAAIAAgAPAAIAAgACAA8AAgACAAIADwACAAIAAgAPAAIAAgACAA8AAgACAAIADwACAAIAAgAPAAIAAgACAA8AAgACAAIABwACAAIAAgAEAAUABwAKAAUABAACAAIABQAEAAIAAgAFAAQAAgACAAcAAgACAAIACgACAAIAAgAKAAIAAgACAAoAAgACAAIACgACAAIAAgAKAAQAAgACAAoAAgACAAIACgACAAIAAgALAAoAAgACAAoACwACAAIACgALAAIAAgAKAAIAAgACAAoAAgACAAIABwACAAIAAgAHAAQAAgACAAcAAgACAAIABwACAAIAAgAHAAIAAgACAAcAAgACAAIACgALAAIAAgAKAAIAAgACAAoABAACAAIACgAEAAIAAgAEAAoABwACAAoACwACAAIABwAIAAIAAgAEAAoABwACAAcABAACAAIABwAEAAIAAgAHAAIAAgACAAcACAACAAIABwACAAIAAgAHAAIAAgACAAcACAACAAIABwAIAAIAAgAIAAcAAgACAAcAAgACAAIAAwAUAAIAAgACABQAAgACAAIAFAACAAIAAgAUAAIAAgADAAIAAgACAAMAFAACAAIABAAKAAcAAgADAAIAAgACAAMAAgACAAIAAwACAAIAAgAEAAoABwACAAcABAACAAIABwAEAAIAAgADAAIAAgACAAMAAgACAAIAAwAQAAIAAgADAAIAAgACAAIAEAACAAIAAgAQAAIAAgACABAAAgACAAMAEAACAAIABAAKAAcAAgADAAIAAgACAAMAAgACAAIAAwACAAIAAgADAAIAAgACAAoABAACAAIACgAEAAIAAgAEAAoABwACAAMAAgACAAIAAwACAAIAAgACAAIAAgACAAIAAgACAAIAAwACAAIAAgACAAIAAgACAAIAAgACAAIAAwACAAIAAgACABQAFQACAAIAAgACAAIAAgAQAAIAAgACABAAEQACAAIAAgACAAIABQAEAAIAAgAFAAQAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAUABAACAAIABQAEAAIAAgAFAAQAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAUABAACAAIABQAEAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAFAAQAAgACAAUABAACAAIABQAEAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAFAAQAAgACAAUABAACAAIAAgANAAIAAgACAA0AAgACAA0ADgACAAIADQAOAAIAAgACAA0AAgACAA0ADgACAAIACgAEAAIAAgADABAAAgACAAMAEAACAAIAAwAQAAIAAgAKAAQAAgACAAoABAACAAIAAwACAAIAAgADAAIAAgACAAMAAgACAAIAAwACAAIAAgACAAIAAgACAAMAAgACAAIAAgANAAIAAgACABAAAgACAAIADQACAAIAAgACAAIAAgACABAAAgACAAIAEAACAAIAAgAQAAIAAgACABAAAgACAAIADQACAAIACgAEAAIAAgAKAAQAAgACAAoACwACAAIABAACAAIAAgAEAAIAAgACAAUABAACAAIABAACAAIAAgAEAAIAAgACAAUABAACAAIABgACAAIAAgAFAAQAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABQAEAAIAAgAFAAQAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABQAEAAIAAgAFAAQAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIAAgANAAIAAgACAA0AAgACAA0ADgACAAIAAgAQAAIAAgACABAAAgACABEAEAACAAIADQAOAAIAAgANAA4AAgACAA8ADgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIAAgACAAIAAgACAAIAAgACAAIADQACAAIAAgANAAIAAgACAA0AAgACAAIADQACAAIAAgAQAAIAAgACABAAAgACABAAEQACAAIAAgAQAAIAAgACABAAAgACABEAEAACAAIAAgAQAAIAAgACABAAAgACABEAEAACAAIAAgAQAAIAAgACABAAAgACABEAEAACAAIAEQASAAIAAgARABIAAgACABEAEgACAAIAEQASAAIAAgARABIAAgACABEAEgACAAIAEQAQAAIAAgACABAAEQACABEAEgACAAIAEQASAAIAAgARABIAAgACABEAEgACAAIAEQASAAIAAgARABIAAgACABEAEgACAAIAEQAQAAIAAgARABAAAgACABEAAgACAAIAEAARAAIAAgARABAAAgACABEAAgACAAIAEQASAAIAAgARABIAAgACABEAEgACAAIACgALAAIAAgAKAAsAAgACAAsAAgACAAIACwAKAAIAAgAKAAsAAgACAAsAAgACAAIABwACAAIAAgAHAAIAAgACAAcAAgACAAIABwACAAIAAgAHAAIAAgACAAcAAgACAAIABAAKAAcAAgAKAAQAAgACAAoACwACAAIACgALAAIAAgAKAAsAAgACAAsAAgACAAIADQAOAAIAAgACAA0AAgACAA0ADgACAAIADQAOAAIAAgAPAA4AAgACAA0ADgACAAIAAgANAAIAAgACAA0AAgACAA0ADgACAAIADQAOAAIAAgANAA4AAgACAAIADQACAAIADwAOAAIAAgAPAA4AAgACAA8AAgACAAIADwAOAAIAAgAPAA4AAgACAA8AAgACAAIADwAOAAIAAgAPAA4AAgACAA8AAgACAAIADwAOAAIAAgAPAA4AAgACAA8AAgACAAIADwAOAAIAAgAPAA4AAgACAA8AAgACAAIAEQAQAAIAAgACABAAAgACAAIAEAARAAIAAwACAAIAAgACAAIAAgACAAIAAgACAAIAAgANAAIAAgACAA0AAgACAAIADQACAAIAAgANAAIAAgACAA0AAgACAAIADQACAAIAAgANAAIAAgACAAIAAgACAAIAEAACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIAAgANAAIAAgACABAAAgACAAIADQACAAIABQAEAAIAAgAEAAIAAgACAAUABAACAAIABQAEAAIAAgAEAAIAAgACAAUABAACAAIACgALAAIAAgAKAAQAAgACAAoACwACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAFAAQAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIACgALAAIAAgAKAAQAAgACAAoACwACAAIACgACAAIAAgAKAAIAAgACAAoAAgACAAIAAwAQAAIAAgADAAIAAgACAAoABAACAAIADQAOAAIAAgACAA0AAgACAAIADQACAAIAEAARAAIAAgACABAAAgACABEAEAACAAIADwAOAAIAAgANAA4AAgACAA8ADgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIAAgANAAIAAgACAAIAAgACAAIADQACAAIAEQAQAAIAAgACABAAAgACABAAEQACAAIAAwACAAIAAgADAAIAAgACAAIAAgACAAIAEQAQAAIAAgACABAAAgACABEAEAACAAIAEQAQAAIAAgACABAAAgACABEAEAACAAIAEQAQAAIAAgACABAAAgACABEAEAACAAIAEQASAAIAAgACABAAEQACABEAEgACAAIACgALAAIAAgAEAAoABwACAAoACwACAAIACwACAAIAAgAKAAsAAgACAAsACgACAAIADwAOAAIAAgANAA4AAgACAA8ADgACAAIADwAOAAIAAgANAA4AAgACAA8ADgACAAIADwAOAAIAAgANAA4AAgACAA8ADgACAAIADwAOAAIAAgANAA4AAgACAA0ADgACAAIADwACAAIAAgAPAA4AAgACAA8AAgACAAIADwACAAIAAgAPAA4AAgACAA8AAgACAAIADwACAAIAAgAPAA4AAgACAA8AAgACAAIAAgANAAIAAgANAA4AAgACAAIADQACAAIADQAOAAIAAgANAA4AAgACAAIADQACAAIABwAEAAIAAgADABQAAgACAAMAFAACAAIAAwAUAAIAAgAHAAQAAgACAAcABAACAAIAAgACAAIAAgADAAIAAgACAAMAAgACAAIAAwACAAIAAgADAAIAAgACAAIAAgACAAIABAACAAIAAgAHAAIAAgACAAcAAgACAAIABwACAAIAAgAEAAIAAgACAAQAAgACAAIAAgANAAIAAgACAA0AAgACAAIAFAACAAIAAgACAAIAAgACABQAAgACAAIAFAACAAIAAgAUAAIAAgACAA0AAgACAAIAFAACAAIABwAEAAIAAgAHAAgAAgACAAcABAACAAIABAACAAIAAgAFAAQAAgACAAQAAgACAAIABAACAAIAAgAFAAQAAgACAAQAAgACAAIABgACAAIAAgAGAAIAAgACAAUABAACAAIABAACAAIAAgAFAAQAAgACAAUABAACAAIABQAEAAIAAgAKAAIAAgACAAQAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABQAEAAIAAgAGAAIAAgACAAUABAACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABQAEAAIAAgAGAAIAAgACAAUABAACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIAAgANAAIAAgANAA4AAgACAAIADQACAAIAAgAUAAIAAgAVABQAAgACAAIAFAACAAIADQAOAAIAAgAPAA4AAgACAA0ADgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIAAgACAAIAAgACAA0AAgACAAIAAgACAAIAAgANAAIAAgACAA0AAgACAAIADQACAAIAAgAUAAIAAgAUABUAAgACAAIAFAACAAIAAgAUAAIAAgAVABQAAgACAAIAFAACAAIAAgAUAAIAAgAVABQAAgACAAIAFAACAAIAAgAUAAIAAgAVABQAAgACAAIAFAACAAIAFQAWAAIAAgAVABYAAgACABUAFgACAAIAFQAUAAIAAgAVABYAAgACAAIAFAAVAAIAFQAWAAIAAgAVABYAAgACABUAFgACAAIAFQAWAAIAAgAVABYAAgACABUAFgACAAIAFQAUAAIAAgAVAAIAAgACABUAFAACAAIAFAAVAAIAAgAVAAIAAgACABUAFAACAAIAFQAWAAIAAgAVABYAAgACABUAFgACAAIABwAIAAIAAgAIAAIAAgACAAcACAACAAIACAAHAAIAAgAIAAIAAgACAAcACAACAAIABAAKAAcAAgAHAAgAAgACAAcABAACAAIABwAIAAIAAgAIAAIAAgACAAcACAACAAIADQAOAAIAAgAPAA4AAgACAA0ADgACAAIADQAOAAIAAgAPAA4AAgACAA0ADgACAAIADQAOAAIAAgAPAA4AAgACAA8ADgACAAIADwAOAAIAAgANAA4AAgACAA0ADgACAAIADwAOAAIAAgAPAAIAAgACAA8ADgACAAIADwAOAAIAAgAPAAIAAgACAA8ADgACAAIADwAOAAIAAgAPAAIAAgACAA8ADgACAAIADwAOAAIAAgAPAAIAAgACAA8ADgACAAIADwAOAAIAAgAPAAIAAgACAA8ADgACAAIAFQAUAAIAAgACABQAFQACAAIAFAACAAIAAwACAAIAAgACAAIAAgACAAIAAgACAAIAAgANAAIAAgACAA0AAgACAAIADQACAAIAAgANAAIAAgACAA0AAgACAAIADQACAAIAAgANAAIAAgACABQAAgACAAIAAgACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIAAgANAAIAAgACAA0AAgACAAIAFAACAAIABQAEAAIAAgAFAAQAAgACAAQAAgACAAIABQAEAAIAAgAEAAIAAgACAAUABAACAAIABwAIAAIAAgAHAAgAAgACAAcABAACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAUABAACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABwAIAAIAAgAHAAgAAgACAAcABAACAAIABwACAAIAAgAHAAIAAgACAAcAAgACAAIAAwAUAAIAAgAHAAQAAgACAAMAAgACAAIADQAOAAIAAgACAA0AAgACAAIADQACAAIAFAAVAAIAAgAVABQAAgACAAIAFAACAAIADwAOAAIAAgAPAA4AAgACAA0ADgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIAAgANAAIAAgACAA0AAgACAAIAAgACAAIAFQAUAAIAAgAUABUAAgACAAIAFAACAAIAAwACAAIAAgACAAIAAgACAAMAAgACAAIAFQAUAAIAAgAVABQAAgACAAIAFAACAAIAFQAUAAIAAgAVABQAAgACAAIAFAACAAIAFQAUAAIAAgAVABQAAgACAAIAFAACAAIAFQAWAAIAAgAVABYAAgACABUAFgACAAIABwAIAAIAAgAEAAoABwACAAcACAACAAIACAACAAIAAgAIAAcAAgACAAcACAACAAIADwAOAAIAAgAPAA4AAgACAA0ADgACAAIADwAOAAIAAgAPAA4AAgACAA0ADgACAAIADwAOAAIAAgAPAA4AAgACAA0ADgACAAIADQAOAAIAAgANAA4AAgACAA8ADgACAAIADwAOAAIAAgAPAA4AAgACAA0ADgACAAIADwACAAIAAgAPAAIAAgACAA8ADgACAAIADwACAAIAAgAPAAIAAgACAA8ADgACAAIADwACAAIAAgAPAAIAAgACAA8ADgACAAIAEQASAAIAAgARABIAAgACAAIAEAARAAIAAgAQABEAAgACABAAAgACABEAEgACAAIABAACAAIAAgADAAIAAgACAAMAAgACAAIAAwACAAIAAgAEAAIAAgACAAQAAgACAAIACgAEAAIAAgADAAIAAgACAAMAAgACAAIAAwACAAIAAgAEAAIAAgACAAoABAACAAIABwAEAAIAAgAHAAgAAgACAAcAAgACAAIABAACAAIAAgADAAIAAgACAAMAAgACAAIAAwACAAIAAgAHAAQAAgACAAQAAgACAAIABAACAAIAAgAEAAIAAgACAAMAAgACAAIAAwACAAIAAgADAAIAAgACAAQAAgACAAIACgACAAIAAgAKAAIAAgACAAoAAgACAAIACgACAAIAAgAKAAIAAgACAAoAAgACAAIABwAIAAIAAgAIAAcAAgACAAcAAgACAAIABwACAAIAAgAHAAIAAgACAAcACAACAAIABwAIAAIAAgAHAAgAAgACAAcAAgACAAIACgACAAIAAgAKAAsAAgACAAoACwACAAIACgALAAIAAgAKAAIAAgACAAoAAgACAAIACgACAAIAAgAKAAsAAgACAAsACgACAAIACwAKAAIAAgAKAAIAAgACAAoAAgACAAIABwACAAIAAgAHAAIAAgACAAgABwACAAIACAAHAAIAAgAHAAgAAgACAAcAAgACAAIACwAKAAIAAgAKAAsAAgACAAoACwACAAIACAAHAAIAAgAHAAgAAgACAAcACAACAAIACgALAAIAAgAKAAIAAgACAAsACgACAAIACgACAAIAAgAKAAsAAgACAAoAAgACAAIACgACAAIAAgAKAAIAAgACAAoAAgACAAIABAACAAIAAgAEAAIAAgACAAoAAgACAAIACgACAAIAAgAKAAIAAgACAAQAAgACAAIACgACAAIAAgAKAAQAAgACAAQAAgACAAIABAACAAIAAgAEAAIAAgACAAoAAgACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIABwACAAIAAgAHAAIAAgACAAcACAACAAIABwAIAAIAAgAHAAIAAgACAAcAAgACAAIACgAEAAIAAgAKAAIAAgACAAoACwACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIABAACAAIAAgAEAAIAAgACAAQAAgACAAIABAACAAIAAgAEAAIAAgACAAcABAACAAIABwAEAAIAAgAHAAIAAgACAAQAAgACAAIAEQASAAIAAgARABIAAgACABEAEAACAAIAEQAQAAIAAgARABAAAgACABEAEgACAAIAEQASAAIAAgARABIAAgACAAIAEAACAAIAAgAQAAIAAgARABAAAgACABEAEgACAAIAEQASAAIAAgARABIAAgACABEAEAACAAIAEQAQAAIAAgARABAAAgACABEAEgACAAIAFQAWAAIAAgAVABQAAgACABUAFAACAAIAFQAUAAIAAgAVABYAAgACABUAFgACAAIAFQAWAAIAAgAVABQAAgACABUAFAACAAIAFQAUAAIAAgAVABYAAgACABUAFgACAAIAFQAUAAIAAgAVABYAAgACABQAFQACAAIAEQAQAAIAAgAQABEAAgACABEAEgACAAIAFQAWAAIAAgACABQAAgACAAIAFAAVAAIAAgAUABUAAgAVABYAAgACABUAFgACAAIAFQAWAAIAAgAVABQAAgACAAIAFAACAAIAAgAUAAIAAgAVABYAAgACABUAFgACAAIAAgAUABUAAgAVABYAAgACABUAFgACAAIAAgANAAIAAgANAA4AAgACAA0ADgACAAIADQAOAAIAAgACAA0AAgACAAIADQACAAIAAgANAAIAAgANAA4AAgACAA0ADgACAAIAAgANAAIAAgANAA4AAgACAA0ADgACAAIAAgANAAIAAgANAA4AAgACAA0ADgACAAIABAACAAIAAgADAAIAAgACAAMAAgACAAIABAACAAIAAgADAAIAAgACAAMAAgACAAIAAwACAAIAAgADAAIAAgACAAQAAgACAAIABAACAAIAAgAEAAIAAgACAAMAAgACAAIAAwACAAIAAgADAAIAAgACAAIAEAACAAIAAgAQAAIAAgACAAIAAgACAAMAAgACAAIAAwACAAIAAgADABAAAgACAAIAEAACAAIAAgAQAAIAAgACABAAAgACAAMAAgACAAIAAgAQAAIAAgADAAIAAgACAAMAAgACAAIAAgAQAAIAAgADABAAAgACAAMAEAACAAIAAgAUAAIAAgADAAIAAgACAAMAAgACAAIAAwACAAIAAgAEAAIAAgACAAQAAgACAAIABAACAAIAAgADAAIAAgACAAMAAgACAAIAAwACAAIAAgACAAIAAgACAAIAFAACAAIAAgAUAAIAAgADAAIAAgACAAMAAgACAAIAAgAUAAIAAgADABQAAgACAAMAFAACAAIAAwACAAIAAgACABQAAgACAAIAFAACAAIAAgAUAAIAAgADABQAAgACAAMAAgACAAIABAACAAIAAgAHAAIAAgACAAUABAACAAIABQAEAAIAAgAFAAQAAgACAAQAAgACAAIABQAEAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAFAAQAAgACAAUABAACAAIABQAEAAIAAgAFAAQAAgACAAoAAgACAAIACgACAAIAAgAKAAIAAgACAAUABAACAAIABQAEAAIAAgAHAAIAAgACAAcAAgACAAIABwACAAIAAgAFAAQAAgACAAUABAACAAIABQAEAAIAAgAFAAQAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAUABAACAAIABgACAAIAAgAFAAQAAgACAAUABAACAAIABgACAAIAAgAFAAQAAgACAAUABAACAAIAEQASAAIAAgARAAIAAgACABIAEQACAAIAEQASAAIAAgARABIAAgACABMAEgACAAIAEQASAAIAAgASABEAAgACABIAEwACAAIAEwASAAIAAgASABMAAgACABMAAgACAAIAEQASAAIAAgARABIAAgACABMAEgACAAIAEgARAAIAAgARABIAAgACABIAEwACAAIAEQASAAIAAgARABIAAgACABIAEwACAAIAEQASAAIAAgARABIAAgACABIAEwACAAIAEwACAAIAAgATABIAAgACABMAAgACAAIAEwACAAIAAgATAAIAAgACABMAAgACAAIAEwASAAIAAgATAAIAAgACABMAAgACAAIAEwACAAIAAgASABMAAgACABMAAgACAAIAEgATAAIAAgASABMAAgACABMAAgACAAIAEgATAAIAAgASABMAAgACABMAAgACAAIACwACAAIAAgALAAIAAgACAAwACwACAAIACwACAAIAAgAMAAsAAgACAAsAAgACAAIACwACAAIAAgALAAIAAgACAAwACwACAAIACwACAAIAAgALAAIAAgACAAwACwACAAIACwACAAIAAgALAAIAAgACAAwACwACAAIACwACAAIAAgALAAoAAgACAAsAAgACAAIADAACAAIAAgAMAAsAAgACAAwAAgACAAIADAACAAIAAgAMAAIAAgACAAwAAgACAAIADAALAAIAAgAMAAsAAgACAAwAAgACAAIADAALAAIAAgAMAAsAAgACAAwAAgACAAIADAALAAIAAgAMAAsAAgACAAwAAgACAAIADAALAAIAAgAMAAsAAgACAAwAAgACAAIADAALAAIAAgAMAAsAAgACAAwAAgACAAIAEQASAAIAAgARABAAAgACABEAEgACAAIAEQACAAIAAgARABAAAgACABEAEgACAAIAEQASAAIAAgARABAAAgACABEAEgACAAIAEgARAAIAAgARAAIAAgACABEAEgACAAIAEQASAAIAAgAQABEAAgACABEAAgACAAIAEgATAAIAAgARABIAAgACABMAEgACAAIAEgATAAIAAgASABEAAgACABIAEwACAAIAEwASAAIAAgARABIAAgACABMAEgACAAIAEgATAAIAAgASABEAAgACABIAEwACAAIAEwASAAIAAgARABIAAgACABIAEwACAAIAEwACAAIAAgATABIAAgACABMAEgACAAIAEwACAAIAAgATAAIAAgACABMAAgACAAIAEwASAAIAAgATAAIAAgACABMAAgACAAIAEwACAAIAAgATAAIAAgACABMAAgACAAIAEwACAAIAAgASABMAAgACABMAEgACAAIAEwACAAIAAgASABMAAgACABMAAgACAAIACwACAAIAAgAKAAsAAgACAAsAAgACAAIADAALAAIAAgALAAIAAgACAAwACwACAAIACwACAAIAAgALAAoAAgACAAsAAgACAAIACwACAAIAAgALAAoAAgACAAsAAgACAAIACwACAAIAAgAKAAsAAgACAAsAAgACAAIADAALAAIAAgALAAIAAgACAAwACwACAAIADAALAAIAAgALAAIAAgACAAwACwACAAIADAACAAIAAgAMAAsAAgACAAwAAgACAAIADAALAAIAAgAMAAsAAgACAAwACwACAAIADAACAAIAAgAMAAIAAgACAAwAAgACAAIADAACAAIAAgAMAAIAAgACAAwAAgACAAIADAACAAIAAgAMAAsAAgACAAwAAgACAAIADAACAAIAAgAMAAsAAgACAAwAAgACAAIADAACAAIAAgAMAAsAAgACAAwAAgACAAIAFQAWAAIAAgAWABUAAgACABUAAgACAAIAFQAWAAIAAgAXABYAAgACABUAFgACAAIAFQAWAAIAAgAWABcAAgACABYAFQACAAIAFwAWAAIAAgAXAAIAAgACABYAFwACAAIAFQAWAAIAAgAXABYAAgACABUAFgACAAIAFgAVAAIAAgAWABcAAgACABUAFgACAAIAFQAWAAIAAgAWABcAAgACABUAFgACAAIAFQAWAAIAAgAWABcAAgACABUAFgACAAIAFwACAAIAAgAXAAIAAgACABcAFgACAAIAFwACAAIAAgAXAAIAAgACABcAAgACAAIAFwAWAAIAAgAXAAIAAgACABcAAgACAAIAFwACAAIAAgAXAAIAAgACABYAFwACAAIAFgAXAAIAAgAXAAIAAgACABYAFwACAAIAFgAXAAIAAgAXAAIAAgACABYAFwACAAIACAACAAIAAgAJAAgAAgACAAgAAgACAAIACAACAAIAAgAJAAgAAgACAAgAAgACAAIACAACAAIAAgAJAAgAAgACAAgAAgACAAIACAACAAIAAgAJAAgAAgACAAgAAgACAAIACAACAAIAAgAJAAgAAgACAAgAAgACAAIACAACAAIAAgAJAAgAAgACAAgAAgACAAIACQACAAIAAgAJAAIAAgACAAkACAACAAIACQACAAIAAgAJAAIAAgACAAkAAgACAAIACQAIAAIAAgAJAAIAAgACAAkACAACAAIACQAIAAIAAgAJAAIAAgACAAkACAACAAIACQAIAAIAAgAJAAIAAgACAAkACAACAAIACQAIAAIAAgAJAAIAAgACAAkACAACAAIACQAIAAIAAgAJAAIAAgACAAkACAACAAIAFQAWAAIAAgAVABYAAgACABUAFAACAAIAFQACAAIAAgAVABYAAgACABUAFAACAAIAFQAWAAIAAgAVABYAAgACABUAFAACAAIAFgAVAAIAAgAVABYAAgACABUAAgACAAIAFQAWAAIAAgAVAAIAAgACABQAFQACAAIAFgAXAAIAAgAXABYAAgACABUAFgACAAIAFgAXAAIAAgAWABcAAgACABYAFQACAAIAFwAWAAIAAgAXABYAAgACABUAFgACAAIAFgAXAAIAAgAWABcAAgACABYAFQACAAIAFwAWAAIAAgAWABcAAgACABUAFgACAAIAFwACAAIAAgAXABYAAgACABcAFgACAAIAFwACAAIAAgAXAAIAAgACABcAAgACAAIAFwAWAAIAAgAXAAIAAgACABcAAgACAAIAFwACAAIAAgAXAAIAAgACABcAAgACAAIAFwACAAIAAgAXABYAAgACABYAFwACAAIAFwACAAIAAgAXAAIAAgACABYAFwACAAIACAACAAIAAgAIAAIAAgACAAcACAACAAIACQAIAAIAAgAJAAgAAgACAAgAAgACAAIACAACAAIAAgAIAAIAAgACAAgABwACAAIACAACAAIAAgAIAAIAAgACAAgABwACAAIACAACAAIAAgAIAAIAAgACAAcACAACAAIACQAIAAIAAgAJAAgAAgACAAgAAgACAAIACQAIAAIAAgAJAAgAAgACAAgAAgACAAIACQACAAIAAgAJAAIAAgACAAkACAACAAIACQAIAAIAAgAJAAgAAgACAAkACAACAAIACQACAAIAAgAJAAIAAgACAAkAAgACAAIACQACAAIAAgAJAAIAAgACAAkAAgACAAIACQACAAIAAgAJAAIAAgACAAkACAACAAIACQACAAIAAgAJAAIAAgACAAkACAACAAIACQACAAIAAgAJAAIAAgACAAkACAACAAIACwACAAIAAgAMAAsAAgACAAwACwACAAIADAALAAIAAgALAAIAAgACAAsAAgACAAIACAACAAIAAgAIAAIAAgACAAkACAACAAIACQAIAAIAAgAJAAgAAgACAAgAAgACAAIACAACAAIAAgAIAAIAAgACAAkACAACAAIACQAIAAIAAgAJAAgAAgACAAgAAgACAAIACwACAAIAAgALAAIAAgACAAsACgACAAIACwAKAAIAAgAKAAsAAgACAAsAAgACAAIACwACAAIAAgAMAAsAAgACAAwACwACAAIADAALAAIAAgALAAIAAgACAAsAAgACAAIACwACAAIAAgAMAAsAAgACAAwACwACAAIADAALAAIAAgALAAIAAgACAAsAAgACAAIACAACAAIAAgAHAAgAAgACAAcACAACAAIABwAIAAIAAgAIAAIAAgACAAgAAgACAAIACAACAAIAAgAIAAcAAgACAAcACAACAAIABwAIAAIAAgAIAAIAAgACAAgAAgACAAIACwACAAIAAgALAAIAAgACAAoACwACAAIACgALAAIAAgAKAAsAAgACAAsAAgACAAIACwACAAIAAgALAAIAAgACAAoACwACAAIACgALAAIAAgALAAoAAgACAAsAAgACAAIACAACAAIAAgAHAAgAAgACAAgABwACAAIACAAHAAIAAgAIAAIAAgACAAgAAgACAAIACAACAAIAAgAIAAIAAgACAAkACAACAAIACQAIAAIAAgAJAAgAAgACAAgAAgACAAIADAALAAIAAgALAAIAAgACAAsAAgACAAIACwAKAAIAAgALAAIAAgACAAsAAgACAAIACAAHAAIAAgAIAAIAAgACAAgAAgACAAIACAAHAAIAAgAIAAIAAgACAAgAAgACAAIAFQAWAAIAAgAVABYAAgACABUAFgACAAIAFQAWAAIAAgAVABYAAgACABUAFgACAAIAEQASAAIAAgARABIAAgACABEAEgACAAIAEQASAAIAAgARABIAAgACABEAEgACAAIAEQASAAIAAgARABIAAgACABEAEgACAAIAEQASAAIAAgARABIAAgACABEAEgACAAIAFQAWAAIAAgAVABYAAgACABUAFgACAAIAFQAWAAIAAgAVABYAAgACABUAFgACAAIAFQAWAAIAAgAVABYAAgACABUAFAACAAIAFQAWAAIAAgAVABYAAgACABUAFgACAAIAEQASAAIAAgARABAAAgACABEAEgACAAIAEQASAAIAAgARABIAAgACABEAEgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIABgACAAIAAgAGAAIAAgACAAYAAgACAAIAmpkZP83MzD4AAAAAAAAAANo/Mz+amRk+AmcZPgAAAAAK12M/rkfhPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAKFwPP7BH4T4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAM3MTD/MzEw+AAAAAAAAAAAoXA8/sEfhPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAANo/Mz+amRk+AmcZPgAAAACamRk/zczMPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAAAYhWs/QdejPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAKRwPT+4HoU+AAAAAAAAAAAUrkc/sEdhPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAm8IXP7gehT5SjZc9++KVPWZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAMzNzP83MTD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAKFwPP7BH4T4AAAAAAAAAAM3MTD/MzEw+AAAAAAAAAACBbhQ/ATSmPva7wz0AAAAAm8IXP7gehT5SjZc9++KVPcrUTD/NzMw93IzMPQAAAABmZmY/zczMPQAAAAAAAAAACtdjP65H4T0AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAoXA8/sEfhPgAAAAAAAAAAgW4UPwE0pj72u8M9AAAAAM3MTD/MzEw+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAArXYz+uR+E9AAAAAAAAAADaPzM/mpkZPgJnGT4AAAAAAACAPwAAAAAAAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAMzNzP83MTD0AAAAAAAAAAJvCFz+4HoU+Uo2XPfvilT0AAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAArXYz+uR+E9AAAAAAAAAACamRk/zczMPgAAAAAAAAAAzcxMP8zMTD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAChcDz+wR+E+AAAAAAAAAADNzEw/zMxMPgAAAAAAAAAA2j8zP5qZGT4CZxk+AAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAJqZGT/NzMw+AAAAAAAAAADaPzM/mpkZPgJnGT4AAAAAmpkZP83MzD4AAAAAAAAAABiFaz9B16M9AAAAAAAAAACamRk/zczMPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAABSuRz+wR2E+AAAAAAAAAACkcD0/uB6FPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAM3MTD/NzEw+AAAAAAAAAABmZmY/zczMPQAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAArXYz+uR+E9AAAAAAAAAACamRk/zczMPgAAAAAAAAAAm8IXP7gehT5SjZc9++KVPQAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAMzNzP83MTD0AAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAKFwPP7BH4T4AAAAAAAAAAIFuFD8BNKY+9rvDPQAAAADNzEw/zMxMPgAAAAAAAAAAm8IXP7gehT5SjZc9++KVPWZmZj/NzMw9AAAAAAAAAADK1Ew/zczMPdyMzD0AAAAACtdjP65H4T0AAAAAAAAAAArXYz+uR+E9AAAAAAAAAACamRk/zczMPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAChcDz+wR+E+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAgW4UPwE0pj72u8M9AAAAAJqZGT/NzMw+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAJvCFz+4HoU+Uo2XPfvilT0zM3M/zcxMPQAAAAAAAAAAMzNzP83MTD0AAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAABSuRz+wR2E+AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAApHA9P7gehT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAMrUTD/NzMw93IzMPQAAAACkcD0/uB6FPgAAAAAAAAAApHA9P7gehT4AAAAAAAAAAMrUTD/NzMw93IzMPQAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAACkcD0/uB6FPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAABSuRz+wR2E+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAoXA8/sEfhPgAAAAAAAAAAKFwPP7BH4T4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAytRMP83MzD3cjMw9AAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAMrUTD/NzMw93IzMPQAAAADNzEw/zcxMPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAoXA8/sEfhPgAAAAAAAAAAKFwPP7BH4T4AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAABmZmY/zczMPQAAAAAAAAAAytRMP83MzD3cjMw9AAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAMrUTD/NzMw93IzMPQAAAAAAAIA/AAAAAAAAAAAAAAAAzcxMP8zMTD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAzcxMP8zMTD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAzcxMP8zMTD4AAAAAAAAAAIFuFD8BNKY+9rvDPQAAAAAAAIA/AAAAAAAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAIFuFD8BNKY+9rvDPQAAAAAAAIA/AAAAAAAAAAAAAAAAMzNzP83MTD0AAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAMzNzP83MTD0AAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAMzNzP83MTD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAMzNzP83MTD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAACtdjP65H4T0AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAM3MTD/NzEw+AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAexQuPwrXoz4AAAAAAAAAAFyPQj+PwnU+AAAAAAAAAABcj0I/j8J1PgAAAAAAAAAAXI9CP4/CdT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAB7FC4/CtejPgAAAAAAAAAACtdjP65H4T0AAAAAAAAAAAAAQD8AAIA+AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAQD8AAIA+AAAAAAAAAAAAAEA/AACAPgAAAAAAAAAAAABAPwAAgD4AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAM3MTD/NzEw+AAAAAAAAAACkcD0/uB6FPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAMzNzP83MTD0AAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAMzNzP83MTD0AAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAACtdjP65H4T0AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAABAPwAAgD4AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAACZmRk/zszMPgAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAAABAPwAAgD4AAAAAAAAAAAAAQD8AAIA+AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAChcDz+wR+E+AAAAAAAAAACZmRk/zszMPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAAAAQD8AAIA+AAAAAAAAAACA61E/AVI4PgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAACA61E/AVI4PgAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAACamRk/zczMPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAB+Faz8K16M9AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAmZkZP87MzD4AAAAAAAAAAIFuFD8BNKY+9rvDPQAAAAAfhWs/CtejPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAACamRk/zczMPgAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAACamRk/zczMPgAAAAAAAAAAmZkZP87MzD4AAAAAAAAAAJmZGT/OzMw+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAJmZGT/OzMw+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAACamRk/zczMPgAAAAAAAAAApHA9P7gehT4AAAAAAAAAAKRwPT+4HoU+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAFK5HP7BHYT4AAAAAAAAAAKRwPT+4HoU+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAytRMP83MzD3cjMw9AAAAAM3MTD/NzEw+AAAAAAAAAACkcD0/uB6FPgAAAAAAAAAApHA9P7gehT4AAAAAAAAAAKRwPT+4HoU+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAACtdjP65H4T0AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAmZkZP87MzD4AAAAAAAAAAChcDz+wR+E+AAAAAAAAAACBbhQ/ATSmPva7wz0AAAAAexQuPwrXoz4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAACtdjP65H4T0AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAACtdjP65H4T0AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAACtdjP65H4T0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAEA/AACAPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAACtdjP65H4T0AAAAAAAAAAAAAQD8AAIA+AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAMzNzP83MTD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAMzNzP83MTD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAApHA9P7gehT4AAAAAAAAAAM3MTD/NzEw+AAAAAAAAAACkcD0/uB6FPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAApHA9P7gehT4AAAAAAAAAAM3MTD/NzEw+AAAAAAAAAACkcD0/uB6FPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAQD8AAIA+AAAAAAAAAACZmRk/zszMPgAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAgOtRPwFSOD4AAAAAAAAAAAAAQD8AAIA+AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAXI9CP4/CdT4AAAAAAAAAAML1KD97FK4+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAmZkZP87MzD4AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAACZmRk/zszMPgAAAAAAAAAAgOtRPwFSOD4AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAACA61E/AVI4PgAAAAAAAAAAGIVrP0HXoz0AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAACA61E/AVI4PgAAAAAAAAAAH4VrPwrXoz0AAAAAAAAAAIFuFD8BNKY+9rvDPQAAAABmZmY/zMzMPQAAAAAAAAAApHA9P7gehT4AAAAAAAAAAMrUTD/NzMw93IzMPQAAAACkcD0/uB6FPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAKRwPT+4HoU+AAAAAAAAAAAUrkc/sEdhPgAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAACtdjP65H4T0AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAM3MTD/NzEw+AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAFyPQj+PwnU+AAAAAAAAAABcj0I/j8J1PgAAAAAAAAAAXI9CP4/CdT4AAAAAAAAAAHsULj8K16M+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAACtdjP65H4T0AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAAAEA/AACAPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAQD8AAIA+AAAAAAAAAAAAAEA/AACAPgAAAAAAAAAAAABAPwAAgD4AAAAAAAAAAArXYz+uR+E9AAAAAAAAAACamRk/zczMPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAKRwPT+4HoU+AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAMzNzP83MTD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAMzNzP83MTD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAMzNzP83MTD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAACtdjP65H4T0AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAAABAPwAAgD4AAAAAAAAAAJmZGT/OzMw+AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAAABAPwAAgD4AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAEA/AACAPgAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAJmZGT/OzMw+AAAAAAAAAAAoXA8/sEfhPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAIDrUT8BUjg+AAAAAAAAAAAAAEA/AACAPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAIDrUT8BUjg+AAAAAAAAAACamRk/zczMPgAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAmZkZP87MzD4AAAAAAAAAAB+Faz8K16M9AAAAAAAAAACBbhQ/ATSmPva7wz0AAAAAZmZmP8zMzD0AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAmZkZP87MzD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAACZmRk/zszMPgAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAACZmRk/zszMPgAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAApHA9P7gehT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAACkcD0/uB6FPgAAAAAAAAAAFK5HP7BHYT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAACkcD0/uB6FPgAAAAAAAAAAytRMP83MzD3cjMw9AAAAAKRwPT+4HoU+AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAApHA9P7gehT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAACkcD0/uB6FPgAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAmZkZP87MzD4AAAAAAAAAAIFuFD8BNKY+9rvDPQAAAAAoXA8/sEfhPgAAAAAAAAAAexQuPwrXoz4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAACtdjP65H4T0AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAACtdjP65H4T0AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAACtdjP65H4T0AAAAAAAAAAAAAQD8AAIA+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAACtdjP65H4T0AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAAAEA/AACAPgAAAAAAAAAAMzNzP83MTD0AAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAMzNzP83MTD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAApHA9P7gehT4AAAAAAAAAAKRwPT+4HoU+AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAApHA9P7gehT4AAAAAAAAAAKRwPT+4HoU+AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAJmZGT/OzMw+AAAAAAAAAAAAAEA/AACAPgAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAgOtRPwFSOD4AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAEA/AACAPgAAAAAAAAAAXI9CP4/CdT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADC9Sg/exSuPgAAAAAAAAAAmZkZP87MzD4AAAAAAAAAAJmZGT/OzMw+AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAgOtRPwFSOD4AAAAAAAAAAIDrUT8BUjg+AAAAAAAAAACamRk/zczMPgAAAAAAAAAAGIVrP0HXoz0AAAAAAAAAAIDrUT8BUjg+AAAAAAAAAACamRk/zczMPgAAAAAAAAAAH4VrPwrXoz0AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAApHA9P7gehT4AAAAAAAAAAMrUTD/NzMw93IzMPQAAAACkcD0/uB6FPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAABSuRz+wR2E+AAAAAAAAAACkcD0/uB6FPgAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAACBbhQ/ATSmPva7wz0AAAAAgW4UPwE0pj72u8M9AAAAAJqZGT/NzMw+AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAML1KD97FK4+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAKRwPT+4HoU+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAML1KD97FK4+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAApHA9P7gehT4AAAAAAAAAABSuRz+wR2E+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAM3MTD/NzEw+AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAAUrkc/sEdhPgAAAAAAAAAAFK5HP7BHYT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAUrkc/sEdhPgAAAAAAAAAAFK5HP7BHYT4AAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAFK5HP7BHYT4AAAAAAAAAAKRwPT+4HoU+AAAAAAAAAACkcD0/uB6FPgAAAAAAAAAAFK5HP7BHYT4AAAAAAAAAAKRwPT+4HoU+AAAAAAAAAACkcD0/uB6FPgAAAAAAAAAApHA9P7gehT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAUrkc/sEdhPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAKRwPT+4HoU+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAACkcD0/uB6FPgAAAAAAAAAApHA9P7gehT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAACkcD0/uB6FPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAAAYhWs/QdejPQAAAAAAAAAAGIVrP0HXoz0AAAAAAAAAAIDrUT8BUjg+AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAACamRk/zczMPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAABiFaz9B16M9AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAACA61E/AVI4PgAAAAAAAAAAgOtRPwFSOD4AAAAAAAAAAIDrUT8BUjg+AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAIDrUT8BUjg+AAAAAAAAAACA61E/AVI4PgAAAAAAAAAAgOtRPwFSOD4AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAIDrUT8BUjg+AAAAAAAAAAAYhWs/QdejPQAAAAAAAAAAGIVrP0HXoz0AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAgOtRPwFSOD4AAAAAAAAAAB+Faz8K16M9AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAgOtRPwFSOD4AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAfhWs/CtejPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAACBbhQ/ATSmPva7wz0AAAAAgW4UPwE0pj72u8M9AAAAAGZmZj/MzMw9AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAABiFaz9B16M9AAAAAAAAAACamRk/zczMPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAgW4UPwE0pj72u8M9AAAAAB+Faz8K16M9AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAACtdjP65H4T0AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAArXYz+uR+E9AAAAAAAAAAAK12M/rkfhPQAAAAAAAAAACtdjP65H4T0AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAACtdjP65H4T0AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAACtdjP65H4T0AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAFyPQj+PwnU+AAAAAAAAAABcj0I/j8J1PgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAFyPQj+PwnU+AAAAAAAAAABcj0I/j8J1PgAAAAAAAAAAwvUoP3sUrj4AAAAAAAAAAFyPQj+PwnU+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADC9Sg/exSuPgAAAAAAAAAAwvUoP3sUrj4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAEA/AACAPgAAAAAAAAAAAABAPwAAgD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADC9Sg/exSuPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAAAAQD8AAIA+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAABAPwAAgD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAABAPwAAgD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAwvUoP3sUrj4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAFyPQj+PwnU+AAAAAAAAAADC9Sg/exSuPgAAAAAAAAAAwvUoP3sUrj4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAEA/AACAPgAAAAAAAAAAAABAPwAAgD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADC9Sg/exSuPgAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAQD8AAIA+AAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAAAAAPwAAAD8AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAMzNzP83MTD0AAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAMzNzP83MTD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAMzNzP83MTD0AAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAMzNzP83MTD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAMzNzP83MTD0AAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAADMzcz/NzEw9AAAAAAAAAAAzM3M/zcxMPQAAAAAAAAAAH4VrPwrXoz0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADhehQ/PgrXPgAAAAAAAAAAH4VrPwrXoz0AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAH4VrPwrXoz0AAAAAAAAAAOF6FD8+Ctc+AAAAAAAAAAB7FC4/CtejPgAAAAAAAAAANDMzP5mZmT4AAAAAAAAAAHsULj8K16M+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAAA0MzM/mZmZPgAAAAAAAAAA4XoUPz4K1z4AAAAAAAAAAB+Faz8K16M9AAAAAAAAAAB7FC4/CtejPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAB+Faz8K16M9AAAAAAAAAAB7FC4/CtejPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAAB7FC4/CtejPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAANDMzP5mZmT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAHsULj8K16M+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAexQuPwrXoz4AAAAAAAAAAD0KVz8M1yM+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAPQpXPwzXIz4AAAAAAAAAAHsULj8K16M+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAABSuRz+wR2E+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAIDrUT8BUjg+AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAJmZGT/OzMw+AAAAAAAAAAAfhWs/CtejPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAABiFaz9B16M9AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAA4XoUPz4K1z4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAfhWs/CtejPQAAAAAAAAAAH4VrPwrXoz0AAAAAAAAAAAAAAD8AAAA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAexQuPwrXoz4AAAAAAAAAAB+Faz8K16M9AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAexQuPwrXoz4AAAAAAAAAAOF6FD8+Ctc+AAAAAAAAAAA9Clc/DNcjPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAAA0MzM/mZmZPgAAAAAAAAAAPQpXPwzXIz4AAAAAAAAAAOF6FD8+Ctc+AAAAAAAAAAB7FC4/CtejPgAAAAAAAAAANDMzP5mZmT4AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAAB7FC4/CtejPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAA0MzM/mZmZPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAANDMzP5mZmT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAHsULj8K16M+AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAD0KVz8M1yM+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAKRwPT+4HoU+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAABSuRz+wR2E+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAABSuRz+wR2E+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAH4VrPwrXoz0AAAAAAAAAAOF6FD8+Ctc+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAH4VrPwrXoz0AAAAAAAAAAM3MTD/NzEw+AAAAAAAAAACamRk/zczMPgAAAAAAAAAAH4VrPwrXoz0AAAAAAAAAAHsULj8K16M+AAAAAAAAAADhehQ/PgrXPgAAAAAAAAAANDMzP5mZmT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAB7FC4/CtejPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAADQzMz+ZmZk+AAAAAAAAAACamRk/zczMPgAAAAAAAAAA4XoUPz4K1z4AAAAAAAAAAHsULj8K16M+AAAAAAAAAAAfhWs/CtejPQAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAHsULj8K16M+AAAAAAAAAAAfhWs/CtejPQAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAHsULj8K16M+AAAAAAAAAACamRk/zczMPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAANDMzP5mZmT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAB7FC4/CtejPgAAAAAAAAAAexQuPwrXoz4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAA9Clc/DNcjPgAAAAAAAAAAPQpXPwzXIz4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAB7FC4/CtejPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAACA61E/AVI4PgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAB+Faz8K16M9AAAAAAAAAACZmRk/zszMPgAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAAAYhWs/QdejPQAAAAAAAAAA4XoUPz4K1z4AAAAAAAAAAB+Faz8K16M9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAH4VrPwrXoz0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAA/AAAAPwAAAAAAAAAAexQuPwrXoz4AAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAAfhWs/CtejPQAAAAAAAAAAexQuPwrXoz4AAAAAAAAAAD0KVz8M1yM+AAAAAAAAAADhehQ/PgrXPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAADQzMz+ZmZk+AAAAAAAAAACamRk/zczMPgAAAAAAAAAAPQpXPwzXIz4AAAAAAAAAAHsULj8K16M+AAAAAAAAAADhehQ/PgrXPgAAAAAAAAAANDMzP5mZmT4AAAAAAAAAAHsULj8K16M+AAAAAAAAAACamRk/zczMPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAADQzMz+ZmZk+AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAANDMzP5mZmT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAB7FC4/CtejPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAA9Clc/DNcjPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAACkcD0/uB6FPgAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAUrkc/sEdhPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAUrkc/sEdhPgAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAUrkc/sEdhPgAAAAAAAAAAFK5HP7BHYT4AAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAGZmZj/NzMw9AAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAM3MTD/NzEw+AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAABSuRz+wR2E+AAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAADNzEw/zcxMPgAAAAAAAAAAzcxMP83MTD4AAAAAAAAAABSuRz+wR2E+AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAM3MTD/NzEw+AAAAAAAAAAAUrkc/sEdhPgAAAAAAAAAAFK5HP7BHYT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAABmZmY/zczMPQAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAGZmZj/NzMw9AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP83MzD0AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAFK5HP7BHYT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAFK5HP7BHYT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAFK5HP7BHYT4AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAACamRk/zczMPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAACamRk/zczMPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAACamRk/zczMPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAACamRk/zczMPgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAJqZGT/NzMw+AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAB+Faz8K16M9AAAAAAAAAACA61E/AVI4PgAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAB+Faz8K16M9AAAAAAAAAABmZmY/zMzMPQAAAAAAAAAAZmZmP8zMzD0AAAAAAAAAAIDrUT8BUjg+AAAAAAAAAAAfhWs/CtejPQAAAAAAAAAAmpkZP83MzD4AAAAAAAAAAGZmZj/MzMw9AAAAAAAAAAAfhWs/CtejPQAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAACAPwAAAIAAAAAAAAAAgAAAAIAAAIA/AAAAgAAAAAAAAAAAAAAAgAAAgD8AAACAAAAAgAAAAAAAAACAAACAPwAAgD8AAACAAAAAAAAAAIAAAACA1Zp2tgEAgD8AAAAAAAAAAAEAgL/Vmna2AAAAgAAAAIAAAAAAAAAAgAAAgD/B0nGz/imLtQAAgL8AAAAA3E1vP7vftT7YW+K0AAAAALvftT7cTW+/cM1/NQAAAICZFvXBzAYhwjXYNjgAAIA/dVeCNdZfxbQAAIC/AAAAgNg5Y70Um38/2FvitAAAAAAUm38/2DljPW/NfzUAAACAbZXJQY+KVsI12DY4AACAP2aLgDVwaNe0AACAvwAAAICiYam8/fF/P9hb4rQAAAAA/fF/P6JhqTxwzX81AAAAgFwW1j9u51bCNtg2OAAAgD+NfhM1Y4RstQAAgL8AAACAsqgPP0nkUz/XW+K0AAAAgEnkUz+yqA+/cc1/NQAAAIBdgErCisrvwTXYNjgAAIA/gt+INegQUrQAAIC/AAAAgL5QZ74GYnk/2FvitAAAAAAGYnk/vlBnPnHNfzUAAACA9QSswVelhsI12DY4AACAPyNCJjiaKqm68v9/vwAAAICw13+/8KUPvSmCvTYAAAAA6qUPvaLXfz97Pqm6AAAAgLusRkIjaILBnznewAAAgD8732u46BWpuvL/f78AAAAArs1/v498ID05gr02AAAAAIV8ID2gzX8/eT6pugAAAICcucpB5dmRwZ853sAAAIA/a4h+uxVb5DwK5n+/AAAAAKsMC7912FY/fgLRPAAAAABH8VY/DQULPzOqQjwAAACA/r81wR2wccHLHevAAACAP9r7CrpICQC73v9/vwAAAABG2H+/8ZMOvR66HDoAAAAAF5UOvSnYfz91f/26AAAAgOGrRkJfVILBNyffQAAAgD8mmjC61DX6ut7/f78AAAAA/sx/v4GOIT0duhw6AAAAADmNIT3jzH8/dX/9ugAAAIBgucpBEMaRwTYn30AAAIA/Tk/9OyItL70Uwn+/AAAAgOYoC7/GoFY/yjskvQAAAAA/3VY/jBsLPyBbibwAAACA0jA2wZAlcMH2IPBAAACAP3cGs7S3/IM1AACAvwAAAICCTDy/QG8tv9pb4rQAAAAAQG8tv4JMPD9wzX81AAAAgJqpN0FDU4JCNNg2OAAAgD/Cnvq0ivt4NQAAgL8AAACAW2Iiv1LoRb/YW+K0AAAAAFLoRb9bYiI/b81/NQAAAIDfmB/Bg82AQjXYNjgAAIA/DFoXtUkRajUAAIC/AAAAgIgqDL/hN1a/2lvitAAAAADhN1a/iCoMP3DNfzUAAACALMMjwhRmcUI22DY4AACAP0A2sDgpKa85//9/vwAAAIAi6X2/ZI8CPuHiKrgAAAAAY48CPiHpfT+UWbM5AAAAgOKwUkI4obpB+F3fQAAAgD/Bhy+5u9udOQAAgL8AAACAcHZPv/b7Fb/f4iq4AAAAAPX7Fb9vdk8/lFmzOQAAAICi/QlBcV8gQvld30AAAIA/DZumuJfyCLkAAIC/AAAAAFJ3cr8/RaQ+29YLOAAAAAA/RaQ+UndyP0duHLkAAACAjy/aQVKs9kGOu95AAACAP6fbHrk3PKs3AACAvwAAAACnyK+9KA5/P9zWCzgAAAAAKA5/P6jIrz1Ibhy5AAAAgOtrA0I4wOo/j7veQAAAgD+5rBA1mEBuNQAAgL8AAACAMOV9v/EJAz7ZW+K0AAAAAPEJAz4w5X0/b81/NQAAAIC/vFJCInO6Qev13sAAAIA/RlZmtNBciDUAAIC/AAAAgIWIT7/s4hW/2FvitAAAAADs4hW/hYhPP2/NfzUAAACASF8KQb5WIELt9d7AAACAP50ZFDnWco85AQCAvwAAAICUiHK/NN+jPtnwQbgAAAAANN+jPpSIcj/xmp85AAAAgM/q2UFBwPZBoZHewAAAgD+FGqE5LCSltwAAgL8AAACA7nWxvYEJfz/Y8EG4AAAAAIEJfz/tdbE98pqfOQAAAIBCZwNCnC/vP6GR3sAAAIA/AAAAAKuqKj2rqqo9AAAAPquqKj5VVVU+AACAPlVVlT6rqqo+AADAPlVV1T6rquo+AAAAP6uqCj9VVRU/AAAgP6uqKj9VVTU/AABAP6uqSj9VVVU/AABgP6uqaj9VVXU/AACAP1VVhT+rqoo/AACQP1VVlT+rqpo/AACgP1VVpT+rqqo/AACwP1VVtT+rqro/AADAP1VVxT+rqso/AADQP1VV1T+rqto/AADgP1VV5T+rquo/AADwP1VV9T+rqvo/AAAAQKuqAkBVVQVAAAAIQKuqCkBVVQ1AAAAQQKuqEkBVVRVAAAAYQKuqGkBVVR1AAAAgQKuqIkBVVSVAAAAoQKuqKkBVVS1AAAAwQKuqMkBVVTVAAAA4QKuqOkBVVT1AAABAQKuqQkBVVUVAAABIQKuqSkBVVU1AAABQQKuqUkBVVVVAAABYQKuqWkAAAAAAq6oqPauqqj0AAAA+q6oqPlVVVT4AAIA+VVWVPquqqj4AAMA+VVXVPquq6j4AAAA/q6oKP1VVFT8AACA/q6oqP1VVNT8AAAAAq6oqPauqqj0AAAA+q6oqPlVVVT4AAIA+VVWVPquqqj4AAMA+VVXVPquq6j4AAAA/q6oKP1VVFT8AACA/q6oqP97dXT+IiGg/NDNzP97dfT9ERIQ/mpmJP+/ujj9ERJQ/6d/MvQ2coL5GsdC+QQtaP42ozb2SIJ++x1/SvmzmWT+sL829xTicvnBz1L7N7Vk/LXrLvdP0l74s4ta+kRxaPwKOyL32Y5K+lp/ZvhttWj+rQsS9s2OLvs+n3L4E31o/LNK+vUM4g77P3N++5mRbP9REuL184HO+Ri3jvsj3Wz9jo7C9djVfviSH5r6VkFw/WtCnvT1FSL5Z2em+gSxdPyD/nb1khS++SwztvrK/XT+EOZO9SxoVvvsN8L6XQ14/vImHvcBV8r0mzfK+BbJeP3q3db1IY7e94DL1vqUIXz9AuFq9h1N0vWw0977CPl8/Qi0+vScc7Lwkxfi+GVBfP3kvIL2iXTQ7WNr5viw5Xz/AqgC9kSMPPWtg+r5d+l4/JuC/vJYjij3ZW/q+0I5eP2p6eLwl78w90cn5vrX1XT+Tvtq7vcUHPimq+L4iL10/WNcFO+O7KD4E9fa+kz9cP9/UMjz9KEk+p7v0vrYlWz8fCqM8udxoPpQG8r5U5Fk/yD/tPKLUgz7G4O6++35YP+HYGz0GnpI+VFPrvnr+Vj8I7kA9FMagPoV1577NY1U/I6llPSw7rj4gWeO+grRTP+HohD2e7bo+fRHfvpr2UT81hZY91LDGPoq52r5ZNlA/SICcPUGMyj4ppNi+JMJPP4zpjj30aME+aWbavp6eUT8PwH49X0m2PptK3L4sw1M/ucVfPZguqj5Q3t2+hf5VP/WQQT0OXJ0+NRLfvvk8WD+3rCQ9/PSPPrvX376YdFo/mo4JPfwfgj4uJeC+HZxcP+v/4TxiDWg+munfvhiuXj+hzbU8/8FLPr0z376ynmA/+s6OPG+6Lz5YC96+M2hiPw87Wjx+VRQ+Jn3cvmAGZD9O/iI8sWL0PXSW2r5cdWU/PB/rO1MQwz2mdti+CLRmPylVojuhcJU9dTfWvt/CZz+0fFM79HhYPdj0076To2g/PYsCO+ZBEj0B2NG+3FRpP9i9kDpbFLA8rfnPvhndaT8tOQQ6eJ4sPFF2zr5zP2o/7WoVOTeXTjsSaM2+cH5qP4DARze/pIw5S/zMvl2Waj+wXY4yVMH1sTXyzL6SmGo/+VGOMmWq+LE18sy+kphqP/lRjjJlqvixNfLMvpKYaj/6UY4yZ6r4sTXyzL6SmGo/+lGOMmeq+LE18sy+kphqP/pRjjJnqvixNfLMvpKYaj/6UY4yZ6r4sTXyzL6SmGo/+lGOMmeq+LE18sy+kphqP/pRjjJnqvixNfLMvpKYaj/6UY4yZ6r4sTXyzL6SmGo/+lGOMmeq+LE18sy+kphqP/pRjjJnqvixNfLMvpKYaj/6UY4yZ6r4sTXyzL6SmGo/+lGOMmeq+LE18sy+kphqP/pRjjJnqvixNfLMvpKYaj/6UY4yZ6r4sTXyzL6SmGo/+lGOMmeq+LE18sy+kphqP8opWLt6mFG8W9bNvl5gaj/eCh28j3YWvbpBz77X4mk/VAyJvLw3gb34bNC+ADtpP2MAyLwLrrm91krRvhxlaD9sKgW9cXvzvcnU0b5PX2c/eXUnvZW/Fr6uCdK+7ipmP/9MSr1dKzO+LerRvjPPZD913my9lnVOvmSI0b5AU2M/Cj+HvXUaaL7P9dC+S8JhP4M8l73/m3++x0jQvv8pYD8PzKW9mwKKvn2kz75Tol4/mrCyvYufkr6GJM++sjZdPz2Hvb3ibZm+IujOvnD4Wz/16sW9iTeevjAOz75K+Fo/cuvKvVNeoL7OzM++bVRaP+nfzL0NnKC+RrHQvkELWj9Xeno9v61EvlEkmD6D7W4/uetuPZiaO76abpg+KmJvP5pXYz0hgzK+XbWYPk7Rbz9Bvlc9j2cpvp74mD7rOnA/8B9MPRNIIL5bOJk+/55wP+p8QD3oJBe+jHSZPoj9cD9z1TQ9Qf4NvjWtmT6EVnE/0ikpPVPUBL5U4pk+8alxP096HT2vTve96xOaPsz3cT8kxxE9AO/kvfFBmj4VQHI/oRAGPRCK0r1pbJo+yoJyPxKu9DxHIMC9VJOaPui/cj9CNd08EbKtvbG2mj5u93I/UbfFPNc/m7181po+WylzP9E0rjwJyoi9tPKaPq9Vcz9VrpY8LqJsvV0Lmz5nfHM/uUh+PNeqR71yIJs+g51zP/YuTzzrriK99DGbPgO5cz9eECA8al77vOQ/mz7lznM/NtzhOzhZsbxASps+Kt9zP4CSgzvsn068CFGbPtDpcz8oF5U6vyJquzxUmz7Y7nM/Rh/kuukfszvcU5s+Qe5zPx1Ul7uKpm086E+bPgzocz/jnPW7zdvAPF9Imz453HM/BPApvPNvBT1EPZs+x8pzP68NWbzwbio9lS6bPrezcz8uE4S8AGpPPVMcmz4Kl3M/dpybvEVgdD1+Bps+wXRzPyQis7xyqIw9Fu2aPtxMcz8m6b683ueVPQXfmj7ENnM/GZO2vC1cjz0T6Zo+jUZzP0OPrLwGf4c9i/SaPpNYcz+4iqK8nEJ/PWL/mj6VaXM/gIWYvB6Gbz2RCZs+k3lzP59/jrybyF89GBObPo2Icz8qeYS8KgpQPfwbmz6ClnM/SOR0vNhKQD04JJs+cqNzPz3VYLy9ijA90CubPl6vcz8/xUy848kgPcAymz5FunM/arQ4vF8IET0NOZs+J8RzP9GiJLxBRgE9sj6bPgXNcz+BkBC8LAfjPLJDmz7e1HM/Lvv4u+GAwzwKSJs+sttzP1DU0LvF+aM8vUubPoHhcz+YrKi7/nGEPMpOmz5L5nM/LISAu1XTSTwxUZs+EOpzP2m2MLvTwQo88VKbPtHscz9ux8C6a1+XOwxUmz6N7nM/isfAuYJflzp8VJs+Pe9zP/2rAK9ZE8ovhlSbPkjvcz8WpFwnVX+MJoNUmz5J73M/F6RcJ1V/jCaCVJs+Se9zPxekXCdVf4wmglSbPknvcz8YpFwnV3+MJoRUmz5I73M/F6RcJ1Z/jCaDVJs+SO9zPxmkXCdYf4wmg1SbPkjvcz8WpFwnVn+MJoRUmz5I73M/F6RcJ1d/jCaEVJs+SO9zPxekXCdXf4wmg1SbPkjvcz8XpFwnVX+MJoNUmz5I73M/F6RcJ1Z/jCaDVJs+SO9zPxekXCdVf4wmg1SbPkjvcz8XpFwnVX+MJoNUmz5I73M/GKRcJ1Z/jCaDVJs+SO9zPxikXCdXf4wmg1SbPkjvcz9M3LU6o8yOuxlUmz6h7nM//dyoO/+XhLzHTps+RuZzPxJdFTyKkOq8j0KbPhXTcz8aRVY8aD8ovY0vmz48tXM/6ZGLPDwvW73DFZs+u4xzPyz7qzy9Coe9MvWaPpZZcz/kXMw88HegvdrNmj7NG3M/rLXsPB7eub2/n5o+ZNNyPwuCBj0rPNO94GqaPl6Acj9moxY9BZHsvUIvmj6+InI/Kb4mPcLtAr7m7Jk+ibpxP6HRNj1IjQ++0KOZPsNHcT8e3UY9iiYcvgNUmT5xynA/6t9WPfm4KL6D/Zg+mEJwP07ZZj0ERDW+U6CYPj+wbz/pwHU9EvhAviFDmD7kHW8/V3p6Pb+tRL5RJJg+g+1uP3nDWrzjs8S7G2WhPmPrcj81Jlq8SevFuwAdoj7JzHI/92FavAwbxrv51qI+pq1yP09hWrwVl8a7LpOjPv6Ncj+Mblq8+/XGu55RpD7MbXI/YelZvKZIyLscO6U+H0ZyP0sLWbzV4cu7C0ipPuaScT9a5Fe8pxDQuwGPrT5b0HA/TXBXvEJO07svF7I+NPxvP5UCVrxZMti7wwe3PuQNbz9rAVW857Pcu3lvvD6GAG4/OBhVvAqI3LtpWrw+sARuP8IdVbz0stu7j+66Pl5Mbj+ecFW8gW7auyeOuT4vkW4/mQRWvNna2LuaN7g+gtNuP4QBVrwBKNi7rOu2PkQTbz+jVFa8hqjWu2ydtT7yUm8/9ZhWvHW71bvlaLQ+QY1vP88LV7xddNS77jSzPgLHbz/EHVe8pqbTu5QIsj7t/m8/dF5XvHSf0rtV4rA+TDVwPxWhV7y+ndG7tMKvPg5qcD9yn1e8T/XQu2mrrj7unHA/p5tYvPV/zbtdMKs+0DxxP9FiWbxC+8m7uUynPjLrcT95Llq8FcHGuzOloz72inI/djRbvOAkw7vtF6A+eSJzP45xW7xGQ8G7G9+dPmd/cz8o9Vq8V5jCu1C9nj5JW3M/vwdbvOkBw7v5iZ8+zzlzP1MtW7xFUsO7sVagPiIYcz/JzFq8smnEu5QloT7u9XI/To9avKVHxbur9qE+KtNyP/BdWrya+8W7dsqiPsCvcj928lm87BPHu56goz6/i3I/MgpavKOHx7s9eaQ+GGdyP1z5Wbx4H8i7pFSlPsRBcj+k/lm835XIu/sypj62G3I/Z3xZvBPMybsdFKc++fRxP++CWbwqcMq7j/mnPjzNcT8XDlm8Em3Lu6vbqD7dpXE/2e5YvAZHzLsHzak+kHtxPybkWLx+4My7FryqPmdRcT/ngFi8Ev7Nu3Wuqz5oJnE/11RYvN3lzruApKw+evpwP2QaWLzXws+7jJ+tPl7NcD+A6Ve8qbHQu1ierj5Kn3A/aKxXvN6h0bs3oa8+K3BwPxE2V7z/ztK7H6mwPtM/cD/eOle8ZXjTu/e9sT6/DHA//TVXvG9r07uLpbE+RRFwP8juVrzKkdO7Z02xPpIhcD+file8KIPSu3T2sD6VMXA/esJXvJsP0rugoLA+XkFwP6mGV7yBJtK7gUuwPgJRcD9Tl1e8ydjRu233rz5pYHA/IPxXvD8i0bvUo68+rm9wP368V7zsTdG7IlGvPsh+cD8BCFi8NajQu4X/rj6hjXA/xNdXvMqm0LtHrq4+Z5xwP+7uV7w+Y9C7F16uPvCqcD+U/le8VCDQu30Orj5YuXA/r2ZYvNV4z7u0v60+jsdwP/8YWLzHhs+7OHGtPrfVcD+UMli8wkfPu5YjrT6t43A/ykJYvI/+zruC1qw+hPFwP2xOWLwBtM67YoqsPij/cD8ZXVi8aG3Ou2c+rD6+DHE/XANZvB3Py7t9Uak+P5FxP0jsWbwiesi7vemlPkYocj/tZlq859vFu3uhoj6etnI/JAlbvJP+wrvVdp8+8jxzPw6qW7wqHcC7ZUacPkjBcz8o5Fu8HVC/u9ZUmz7d53M/GrVbvDX0v7skFJw+VMlzPySXW7x+kMC77L2cPheucz9Rd1u8SR3Bu8RlnT4Jk3M/D+xavGsUwrtbDZ4+63dzP5UsW7xbYsK7osWePutZcz8LE1u8+AzDuzF2nz4MPXM/6PFavFaow7s/KKA+zB9zP5wZW7zl08O7ltygPgMCcz95w1q847PEuxtloT5j63I/A9gbMzuHMTL8eYw+Ci12P0nVGzOjay8yIAOLPjdidj+WVBwzZbMuMnmHiT51l3Y/wfobM4RlLDKXBog+zsx2P8eGHDM4cSoysYCGPjUCdz8DPhwzSE4oMu2thD5JQXc/g9AcM6yaHjIxs3o+kzV4P66zHTP+ehQy7hNrPrQpeT+aPR4zp8YJMshWWj7tHHo/3+keM8Tw/DEw50c+FRN7P9+hHzOxZeMxB3kzPpIJfD9t3x8zL8vkMbkgND4YAnw/mKAfM+Kd6zEW7zk+l757P1LpHjPHb/Ix94s/Pjl7ez+9Qx8zyB/6Mab9RD7mN3s/9dYeM0IPADKVQ0o+0vR6P/WJHjNjSAMyBH5PPn6wej/AuR4zpH0GMv5qVD50bno/mEYeMwZ5CTL5R1k+qit6P2MeHjO+VwwyzQRePhPpeT9xwR0z0HkPMmimYj6Gpnk/Kc8dM0BKEjKcK2c+LGR5P+3IHTPzIxUyio1rPoYieT+vTx0z3kodMuZ/eD74WHg/VLUcM+o8JjLzX4M+2m13P133GzMBUy4yGgyKPu2Edj9OlhszJzI2Mit2kD5DmXU/t9MaM8SqOzIYZZQ+AAN1P5I0GzPHEToyOr2SPspCdT/+txszseI3Mu8ykT5tfXU/RJQbM9DuNTJ8pY8+27d1PztFGzNAHjMyIxOOPk/ydT8dlRszVsAxMhB8jD6+LHY/o78bM2fuLzLE3oo+V2d2P1lsHDNVAi4yVDyJPuyhdj/UPxwzkX0rMm6Uhz6C3HY/TVkcM8lrKTJW5oU+Kxd3P7nAHDMBGCgy+TGEPuJRdz/skxwzpdEkMg53gj6njHc/PbUcM+ipIjIttIA+ocd3P7DEHDPK1iAyqOJ9PsABeD99DR0zcEgeMqY0ej6OPXg/aSIdM2PnGzKjg3Y+nnh4P84cHTPB1BkyTMNyPrCzeD9yYx0zsRMXMuTybj7D7ng/PNcdM0cRFTKiDms+BCp5Pw8fHjO68hEyJxlnPj1leT9+ax4zgukPMuUQYz55oHk/Y+kdMxDYDDKQ814+ytt5P21mHjN6Fgoy4p5aPv0Yej+8Wx4z7gMLMjM5Wz6LEHo/AgAeM4x6CzJb3Fw+ffl5P/xkHjMHEg0ygHpePojieT87Nx4zOikOMokSYD6+y3k/8NUdM/esDjJopmE+BLV5P64KHjP3hg8yiTVjPmSeeT9ZFx4zlCkRMsDAZD7Uh3k/F/0dM/HCETJlR2Y+XnF5P9/dHTMhtxIyjchnPhFbeT9qmB0zDbQTMrRGaT7KRHk/oEwdM0qhFDJKwGo+oS55P9+GHTNfkBUyUjVsPpgYeT/g4h0zy/wVMvKmbT6eAnk/7pgdM3RrFzKtFG8+u+x4P6dbHTPvxhcyq35wPu/WeD/nUx0zESAZMurkcT47wXg/ujodM+jvGTLaRnM+p6t4PzwWHTNDrxoyZaZ0PhiWeD+zSR0zFIchMs1lfz7m6Hc/H3QcM8J2KTIu5YU+Uxd3P1JAHDNtQjEyG9CLPjZFdj/BZhszH9Q4MsN5kT7xcnU/26QaM+J5PzJTIpc+wJd0PzqpGjMwU0Eyd7aYPvZYdD/+5hozBxw/Mhk7lz7sk3Q/F80aM7RoPTKp5ZU+csh0P/ViGzP1XTwy6o+UPoP8dD/1SRszP6s6Muk3kz5oMHU/hHYbM33JODJfzZE+imZ1P8Z4GzNQGzcy02eQPl+bdT8JkBszbSU1Mnf+jj400HU/SbobM0djMzLHj40+PgV2PwPYGzM7hzEy/HmMPgotdj9BsQQ6bfbCuZvORb+mgSI/TMT7ObwNublAUEW/+xojP8SNAzqgJ8G5rNBEv9W0Iz8ovwU6jhHEucpPRL9NTyQ/6BUJOjT+yLmkzUO/T+okP9+sAzq91MC5G0dDv4eJJT8z1gI6aXLDuUWAQr/7ciY/XU78OTgOwLkopkG/inAnP0XyBTqhwc+5nbVAvyuFKD+9Zv859H7Kuc2iP79rvSk/pyUCOplO07mGZz6/yR4rPwsaAzqyX9W5XMg+v8yyKj9YkPw5i2vNuSWNP7/b1Sk/yCf9OX+EzbkmTUC/VvwoP9TcAjpmHNS54ghBv8IlKD+S5vs5VRnMuWHAQb8yUic/9jEAOhd0z7kXdkK/334mPzOG/jlK2M25BiVDv7SxJT/IxwE6/rLRue7RQ7845SQ/6vP9OfoVzbmMe0S/9xokPzwE/jnnCc25UCJFv31SIz/DIP45MwvNuSfGRb/wiyI/OuP2OTQax7kcZ0a/U8chP46A/zlqd8u5Vj9Hv7m8ID/BgAA6ZULJueEVSL9ZsR8/vBkBOt0ex7nQ2ki/YbkePwSKBjp/T8y5lpVJv+fLHT+r1gQ6+ubHuej0Sb/WUR0/aH3+Oa+pv7knh0m/Vt4dP0u0AjqN/cS5Sh1Jvx1lHj8uWQc6YPXLuZiySL837B4/KJ8DOkyIxrnWRki/73MfPyRLAjransS5C9pHvzX8Hz87TgI6Y7vEufNrR79bhSA/SyD9OX4hv7nC/Ea/Hg8hP6dFAjof1sS5X4xGv5WZIT+e/QM6esjHubQaRr/aJCI/sFwHOgPizLm9p0W/6rAiP1+CAjojhMW5ZDNFv949Iz9UBQU6i6zJuXq9RL/myyM/YugBOksWxbkyR0S/kVkkP+RTAjobAsa5c81Dv4rqJD8fzgQ6igXKuRtTQ79eeyU/6OABOhypxbkt10K/Nw0mPwHWATqA28W5nFlCvx2gJj9oxQE6yv/FuSbaQb9WNCc/VrYBOrwcxrnvWEG/sMknP4pQATq6xMW509VAv05gKD9MDPw56CXBua9QQL9Q+Cg/9rABOjnoxrnqwz+/AZgpP+wRATpqY8a5MwhAv6tKKT9cXPc5u4e+uR94QL9iyyg/eNgDOt6uy7lE50C/UUwoP3CnBTqiq865h1VBv5zNJz/JAQE63O7HuQ3DQb8ZTyc/seEAOhNCyLnQL0K/0dAmP/KVBTouFtC51JtCv8FSJj9MbwA616nIuR8HQ7/l1CU/rAQEOlOzzrmTcUO/YVclP55bADrGVMm5ZttDv/jZJD+nRQA6dd7JuX5ERL/MXCQ/SBYAOpfFybnQrES/6d8jPz2OBDodmtG5gBRFvyhjIz/YjP85U7TKuXh7Rb+k5iI/N7H/Oej5yrnJ4UW/S2oiPxpU/zl5X8u5aEdGvyzuIT/xKf85C6DLuVasRr9IciE/7PT+OY/ey7mtEEe/fvYgP3hPADpFmMq5D7BHv5owID/PBQQ6lI7NudBQSL9mZx8/AGUBOrSMxrnZ5ki/JKoeP7M9AjqQusS5JnNJv9z3HT/A8QI6jt3CufX+Sb/uRB0/9TkDOpwgwrkD9Um/tFEdP5RLAzoy5sG5fHpJv4DuHT9NPwM6VxfCud4ESb8bhB4/dqwDOk94wrnCjki/bxkfPyUn/Tn6nrq51BdIv+iuHz9jYQM6BLbBuaudR7+ERyA/rHwDOulfwbnFI0e/3t4gP4K0Azr0nsG5zahGv6F2IT/8pgg6syXJuYYsRr8QDyI/QbEEOm32wrmbzkW/poEiPzZVcjz6t/I7ex2hPjn1cj+rHHI82F3zO5nVoT6h1nI/V+9xPF4V9Du2j6I+i7dyP+DBcTxW0vQ7+0ujPvCXcj8UaXE87Mn1O1IKpD7Vd3I/5HZzPAhh8zuB9KQ+A1ByP0dKcDzJffo7qgGpPiidcT98Km88O7z+OzxJrT7X2nA/hO5tPJCaATy40bE+BQdwP36VbDzdDQQ8UsO2PuYYbz8cEGs8PbkGPCYsvD7BC24/9xZrPL+xBjy4Frw+/Q9uP1yEazzHBAY8tKq6PpNXbj+i3Ws861AFPM5JuT5hnG4/OmhsPPCFBDxP87c+lt5uPwkIbjz4GQM8+aa2PkIebz92y2w8YF0DPABYtT4IXm8/vjxtPPfBAjx4I7Q+PZhvP3mPbTyLNgI8KO+yPvjRbz9+m288j3AAPOrCsT6yCXA/7TxuPPYDATxTnLA+GkBwP0UNcDy/1/47pnyvPrh0cD+mxm480wIAPMZkrj6pp3A/Br5vPIh+/DsT6qo+NUdxP6q4cDyVnPg7VQunPm/0cT8SsHE8svz0OwZdoz4SlXI/C7tyPJUm8Tuuz58+UCxzP4x1dDy0Lu07o5adPgqJcz+v0nI8oiLwOxB1nj4BZXM/lutyPP2r8DvEQZ8+lUNzP9jVczxIu+87qw6gPukhcz+ACHQ8xRDwO+LdoD6x/3I/8hpyPBNw8zvyrqE+EN1yP7npcTwxFfQ7yoKiPrW5cj9nsnE8bfD0Ox1Zoz67lXI/m7RzPEif8jvxMaQ+CXFyPycpcTw86fY7WQ2lPt5Lcj+cBXE8p5j3O8HrpT7hJXI/8P5yPP5H9TtZzaY+Cf9xPxd7cDwoefk7trKnPnvXcT+HRXI8kDz3O9KUqD4YsHE/iSBwPKgB+ztjhqk+6YVxP67obzxYCfw7s3WqPshbcT8PZnE8kpL6O25oqz65MHE/fXFvPP/O/TucXqw+6gRxP+avcDySqvw7r1mtPtLXcD+q0G48StH/O2hYrj7nqXA/4Y5uPP5eADyHW68+0npwPwJdbzzIPgA82GOwPm5KcD+6wG48yPEAPOl4sT5rF3A/kBhuPEVnATwgYLE+BhxwP7ItbjyOOgE8OQixPj0scD8QFG48AikBPDuxsD5DPHA/9YZwPObW/js8W7A+90twPwJjbjzrswA8BgawPqxbcD9jfG48CI0APJOxrz4da3A/jpJuPMFkADwQXq8+W3pwPxi4bjycSAA8MAuvPnKJcD+BxW48UCEAPG25rj5OmHA/DAxxPBLZ/DuDaK4+5aZwP2SibzzToP474xeuPoy1cD+iYXE8eO/7O1rIrT7Zw3A/qDdxPD3z+ztlea0+GNJwPzQabzzMwf47yCqtPlLgcD8NQW88qWz+OxLdrD5F7nA/6oBvPC7v/TsfkKw+DfxwPwK1cTwLlvo720OsPpwJcT+pxXE8iEn6O873qz4vF3E/4BhwPDul+jtHCqk+qZtxPwgZcTzWOfc7IaKlPnsycj9Q9XE8KQT0O4hZoj6bwHI/Guh0PP2Y7TvDLp8+nUZzP+Nbczy+4O07uP2bPuHKcz/TvHM8LqfsOzwMmz5g8XM/4ZBzPMFo7Tt6y5s+6NJzP7hSczzuOu47m3WcPqu3cz+HKnU8ytXrO5EdnT6SnHM/Wf1yPPE/7zsfxZ0+k4FzP2v2cjwgHfA7jn2ePp1jcz+TxXI83cLwOycunz7MRnM/DZ1yPNN38TtW4J8+lClzPxBycjyrKfI74pSgPtQLcz82VXI8+rfyO3sdoT459XI/1dUbM8riMTKHcYw+Pi52P2X2GzPm8i8ykfqKPmxjdj9XGBwzBdMtMrx+iT6tmHY/pjQcMx01LDLP/Yc+BM52P/NcHDMLSCoyvneGPmwDdz/HjBwzudcnMqCkhD6IQnc/giEdM/unHjK1n3o+zjZ4P6DAHTPuxxQyU/9qPusqeT9QVB4zUQgKMiBBWj4bHno/APAeM8sR/TFQz0c+RRR7P4+MHzP5WeMxk14zPsAKfD8Rih8zN+rjMdIGND5AA3w/oGAfMwAf6zHz1Tk+wL97P8AzHzPQZfIx2nM/Pl98ez/BCR8zXYj5MSfmRD4NOXs/N+geM1UUADI1LUo+8/V6PxS0HjOUOQMyymhPPpexej8iih4zFG4GMhVWVD6Qb3o/SV0eM8OQCTKUM1k+xSx6P1g2HjP1mAwyD/FdPivqeT+7Cx4zHSwPMk6TYj6bp3k/8ecdM29KEjKaGGc+RmV5P2O1HTOMMhUyaHtrPpgjeT/BNB0zol0dMixteD4kWng/Z6McMygmJjKHUYM+xG93PyMNHDMz7i4ynQSKPvqFdj8ddxszofg2MqBukD5fmnU/+CobM6PcOzLKXZQ+GwR1P85CGzMnnDkypLWSPuxDdT8iaxsz+7E3MjArkT6SfnU/l4cbM439NTK9nY8+/bh1P06gGzOs0zMyOQuOPnTzdT/21hszwfAxMvFzjD7mLXY/ffwbM2SaLzKo1oo+e2h2P9sfHDPPzS0yGzSJPhGjdj8ITBwzEF8rMjOMhz6j3XY/h3AcM+BJKTKy3YU+Vhh3Pz2PHDPqSScyRSmEPgtTdz9pwhwz0yolMkdugj7PjXc/xN0cM0mxIjIUq4A+0Mh3P2ECHTOUxCAyldB9PugCeD/KJh0zMVseMuQhej69Png/TkgdM6EDHDJIcHY+0nl4P1Z0HTPBmxkymK9yPuS0eD+fkx0zWBIXMsvebj7373g/Zr8dM7WuFDI/+mo+Nyt5Px7hHTPXPhIyUgRnPnJmeT+4BR4zcpQPMqT7Yj6voXk/PSceM1g9DTJx3V4+Bd15P81OHjOXhQoya4haPjcaej8ZTh4zfl8KMi8jWz7AEXo/lT0eM8/TCzJAxlw+tfp5P1QtHjNOAQ0yrWRePr/jeT8HKh4zDZMNMkP9Xz7vzHk/UBQeM92cDjJdkWE+NLZ5P90GHjPQnw8yDiFjPo6feT/b8R0zT30QMlSsZD7/iHk/N+UdM1/RETJSM2Y+hnJ5P8zaHTPbwRIy4bRnPjVceT/0yR0zk50TMiwzaT7uRXk/LrkdM+N4FDIcrWo+wy95P6OvHTNloRUycyJsPrYZeT+fkx0zzHcWMjGUbT68A3k/t5YdMz9uFzL6AW8+2+14P1uFHTO6bRgyYWxwPgrYeD+kdB0zTS8ZMqrScT5Wwng/rl0dMy3nGTIjNXM+vKx4P9tpHTNGEBsyz5R0Pi2XeD8c7RwzbeEhMg9Vfz766Xc/TmocM4OjKTL+3IU+bxh3P73mGzNd4DAyTMiLPlJGdj/IaxszzRE4MkFykT4OdHU/ftIaM3lcPzIHG5c+4Jh0P9uyGjO6Q0EyH6+YPhxadD+e0xozCIs/Mq0zlz4RlXQ/z/YaM9GZPTIX3pU+m8l0PxYEGzPECTwySoiUPqv9dD8XOhszLHw6Mk4wkz6MMXU/NV0bM/GgODJ+xZE+tmd1P6qAGzNY2TYy6l+QPomcdT8FohszXsQ0MkT2jj5m0XU/8rsbM8A7MzJVh40+dQZ2P9XVGzPK4jEyh3GMPj4udj860l+4Oj2ouBnFRb89jSI/JeJguAr8p7i0RkW/iyYjP1qWYbg2X6e4E8dEv2TAIz+/3GG4m36muClGRL/SWiQ/mi45uPDStbjvw0O/2vUkPxGtQLnDsIc3Vz1DvxCVJT+zeWS4SNWkuGt2Qr+CfiY/pRtmuOl9o7gynEG/E3wnP9EEZrj8XaG4hatAv7mQKD9jnme4N1yguIaYP78KySk/lNdpuI4nn7gEXT6/fyorP5/KaLj6Ip+45r0+v4G+Kj8mYGi4wH+guMuCP7+M4Sk/JnVmuOyroLjmQkC/BAgpPxAeiLizUI+4wf5Av2cxKD/LjA25MRRMt1y2Qb/PXSc/DjFUuFyjqLgsbEK/eIomP8XUYbgbZaO4MBtDv069JT8Q/lm4swanuCjIQ7/Y8CQ/6UgfudqGYDXgcUS/jyYkP6YxZrj1faK4uxhFvxJeIz+5+xS53Lzvtpq8Rb+TlyI/xvxQuOaRq7ilXUa/8tIhP508XLgBL6i44TVHv3bIID+JYVq4pwqpuLULSL8cvh8/OaRZuIUYqrit0Ui/9MQePzxhgrgkGZq4doxJv5TXHT8j8wy5v+6mt9DrSb+HXR0/F8BJuNVssbgCfkm/B+odPwd8grhmSJu4FxRJv89wHj9H8Qm55fqzt2GpSL/f9x4/n+QguR61qraVPUi/k38fP5OqS7hvU7C4u9BHv9sHID9SJ1y41CWpuJ9iR7/2kCA/2KZZuNi4qbhk80a/tRohP22GQbmZE6I3+oJGvyOlIT+udTW4Iee3uDkRRr9zMCI/TZdOuOiWrbg5nkW/frwiP/fYPrnrApk33ClFv2VJIz/9jDq42+e0uN6zRL921yM/iNAyuRMTJTeKPUS/HWUkP0ekYbj5W6W4vMNDvxb2JD9uAly4qsGnuFFJQ7/whiU/vIciucIL3bVYzUK/xRgmP9afa7hEBKG4vU9Cv6WrJj+a3xi56R8NtzTQQb/hPyc/z1lZuMtPp7jrTkG/PtUnP2InYrgBvqO4w8tAv9lrKD+b1u24+SMJuIZGQL/lAyk/KKbLuMu7PLi4uT+/jaMpPzgXaLisi6G4Cf4/vzhWKT8gcWe4WsShuP9tQL/y1ig/8649uEYXsrgz3UC/4FcoP9WWPrnqfbA3gUtBvyzZJz9CY2O4kGSiuBe5Qb+mWic/bMtjuE/GorjnJUK/XtwmP9LlYri9UKO495FCv1BeJj/mXGO4p02kuEv9Qr944CU/XD1fuECwpbjQZ0O/72IlP7xbP7mxgb43r9FDv4jlJD9zD8e4/hBDuM46RL9haCQ/77lKuZ9MBTgvo0S/e+sjP4EgPLnK16s35QpFv8JuIz/XjFK4pLWruORxRb9F8iI/0gJeuJtsprhF2EW/53UiP9vEgrgynZe48D1Gv8j5IT9Wz0S5ETDqN+yiRr/hfSE/p3BEuYZ/6jdLB0e/HQIhPyIOSrjPpK64w6ZHvzQ8ID+slVq406ypuI1HSL8Pcx8/XzpXuN76q7ip3Ui/y7UeP94sQLlhKJY3BGpJv4UDHj/wXi64zcC7uN31Sb+hUB0/fmJYuChArLjl60m/bF0dP9BvWLisW6u4VHFJvzT6HT/Pt0C464y1uK37SL/Hjx4/iM0yuaV1uTaFhUi/GCUfPzoZW7i5WKq4mA5Iv3+6Hz/W+1y4PDGquFmUR78kUyA/yqRcuKOyqLhsGke/deogPxrZXbi/k6i4X59Gvz+CIT++tF+49TGpuAgjRr+wGiI/OtJfuDo9qLgZxUW/PY0iP4B8STOGY6EwPP/MPHrrfz9ffkkzgneXMHRmwDzs7X8/QYBJMxGNjTCOzbM8NvB/P+SBSTPKooMwjjSnPFnyfz92g0kzAHNzMHObmjxU9H8/vIRJMxe0YTDCVo88+PV/PyKDSTN+J3gwrZedPN/zfz9QgUkzQ0iHMGrVqzyV8X8/VX9JM5qAkjAEE7o8F+9/PzZ9STNgtJ0wfFDIPGjsfz/uekkzEOqoMMuN1jyF6X8/hnhJM1YftDDuyuQ8b+Z/P+l1STNkV78w5QfzPCfjfz8zc0kz5ovKMFaiAD2t338/T3BJM0nD1TChwAc9/9t/Pz1tSTPN9eAwz94OPR/Yfz8KakkzCyvsMOT8FT0M1H8/q2ZJMzRf9zDYGh09xs9/Py1jSTMKSwExrTgkPU7Lfz95X0kzeeQGMWNWKz2jxn8/sFtJMzF9DDH2czI9xsF/P6VXSTNhGBIxZpE5PbW8fz98U0kzz7wXMaG6QD1pt38/11RJM7rzFTETeD49G7l/P3hXSTMRYBIxdOw5PXO8fz8LWkkz8MsOMclgNT23v38/h1xJMwc4CzEN1TA95sJ/P/peSTOcowcxQ0ksPQDGfz9gYUkz9w8EMWy9Jz0GyX8/qWNJMzZ7ADGIMSM998t/P+hlSTPXzvkwk6UePdPOfz8daEkzlqXyMJUZGj2a0X8/QGpJM6V96zCJjRU9TdR/P05sSTNnVOQwcgERPevWfz9QbkkzlCvdME51DD112X8/OnBJM8kB1jAd6Qc96tt/PxhySTN+2M4w5FwDPUrefz/rc0kzgazHMD6h/TyV4H8/p3VJM5CFwDChiPQ8zOJ/P1Z3STNNWrkw7m/rPO7kfz/yeEkz9DGyMCpX4jz75n8/fnpJMywJqzBUPtk89Oh/P/p7STM73qMwbCXQPNjqfz9pfUkzorWcMHEMxzyn7H8/x35JMwyMlTBo8708Ye5/PxCASTP0YY4wUNq0PAfwfz9PgUkzkTmHMCjBqzyY8X8/eYJJM28OgDDxp6I8FfN/P5iDSTOtxnEwsI6ZPHz0fz+rhEkz261iMJD2jzzh9X8/lYNJM7nMcTCyjpk8fPR/P+2BSTN3pIMwkDSnPFnyfz8OgEkzSmOOMFDatDwH8H8/GX5JM4QgmTDwf8I8h+1/P/x7STNb36MwbSXQPNjqfz+5eUkzbpyuMMPK3Tz6538/VXdJM35duTDwb+s87uR/P8d0STP3GcQw9RT5PLPhfz8TckkzBdnOMOZcAz1K3n8/RW9JM3CT2TA4Lwo9stp/P0JsSTOjU+QwcgERPevWfz8waUkzXhDvMJLTFz320n8/8WVJM37M+TCVpR49085/P39iSTPhRQIxenclPYHKfz/9XkkzwqMHMURJLD0Axn8/R1tJM78CDTHvGjM9UcF/P3xXSTOUYRIxd+w5PXO8fz9/U0kzOb8XMd+9QD1nt38/rFVJM8zaFDEKEj09Jbp/P0JZSTNo5Q8x2MY2Pbi+fz+3XEkzf/EKMYh7MD0kw38/FmBJM278BTEcMCo9aMd/P1hjSTNmCAExmeQjPYTLfz90Zkkz7yf4MPmYHT15z38/b2lJM5897jBCTRc9RtN/P0JsSTMoVeQwcAERPevWfz8Ob0kzU2naMIu1Cj1p2n8/rnFJMwB/0DCQaQQ9v91/PzV0STPGlcYwATv8PO7gfz+Rdkkz36q8MLii7zz0438/0XhJM4PAsjBOCuM80+Z/P/R6STPQ0qgwv3HWPIvpfz+AfEkzhmOhMDz/zDx6638/OCLZs3bGJ7R9JRe/Dp5OPw1agDNDDBS0fSUXvw6eTj+e9xcymEKzs3wlF78Pnk4/d1kstOfE9LN7JRe/EJ5OP8PvcrL9QICyfSUXvw6eTj9tXZm0rV0YtHwlF78Pnk4/43e+sZtxcLR9JRe/D55OP/PoJ7Lo5kmzfSUXvw+eTj8aU6K0vcIMtHslF78Qnk4/xPZLtCaNe7N9JRe/Dp5OP5aXp7MuWCOzfCUXvw+eTj884Wq0+Bc9s30lF78Onk4/mUxmsmiaRrR8JRe/D55OP49LJbSAeFO0fSUXvw6eTj/HNpa0L00PtH0lF78Onk4/Mq5msysLdbR8JRe/D55OP+niYLQ82bazeyUXvxCeTj8HrhK0hkrys30lF78Onk4/+LM5tKFcLrR9JRe/Dp5OP1EqDbQc9eKzfSUXvw6eTj9ioxG0MRLds30lF78Onk4/bWQ0tOdywrJ9JRe/Dp5OP3vPdbTRps6zeyUXvxCeTj+VIRyziNc5tH0lF78Onk4/oXI7tGA+n7N9JRe/Dp5OPza1dbRplwGzfCUXvw+eTj8TBpq0mdcLtHslF78Qnk4/FsgNtNEB27N8JRe/D55OPyLEcrPzWCy0fSUXvw6eTj8VZ1Szg+YxtH0lF78Onk4/cZ8ftAT0x7N8JRe/D55OPyNtF7NPDT20fCUXvw+eTj+C1SezHw06tH0lF78Onk4/FDIQtB+G3rN8JRe/D55OP7BFV7TYEW2zfCUXvw+eTj/MOmi0VHM7s3wlF78Pnk4/wv9QsoQwT7R9JRe/Dp5OP2EhOLRErZGzeyUXvxCeTj9VZL2094lstHwlF78Pnk4/R+sCtNHZ47N8JRe/D55OP+ULZbS6w0SzfSUXvw6eTj8/hwe0lM3Ts3wlF78Pnk4/Ea++s/UkVrN9JRe/Dp5OP9bsWLSpO2izfCUXvw+eTj9jKgq0nVjns30lF78Onk4/TioNtB714rN8JRe/D55OP04qDbQe9eKzfCUXvw+eTj9QPQG0aELfs3wlF78Pnk4/iU+FsohZvLN9JRe/Dp5OP/oZE7RjzOSzfCUXvw+eTj//zPuzTjnes3wlF78Pnk4/xof6s90G3rN9JRe/D55OP+dNyLJS8r6zfiUXvw6eTj+yEqe0dmYPtH0lF78Onk4/ls+utLzMEbR7JRe/EJ5OPzwsiLRw0QW0eyUXvxCeTj90jG60DtsXs30lF78Onk4/iteLs/E80rN9JRe/Dp5OPydyDLSnjjO0fCUXvw+eTj/63JS0e2UItH4lF78Onk4/EsCQs24KvLN8JRe/D55OP5ojn7T/Po20eyUXvxCeTj84MkqzM+nLsX0lF78Onk4/LdFBM6N3ejJ9JRe/Dp5OP/zRSLRg1C20fSUXvw6eTj/AX/ayJDM1tHwlF78Pnk4/GxIQtClnFrR8JRe/D55OPyGuPLRQzYu0fSUXvw6eTj9y1I20nb2btHslF78Qnk4/5Iers/oNxrN8JRe/D55OP57GbrLroOGyfCUXvw+eTj/3m3y058xds3slF78Qnk4/YIGXtF8qr7R7JRe/EJ5OP6G1LrTtoCW0fSUXvw6eTj/HsLq0XQdztHslF78Qnk4/3IMiM4LLtrN+JRe/Dp5OP0EcRTKcAQi0fiUXvw6eTj/lGEC0+81HtHslF78Qnk4/20Z/s1wmObN9JRe/Dp5OP9u7u7Rg+Vi0eyUXvxCeTj8yApS0iqMGtH0lF78Onk4/N28NNF4z0LN+JRe/Dp5OPzgi2bN2xie0fSUXvw6eTj/PcSi720FnvTePRr0TSn8/y/IYu0X8Ub1Rn0a9clx/P82xCLs0rDu9iq5Gvc5tfz+hiO+6Jm8kvZW8Rr3PfX8/rX/Mup5iDL0ryUa9JYx/PzJQqLpxF+e8D9RGvZSYfz9OVYO6GFK0vALdRr3Jon8/hnQ7uqKwgLza40a9lap/P5mp3rk43Ri8duhGvdGvfz9iYAq5kgU+u7XqRr1msn8/ACEpObItaDuU6ka9Q7J/P/vq7Tn/USM8F+hGvWqvfz/tGEM6k+2FPEfjRr3pqX8/OBSHOoV0uTw13Ea93qF/Px30qzrEFOw8D9NGvXCXfz/kANA6cMkOPf7HRr3Rin8/ZQ/zOsfZJj05u0a9P3x/Pw5eCjsP9z09EK1GvRxsfz8ahBo7GiJUPcGdRr2sWn8/VuQpO2g9aT2gjUa9Rkh/P1hpODuXK309/XxGvUs1fz9D0kU7zcmHPWVsRr1hIn8/GC9SO75FkD0QXEa9ww9/P4lqXTsC+5c9XUxGvd39fj9Wb2c7CduePa09Rr0c7X4/bO1vO+SupD20MEa9U95+PzMEdzsnjKk9hiVGvZLRfj9innw7PWStPXMcRr07x34/WVOAO5AosD3MFUa9pL9+P+BegTuvl7E9TxJGvam7fj9Kg4E7sr+xPU8cRr0yu34/vaOAO+JPsD0mYEa9/b5+P298fTutNq09lvBGvRHHfj85dnc761qoPWjPR71v034/0KVvO4Ekoj2t50i9t+J+P4MlZjv8tZo90zBKvTX0fj/rD1s79TGSPUKiS70yB38/YEdOO3qYiD12N029QRt/PzUtQDtocXw9aeFOvVMvfz/t4zA7uWpmPYuXUL3QQn8/z5EgO3ViTz1eUVK9MFV/P1FEDzvnijc9igRUvRJmfz8CrPo6HFEfPTeoVb0AdX8/9PfVOvf6Bj0aNFe9wIF/P3nfsDrRnN08AKBYvTSMfz+f94s6f1+uPBncWb1UlH8/+KBPOgS1gDzP5Vq9Opp/P1nqCTqDUio8PrVbvRmefz+g1I85HiCxO5lCXL03oH8/er04OI9HYzoheVy9+KB/P9E9OrkzQmW7PmRcvamgfz9AD9e595AEvNUOXL0yn38/m0Erun6pU7xjf1u9V5x/P+0wbbq+JpO8+bNaveaXfz8EF5i6XJa9vHe7Wb24kX8/XsK5uiLJ6Lyim1i9u4l/P7BE27pPMgq9QlpXved/fz9PLPy6EAEgvdj5Vb1NdH8/CB0Ou/OcNb1fhVS9CWd/P9qUHbvP2Eq9zwJTvURYfz9WXiy7kIdfvTB4Ub07SH8/EDc6u+NVc7107E+9Vzd/P4QkR7sgGIO9imZOvd4lfz9WEFO75fSLvZDsTL0wFH8/U+Zdu9MqlL2shEu9ugJ/PxVgZ7tZgJu9MTpKvUDyfj9DnG+74vuhvdQPSb3/4n4/MYt2uxaHp725C0i9b9V+P2wdfLudC6y9BzRHvQjKfj/GAYC77z+vvUuYRr3BwX4/aDOBu346sb3hNka9kbx+P1aZgbvw5bG9JhRGvc26fj8XJIG7iUexvRETRr2JvH4/0Vx/u71Gr73uF0a9E8J+P7/QersBKKy9Yh9GvZTKfj9BuXS77/mnvSspRr271X4/pCttux3Lor32NEa9LeN+PwAGZLtDhJy9vUJGveTyfj/jmlm7Al6VvcZRRr0JBH8/kf9Nu+pmjb2yYUa9MBZ/P1RJQbuZrYS9InJGvesofz+hZTO7jUp2veGCRr0FPH8/z3Eou9tBZ703j0a9E0p/P3qEertkU2e99gqKvaQBfz9QeWO7MwxSvewUir0NFH8/dk1Lu3K6O71XHoq9dCV/P+AgMrufeyS9BCeKvX41fz+GExi7QW0Mvcouir3dQ38/5lX6uu4o57yINYq9UlB/P+ZVw7qzX7S8ETuKvY5afz9zZ4u6S7qAvEs/ir1eYn8/G5YluoboGLwiQoq9nmd/PzXOTbl7Ej67h0OKvTRqfz9MkHs5KkFoO3ZDir0Ran8/m+8wOu9eIzzqQYq9Nmd/P/YWkToM+IU87j6KvbJhfz+w6Mg67oK5PJE6ir2iWX8/fsD/Ogwn7DzqNIq9Lk9/P/6uGjt31A49Ei6KvYhCfz94wDQ7pOYmPSsmir3tM38/ocpNO60FPj1sHYq9wSN/P2HOZTtnMlQ99hOKvUYSfz/Aq3w7UE9pPfwJir3V/34/ciGJO/w+fT2x/4m9z+x+P7EZkzsy1Ic9b/WJvdrZfj+ISpw7xVCQPVjrib0xx34/JqSkO5sGmD2j4Ym9QLV+P8QWrDsm5549jdiJvXWkfj/hZrI7cbukPYnQib2klX4/2qu3OxCZqT2eyYm93Ih+P+XVuztuca09A8SJvX5+fj831b479jWwPea/ib3jdn4/6mLAOzGlsT29vYm95nJ+PyyRwDs4zbE9lL+JvXJyfj+gFL87Wl2wPZnOib1Wdn4/j967OwVErT2R7om9nn5+P5zRtjsRaKg93B+KvU2Lfj+RVrA7XTGiPcJdir39mn4/Bo6oO3/Cmj1Jpoq99ax+P6qYnzsLPpI9d/eKvX3Afj+HcJU7B6SIPTpQi70l1X4/wmeKO0SHfD0prYu92+l+P3RBfTssf2Y9VgyMvQH+fj86fWQ7VHVPPdhrjL0PEX8/+K9KOwGcNz19yYy9niJ/P0pUMDtLYB89TCONvTQyfz/NthU7HAgHPYl3jb2VP38/0Uv2OtSy3TyAxI29nkp/P70dwjoaca48BAeOvUBTfz93e486MMKAPJc+jr2VWX8/Dxc+OiRkKjy1aY69yl1/P67YxTmYMrE75IaOvSRgfz8A8X04U19jOiGSjr37YH8/9g2AuR1aZbvSjY69pGB/P9wGFLq8ngS8HXyOvQlffz9XLGy6T79TvDtejr3yW38/JgGkur01k7y3M469LFd/PwYE07pqqb28gP+NvZdQfz+HWQG7KuDovLjCjb0iSH8/H1IZu8A/Cr2Gfo29yz1/P1IsMbtUECC9czONvaIxfz9tski76a01vbvjjL3HI38/CbNfu1vrSr2jkIy9aRR/P+39dbuMm1+9dTuMvcMDfz9Gm4W7KmtzvcHli71G8n4/1aePu1Ujg70CkYu9NeB+P24OmbubAIy9lj6LvffNfj9HuaG79zaUveLvir34u34/vWypu9iMm710p4q9A6t+Pw40sLusCKK97GWKvVObfj9v+rW7G5SnvbQsir1jjX4/IKu6u9MYrL0z/Ym9roF+Pwz8vbtFTa+949qJvS55fj87B8C75UexvWrFib3bc34/srfAu17zsb3LvYm9CnJ+P2ALwLvrVLG9Nb6JvcZzfj/e3727+FOvvTfBib1UeX4/nX66uwE1rL3TxYm92oF+P2r3tbufBqi93suJvQeNfj8YWrC7bNeivSrTib2Bmn4/ao2puxqQnL2v24m9Qqp+P7fOobtQaZW9++SJvXC7fj/JLZm7oHGNvdPuib2izX4/c7qPu6W3hL37+Im9aOB+P+Bmhbs6XXa9VwOKvY3zfj96hHq7ZFNnvfYKir2kAX8/EbljPfC7L7wZ9no/EKxBPrbGTj2xkR+8Owh7Pw66QT7wzTg98JwOvF0Zez9Ix0E+yeshPSno+bspKXs/eNNBPlU9Cj0eW9W7Tzd7P2TeQT4xj+M8fJqvu5RDez/b50E+b5CxPGkFibunTXs/o+9BPtpxfTwlkkO7WVV7P5P1QT6YhhY80ErouoRaez+Q+UE+YBs7O8JSELoQXXs/hvtBPpKkZLsFhTA67Vx7P237QT710yC8okP4Oh5aez9B+UE+H+KDvG+SSzuvVHs/EPVBPoeftrxq8Yw7v0x7P/DuQT6+eei8SGqzO3RCez/+5kE+IJsMvaoG2Tv/NXs/Yt1BPldNJL2Emf07nSd7P0jSQT4xEDu9dl0QPLEXez/+xUE+g+RQvRY2ITx6Bns/t7hBPj2tZb00QDE8UfR6P7KqQT5vTXm9fGVAPJbhej8+nEE+tbaFvUJiTjzrzno/1o1BPnMRjr1HR1s8i7x6P6h/QT6OqJW9WP5mPOCqej8GckE+q22cvU9xcTxXmno/Q2VBPrgqor21THo8wIt6PwBaQT7x9Ka9p9iAPCp/ej9JUEE++72qvXvEgzz1dHo/aUhBPnl3rb3A3oU8eG16P6JCQT784K69vPWGPIppej+aP0E+aAivvSgUhzwcaXo/RD9BPlierb2+/IU8DG16P09CQT6Gkaq9LKKDPG51ej/HSEE+KcmlvZvifzxGgno/sVJBPoGrn70ccnY8KpJ6P/ReQT6PWpi9UydrPGKkej8DbUE+WPiPvcY2Xjw0uHo/TnxBPuGEhr11oE88Ms16P4GMQT4lnHi9qdw/PEbiej/GnEE+OexivSEgLzzT9no/oaxBPnA+TL2unx08TQp7P6q7QT46xDS9e4ELPE0cez+OyUE+BOkcvdMw8jtXLHs/7tVBPqDxBL00M807Kzp7P5rgQT7jRdq8anSoO6NFez9z6UE+fr+rvOqMhDuqTns/avBBPu+KfbyarkM7V1V7P5H1QT5Wwye86nsBO9ZZez8J+UE+kneuu+ushjpjXHs/AvtBPkDlX7q8ES05T117P7f7QT4SzmE79y8uuvBcez9v+0E+QpICPGR+ybo3W3s/GvpBPgZ6UDw53iC77ld7P5H3QT6L75A8n65fu+NSez+t80E+F7u6PGEYkLv+S3s/Wu5BPoJG5TyE7bC7MEN7P4/nQT5XHAg98xHSu3k4ez9K30E+MJYdPY8387vrK3s/mNVBPrjdMj3CBwq8qh17P5jKQT57xkc9mCoavOYNez9vvkE+EyRcPQniKbzd/Ho/SbFBPnOkbz3B7ji8AOt6P3+jQT43GoE99UFHvJXYej9KlUE+7tOJPZG5VLwCxno/9IZBPk7pkT2HM2G8t7N6P9V4QT6tIZk9ZFhsvH2iej+Ka0E+ZoOfPfExdryQkno/QF9BPnv4pD1Dnn68boR6P1dUQT74aqk9ub2CvI54ej8tS0E+eZKsPeQshbzxb3o/h0RBPhmFrj2xrYa8i2p6P1xAQT7cLa897S+HvLNoej/xPkE+4JGuPY23hrxnano/QUBBPuyYrD3eMYW83296P3lEQT5mhqk95NKCvER4ej/0SkE+sGilPXFLf7xGg3o/clNBPihOoD3iane8i5B6P7BdQT7fH5o9ueBtvA2gej+paUE+mBWTPQIDY7z5sHo/uXZBPqw9iz3n51a848J6P4uEQT59poI9lqVJvGDVej/PkkE+8YZyPaooO7w66Ho/XKFBPhG5Yz3wuy+8GfZ6PxCsQT6X3wU0yDRatJXfBT/GNFo//tS/NnUyDrRGNQU/6JxaP22RQLlbNaQ2UIkEP1MFWz+fmry3x9VaOJLbAz8Ybls/ziOsNdSzJrZ8LAM/79ZbP/t5AjQPQVy0+XkCPxFBXD++xgE02KpctL/GAT/aqlw/8hABNGMVXbTvEAE/YxVdP5bx67VG3GU2fVkAPxWAXT9zCfi3F4hxOAM//z5x610/8TCPNTStCrYiwf0+01heP3nh/jNOBl60feH+Pk8GXj+tSwA0FYhdtK1LAD8ViF0/EiUBNJ8JXbQRJQE/oAldP/r6ATQZjFy0+voBPxqMXD+ozgI00g5ctKjOAj/QDlw/F58DNGOSW7QZnwM/Y5JbP+xsBDSBFlu062wEP38WWz9MOAU0DZtatEw4BT8Qm1o/bQEGNP4fWrRsAQY//x9aP7AoCrYYllw2UcgGP1GlWT8vkNI3bjHCOKqMBz8/K1k/hw8/OKpz2DduTwg/NLFYP74hJTc2Msg2aw8JP/g3WD/nl9Q4GzKHOILNCT8Dv1c/O1titqhexbbFiQo/UEZXPwTkMriS+q04KUYLP57MVj8AJJo1ANERtm2iCz+vkFY/OhULNFHsVrQ7FQs/UOxWP+ebLDcW89M2W4wKP6ZEVz+gmxo5h1LFOGsCCj8unVc/2EEjOCoazjeMdwk/0/VXP/lj4bW+UV020+sIP4ROWD+EREW4JO+/OMBeCD+Qp1g/yrVQtwx1yzc30Ac/BgFZP/VRM7ghf6447EAHP3NaWT/94IS3ib4AOISwBj8NtFk/zfxjt5WD3je7HgY/+w1aP96LBTQOaFq02osFPw9oWj+19wQ0YcJatLX3BD9fwlo/IWIENAcdW7QgYgQ/BR1bP6cvnzQIFRG1NssDP+x3Wz9RwZ63pXoaOJEzAz+10ls/tuJGt26vwTdsmQI/bC5cP6xrZjSM+s60jP4BPwCKXD/YNYy3oF8IOFhhAT9e5lw/sAJit8VE3DcNwwA/yEJdP1VFQLb5LLs2GSMAP5CfXT+ImgG4i7l8OGcD/z6S/F0/d61BNuOovLaIrP0+s15ePzcyL7j7aKo4SHj+PnkkXj9CWJY13m4PtlOz/z71yV0/GXUANBJwXbQadQA/EnBdP2kOATTcFl20ag4BP9sWXT/mpgE0lL1ctOWmAT+TvVw/LT4CNHNkXLQrPgI/c2RcP8rUAjQqC1y0ytQCPysLXD9zaAM0HLNbtHNoAz8cs1s/EPsDNCZbW7QQ+wM/KFtbP9uMBDQtA1u02owEPy4DWz8iHQU0nKtatCAdBT+cq1o/F6wFNFhUWrQVrAU/VlRaPyU6BjQc/Vm0JDoGPx39WT/LxgY0QqZZtMvGBj9Dplk/mVIHNHFPWbSYUgc/c09ZPyPdBzTw+Fi0I90HP+/4WD9UZwg0KqJYtFJnCD8rolg/W+8INEhMWLRb7wg/SExYP312CTR+9le0gHYJP372Vz/SusY0ahk1tQL9CT+loFc/s64JuOgAhjh/ggo//kpXP1YAWTV8A8u1CwcLP371Vj8NlQs0ZJlWtA2VCz9jmVY/53YLNPysVrTndgs//KxWP2rSCjR8F1e0a9IKP34XVz8apRA2fwiKtuMzCj98fVc/qG4huIvVnDjMkwk/1eNXP2o3sTQoYR+1y/IIPxpKWD9Pm6C3/kocOPlPCD/dsFg/Ji5JtxX6wzdTqwc/GBhZP9kIR7nDVVu2sgUHP0J/WT9Ah+M2cXDvsyleBj/r5lk/l98FNMg0WrSV3wU/xjRaP1zOFDIxmI8yj4zrvrpMYz8LVRMyVfqPMr806b4l52M/4ZcRMtJGkDJS1ea+ioFkP+MsEDLyxJAy8m3kvvAbZT96yQ4yRx2RMgoD4r4wtWU/7DQNMhCAkTIThd++C1FmP1qfCzK/4ZEyQQPdvrDrZj87BAoyZEOSMpN42r5Hhmc/92MIMuGkkjLg5Ne+ySBoP9PEBjKJA5MyeUbVvoW7aD9YCgUyc2mTMlCY0r6GV2k/h08GMpUfkzKemtS+0eJoP/tECDImrJIybbTXvgssaD+aMQoyvziSMj3A2r5cdWc/QhYMMj7FkTIZv92+pr5mP3/zDTKbUZEy/rLgvo0HZj/yxw8yXN6QMpCY474BUWU/T5QRMixrkDIDcea+2ZpkP/1ZEzL+948yVT/pvnDkYz8+GRUyxoSPMhsD7L76LWM/ZM0WMvsPjzLIvO6+cndiPxQ6GDJyho4ya2vxvi7BYT8RNRoy/yqOMpAV9L6DCWE/x9YbMp+3jTJZrva+AVRgPzN1HTLXRI0y0T75vk+eXz+mDh8y0dGMMiLI+74r6F4/U8ggMiNbjDJ+T/6+JjBeP3tvITI5JIwyq4v/vmLVXT9bPiAy1XuMMoan/b4hYF4/7hQfMijQjDLQ0Pu+t+VeP77oHTKUJI0yavX5vlVrXz/MuRwy3XiNMsoV+L7T8F8/woUbMuzMjTJ8M/a+vXVgP2gtGjKRHY4yZUr0vi77YD82IhkymHOOMltX8r7zgWE/aukXMuXFjjJSY/C+mAdiP/V5FjKxFI8ylmnuvlqNYj+uQRUy4muPMnJq7L4cE2M/AhQUMlHIjzKkZeq+5ZhjP8DJEjLXHJAy4FrovsAeZD/9exEyWHGQMo5K5r6JpGQ/vSoQMuzFkDI/NOS+TyplPwW4DjIeGZEyDxvivkevZT8laA0yam6RMv70377bNWY/khwMMsTDkTJtyd2+K7xmP8u5CjIeEZIyOJjbvjVCZz8TUwkyHWeSMkdg2b4zyGc/yuYHMgTDkjJXIde+J05oPwZsBjIFJJMyuNrUvi3UaD8w9gQyuW2TMrdy0r4BYGk/XYAFMrpEkzIx4NO+Rg1pPwFCBzI76JIyURfWvpCLaD+toQgymZaSMoJH2L7UCWg/fv8JMp9EkjJwcNq+M4hnPzhYCzLQ8pEyrJLcvpcGZz9VrQwy3KCRMqau3r7yhGY/AwQOMpNNkTJRzeC+HwFmP25NDzKx/JAyYdbivhaBZT9ylRAyNquQMpfd5L4UAGU/W9sRMmNZkDIs4ea+jH5kP2sdEzJ3B5AyNd/ovgL9Yz+wWxQyvrWPMm/X6r6Qe2M/EpcVMu5jjzJ/yuy+FfpiPxDPFjI1Eo8yF7juvq54Yj+rAxgyYMCOMuug8L4092E/2jUZModujjIkhfK+pHVhP2poGjKnG44yqmr0vmvyYD+4kBsywcqNMsI/9r5fcmA/nrccMll5jTK2Evi+rfFfPyXdHTLGJ40yAOP5vntwXz8L8B4y09+MMiKv+745714/NSAgMkeEjDIqd/2+6W1eP3hTITJuLIwyA17/vobiXT8WEiEyOj+MMn32/r5IAF4/aq0fMgaljDIfwvy+ZKFePzBWHjJqBo0yB6D6voc7Xz/M1xwyIWeNMt53+L6i1V8/GZgbMpTIjTKUS/a+IW9gP8E5GjLnNo4y7Rb0viQJYT9nyxgyTZSOMtrW8b5tpGE/sDUXMhv+jjLwk+++nT5iP0voFTJ9To8yFkntvgbZYj9czhQyMZiPMo+M6766TGM/rFSNs6DX1TR4knY/N6uJvsdVg7W/EJi2Xbd2P9GhiL4ODgc4vMA0OXTcdj/RlIe+hseXN2B1zji/AXc/EISGvrzab7X6A4e26yZ3P91xhb7XFoSzEDbWNAJNdz9pVoS++yeCs/9I1jQPc3c/tziDvtwygLPgW9Y0Ppl3P1gXgr4JbZY1wSn8Nqu/dz9s8YC+1o2eN/fs7Thi5nc/4Yx/voSvNLWr2Fi2ig14PyEqfb5tVXezc4bWNFXwdz8+8n6+QiJ8sxlw1jRxwnc/H9yAvuxpgLPPWdY0EZV3PyQ3gr4cuYKzd0PWNO5ndz+HjIO+9f6EsxYt1jQMO3c/Y9yEvnY5h7PCFtY0lg53P54lhr77aImzfADWNIzidj9raIe+aJCLsy3q1TS5tnY/cqaIvkGvjbPf09U0LIt2P3Pfib7OYrY1QoX6NuFfdj+tE4u+grS7N8p/7DjsNHY/r0KMvuoyUrXBrle21wl2P81vjb5Q2pWztHrVNJ/fdT9IlI6+SM+Xs5Zk1TShtXU/urSPvg+imrUT/Za2wot1P+TRkL77CRA4cQkmObhhdT/Q7ZG+ZUVytWV8XbYVTXU/V3iSvq8qrbNJZ+Q0qGx1Pyikkb46xZmzG07VNDOLdT+s1ZC+lFqYs15e1TTjqXU/6gSQvoTslrOibtU0rsh1Pysyj76bBq81laPuNnLndT9JXo6+2uwWOHTOODl+BnY/E4eNvmBXHzeXYUY4ESZ2P9KqjL5NVAY4xMUoOXZFdj9Zzou+TRJBN6PyezgMZXY/Bu+KvqPtKDc/tFk4xYR2PzsNir5Dcoyz7+DVNKekdj+wKIm+8uCKs1Tx1TS3xHY/P0GIvl1LibOrAdY04+R2P1RXh74BsUG0BUyJtDgFdz+Kaoa+8DhZN9XglziDJXc/RHyFvlhQCDd8qD84YUZ3P++HhL5eqAG0OodFM2Zndz+IkIO+Uuc3N74GhzhqiHc/NpeCvjz4FDeho1o4n6l3P2magb5HG/Q1+DlFN/zKdz9TmoC+xIulN9xl+TiT7Hc/uSx/vm6w9bVXECu3rw94P3IIfb4z9ds3haMnOej6dz+ATX6+6pg0tZthY7Zj2nc/ZSOAvpsDfbPza9Y0+Ll3Pzcdgb79LICzF1zWNLCZdz/3E4K+09GBs0NM1jSleXc//AaDvllxg7NtPNY0xVl3P+H2g75AFIWzQizWNGU5dz+v6IS+CaSGs6Yc1jRGGnc/Y8+FvuwyiLPfDNY0Aft2P4y1hr7UvomzB/3VNMDbdj/xmYe+n0aLsy3t1TSdvHY/43uIvq3JjLNa3dU0pJ12PxZbib4/SI6zhs3VNNR+dj+jN4q+psKPs6+91TQmYHY/wxGLvvc4kbPfrdU0nEF2P3fpi77Sq5KzDZ7VNCojdj8hv4y+ICCUs/yN1TRoBHY/mpWNvu+FlbNlftU0quZ1P69jjr6H6pazum7VNNnIdT8FMY++gx+PtKvgBrURq3U/4/yPvtKW2zf9VgA5X411P+3GkL54tiK1Kj8NtspvdT8Oj5G+EHqcs5wu1TQPUHU/YmSSviQrnLM5MtU01VZ1P/c2kr5JfZqzzEXVNI17dT+cP5G+Kmvatc3B7rbmnnU/00+Qvn4g+ze5Jhc5YcJ1P2hdj77u+260sE2+tOnldT/haI6+HQl0NzNPlzjBCXY/ZHCNvjUkGTe98D44Jy52PylyjL6+lAs4whwwOXFSdj+8cou+wgintbGTt7b5dnY/oW+KvqxUjbOg19U0eJJ2Pzerib5y3j65lYrfuKLfBT++NFo/7H/Tt7Cs0bhiNQU/1pxaP5puPzgSXLm4FokEP3YFWz9Wfss3ve5EuITbAz8gbls/JbJJOO1birheLAM/AddbP+SFDblx1Li4KnoCP/NAXD9Hlz04vN22uILGAT/+qlw/+Ng8OALVtrgxEQE/PBVdP60zGrlZR7a4bVkAPx6AXT8f9RI4b+lluPw+/z5z610/JNWGtTQiEDYJwf0+2lhePxG8RTjfaLm44d/+PsUGXj8HDeu3xAe2uOJLAD/2h10/rM8ouXcRt7gwJQE/jgldP4S6STjBSra4KvsBP/6LXD9RcZq4U1ncuNvOAj+yDlw/zL6Ut4vRy7hOnwM/Q5JbP6uXBjghY7i4FW0EP2YWWz9dQDi5pgveuF04BT8Fm1o/YB+6t0yYzrhoAQY/AiBaP2tvQTgwRrm4IMgGP2+lWT+51d23O9i7uJuMBz9IK1k/NztQt8PnvLhrTwg/NrFYP24+F7f43pi2YA8JP/83WD+OlCq5HRjbuG7NCT8Pv1c/mL8juFQy17e0iQo/W0ZXPwDoPLdGGOm2G0YLP6jMVj/m64y4FQjGuGuiCz+wkFY/mmxVOMWJurgnFQs/XexWP0IeCDhy2bq4SIwKP7JEVz+jWhi5GQHEuGUCCj8ynVc/GGwYufE6w7iAdwk/2vVXPz577zYE1Ta23OsIP35OWD9rI384KiHzuL5eCD+Rp1g/jObAuHajvLhL0Ac/+QBZPxfAV7nu8QW52EAHP39aWT/jF464cAvAuFywBj8ltFk/LEDCN3MKtLfDHgY/9g1aP6QaDbld87241YsFPxFoWj/xk1A4czm4uKX3BD9pwlo/Six4OCctuLgUYgQ/DB1bP5LxG7ngzbq4KcsDP/N3Wz8roI+4STq5uIQzAz+90ls/pXI9OF97t7hOmQI/fi5cPyV3GzjXVre4LP4BPziKXD8oXq+4REC3uFBhAT9i5lw/AUtTOHYttrgDwwA/zUJdP+aMUbmGZ/24CiMAP5ifXT82Pok4VeG5uFcC/z7h/F0/WO43N8WIsbdvrP0+ul5ePwApNTi8Rqm4Hnj+PoUkXj+bQJi4YF8RuGWy/z46yl0/qX3ANSNwyLgFdQA/HnBdP+xrhzZbJ9C2wg4BP6gWXT/DORG4V4W3uCmnAT9rvVw/d7IbuReauLgnPgI/dWRcP3BnE7kRYrm4AdUCPwoLXD9Wel84UGW3uGJoAz8ms1s/Ph4Qua0i8rgn+wM/GltbPxfUC7nl37m41owEPzEDWz+XSyS4gGrauDcdBT+Oq1o/GyU6uTPh1bgorAU/SlRaP2fQNTjToau4RDoGPwn9WT8jMcM23e+7NuDGBj82plk/pvEFuZoClrigUgc/bU9ZPzFYQDg4S7m4N90HP+P4WD9qXUk4Cxi5uDtnCD86olg/wUnGuM8xwLhQ7wg/TkxYPytDWDiIZLm4cXYJP4f2Vz+LJNm3/cq9uPf8CT+soFc/SrRIt8RAvriEggo/+0pXP2yXWbfTOPK2DgcLP3z1Vj+3u1e5G/YGuQeVCz9mmVY/p71stjbwurjcdgs/A61WP42/3TfwxcG4cdIKP3oXVz9N2sm4JZ3wuOkzCj94fVc/w07RuKLqsbjZkwk/zONXP0O7vLjG6za5wfIIPyBKWD+jnD843B+5uPlPCD/dsFg//wM/OHMoubhVqwc/FxhZP5YQF7kAQb+4qQUHP0h/WT+gSqC3vNW6uCReBj/u5lk/ct4+uZWK37ii3wU/vjRaP9nTFDJvmY8yh4zrvrxMYz+Y+RIyHOaPMrI06b4o52M/WQUSMn9XkDI91ea+j4FkP8dtEDIcxZAy423kvvQbZT+hjg4yohKRMgUD4r4ytWU/pDgNMgZ9kTIRhd++C1FmP0PACzI5z5EyNgPdvrLrZj/HaQoyx06SMoV42r5Lhmc/LGAIMoikkjLZ5Ne+yyBoP77EBjKHA5MydEbVvoa7aD8wCgUyf2mTMjqY0r6LV2k/4WQGMrMbkzKJmtS+1eJoPzuhCDI6tJIyZ7TXvg0saD/6KwoyMTiSMj7A2r5cdWc/ID4MMqrJkTL9vt2+rb5mP/z9DTLwR5Ey7LLgvpEHZj+g2A8yleCQMomY474DUWU/w5IRMs5pkDL1cOa+3JpkP/1ZEzK6948ySj/pvnLkYz/hHRUy7pWPMhgD7L77LWM/vQcXMsIijzLAvO6+dHdiP3RjGDKDjI4yWWvxvjPBYT8mEhoyKRiOMooV9L6FCWE/U9cbMhO4jTJRrva+A1RgPzN1HTLLRI0yxj75vlKeXz+gDx8yx9GMMhvI+74t6F4/pKcgMp1djDJsT/6+KzBePwuaITIDHYwyn4v/vmXVXT9pmiAyPpqMMnyn/b4kYF4/qCcfMpbRjDLF0Pu+uuVeP8voHTKVJI0yZ/X5vlZrXz+2uRwy73iNMsIV+L7V8F8/6IsbMrnPjTJiM/a+xHVgP4OdGjLtUY4yWUr0vjH7YD9rKhkyaHeOMlFX8r71gWE/VNwXMt7KjjJCY/C+nAdiP7jAFjIgFY8yjGnuvlyNYj+ocxUyl2yPMllq7L4iE2M/oRgUMvrLjzKkZeq+5ZhjP+m3EjKzPJAy0VrovsQeZD80YBEyNnCQMn9K5r6MpGQ/CioQMtLFkDIrNOS+VSplP7kDDzLjIJEy+Rrivk2vZT+umw0ygneRMvL0377eNWY/m30MMmDNkTJOyd2+MrxmP6G6CjKwI5IyI5jbvjpCZz/teQkyMHOSMjlg2b42yGc/uukHMh/CkjJQIde+KU5oP6mfBjLcHpMyptrUvjHUaD/39wQyGnKTMp9y0r4HYGk/rQgGMsAlkzIm4NO+SQ1pPx48BzL45pIyRRfWvpOLaD8p1Qgygr2SMmlH2L7aCWg/CPcJMrpFkjJhcNq+NohnP78XCzLB+5Eym5LcvpsGZz9ZrQwy26CRMoqu3r75hGY/QgcOMkhOkTJLzeC+IAFmP0CDDzK6AZEyVdbivhmBZT/umRAyEqaQMofd5L4YAGU/8toRMt9WkDIe4ea+kH5kP8kbEzKI7Y8yLd/ovgT9Yz9vXBQyZbaPMmfX6r6Se2M/64gVMrl2jzJzyuy+GPpiP13PFjLBEY8yHLjuvq14Yj/v/hcy6MGOMvCg8L4z92E/NXcZMvVcjjIdhfK+pnVhP1t9GjLtJ44yqWr0vmvyYD/6lRsyQ8uNMr0/9r5hcmA/QtUcMrmBjTKtEvi+sPFfP3f7HTJfI40y9+L5vn5wXz+bRh8yIduMMiKv+745714/PB4gMmOEjDIad/2+7m1eP5xVITK8LIwy+13/voniXT908SAyYzmMMnj2/r5JAF4/lnAfMgesjDIfwvy+ZKFePwZYHjJ0AI0y/Z/6voo7Xz9H+BwyXGSNMtx3+L6i1V8/U5sbMp3LjTKMS/a+I29gP6osGjKBHI4y4Rb0vigJYT/JshgyloCOMtLW8b5vpGE/NF0XMqjsjjLjk+++oD5iPywLFjJOOI8yBUntvgrZYj/Z0xQyb5mPMoeM6768TGM/cz7ANRomETd8knY/HauJvuNSxrc4CQG5Ybd2P7WhiL59Bwe4DNoyuW/cdj/2lIe+W1eOt7zAvLjAAXc/B4SGvov41LdaSBK56SZ3P+pxhb55TRG2lCw9twlNdz81VoS+7b76txTtMbkJc3c/4ziDvkuk9rdnzjG5Rpl3PxkXgr4/lNq0Enfetau/dz9w8YC+AkyftzfO67hi5nc/4Yx/vm08NjVReKk2ig14PyEqfb49WPK33OI1uUHwdz9y836+LOSVt4ur3bh4wnc/59uAvkF/5zXZOTo3FJV3Pwg3gr5ukv+3axw0ufdndz9FjIO+MyqIt2TivLgTO3c/LNyEviEGx7eYWQW5nA53P28lhr7QePi3fOYkuZHidj9AaIe+UJm5NDcGOja9tnY/WKaIvjfWy7c1wQG5LIt2P3Pfib69YQ24yUcxudxfdj/PE4u+quWxt1pk3LjsNHY/q0KMvhJLzbfggve41wl2P81vjb4Jj9k0Bn9KNqDfdT9HlI6+vKnfs/5oCTWftXU/x7SPvqcn4rOrWAk1wIt1P+zRkL5aIkk0G8z5NbhhdT/P7ZG+zE6Dt4pMlLgWTXU/TXiSvnshHrhZ/DS5pmx1PzWkkb6ouA24yxAkuTOLdT+s1ZC+bXWas32kMTXjqXU/6gSQvpiF3rNmcAk1rsh1Pysyj77UZQu2yBMZt3bndT8rXo6+9PM/uFSIaLl/BnY/C4eNvtv0H7caGUC4FSZ2P7aqjL69Hxo0Bz/tNXZFdj9azou+tFRtt3WFlbgJZXY/G++KvsfZK7dBvFW4yIR2PyYNir4diRy2qok8t6ekdj+wKIm+Q1gKuNAjNbm3xHY/QEGIvlEED7goCT654+R2P1VXh7786DMziDiqNTkFdz+Gaoa+EsdVtwFukbiEJXc/QXyFvkwXALjAeTG5X0Z3P/2HhL5If/K3+BsquV1ndz/NkIO+KDomt0+5bbhqiHc/NpeCvilE+7cFrja5n6l3P2iagb7tK7K1jNXstvvKdz9cmoC+0dEEuO58R7mG7Hc/eC1/vplB5rZ0kiq4sA94P28Ifb7LQty3iKYmuef6dz+VTX6+fFv1NSgLRzdY2nc/uiOAvtUx0Lf0Qxe597l3Pzcdgb7LZRe24CxIt7uZdz+iE4K+tNaSt+Ab0biueXc/twaDvqBsxbNvCQo1yFl3P872g752ObK1cwXRtm05dz936IS+I6sHuJGuOLlGGnc/ZM+FvguJFbcAKke4Bvt2P2u1hr6JpBa28RI1t8Dbdj/umYe+UZm7t9SH9rihvHY/xXuIvhIZATbClzk3p512PwBbib4j3gG4bsQludh+dj+EN4q+UuQnNduajzYoYHY/tBGLvrkvHzYOGlQ3nUF2P2/pi74vERC4xAAxuS0jdj8Kv4y+Qo4TuEIHM7llBHY/rJWNvl6KHbeR/zq4quZ1P7Bjjr4XVxm4Sic2udnIdT8GMY++sIq7txb727gQq3U/5PyPvmYK1reiKfe4YI11P+bGkL7OzuQ05jFKNstvdT8Bj5G+7J7dNR1oEDcQUHU/XmSSvheh4bf3aQC51VZ1P/c2kr4arA248agiuY97dT+SP5G+I9aFt+w4nLjnnnU/yk+Qvv812rZ2sfO3ZMJ1P1Ndj75xeBO46MswuenldT/haI6+RWcRuB25MLnDCXY/WnCNvnuKD7j1wjC5KC52PyJyjL7HUAK14IDetXJSdj+8cou+R4+6t6/H6rj7dnY/k2+KvnM+wDUaJhE3fJJ2Px2rib59wQI+Gwsyv1HBAr4YCzI/eMECPhsLMr9MwQK+GAsyP3PBAj4cCzK/R8ECvhkLMj9vwQI+HAsyv0PBAr4ZCzI/asECPhwLMr8+wQK+GQsyP2bBAj4cCzK/OsECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/acECPhwLMr89wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/acECPhwLMr89wQK+GQsyP2bBAj4cCzK/OsECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/Z8ECPhwLMr87wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/acECPhwLMr89wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9mwQI+HAsyvzrBAr4ZCzI/ZsECPhwLMr86wQK+GQsyP2bBAj4cCzK/OsECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/Z8ECPhwLMr87wQK+GQsyP2bBAj4cCzK/OsECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/aMECPhwLMr88wQK+GQsyP2bBAj4cCzK/OsECvhkLMj9owQI+HAsyvzzBAr4ZCzI/acECPhwLMr89wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/acECPhwLMr89wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/Z8ECPhwLMr87wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/acECPhwLMr89wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/acECPhwLMr89wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/acECPhwLMr89wQK+GQsyP2bBAj4cCzK/OsECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/acECPhwLMr89wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9mwQI+HAsyvzrBAr4ZCzI/acECPhwLMr89wQK+GQsyP2bBAj4cCzK/OsECvhkLMj9nwQI+HAsyvzvBAr4ZCzI/ZsECPhwLMr86wQK+GQsyP2bBAj4cCzK/OsECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/acECPhwLMr89wQK+GQsyP2bBAj4cCzK/OsECvhkLMj9owQI+HAsyvzzBAr4ZCzI/ZsECPhwLMr86wQK+GQsyP2bBAj4cCzK/OsECvhkLMj9mwQI+HAsyvzrBAr4ZCzI/ZsECPhwLMr86wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/acECPhwLMr89wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9nwQI+HAsyvzvBAr4ZCzI/Z8ECPhwLMr87wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9nwQI+HAsyvzvBAr4ZCzI/acECPhwLMr89wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/acECPhwLMr89wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9nwQI+HAsyvzvBAr4ZCzI/acECPhwLMr89wQK+GQsyP2nBAj4cCzK/PcECvhkLMj9owQI+HAsyvzzBAr4ZCzI/aMECPhwLMr88wQK+GQsyP2bBAj4cCzK/OsECvhkLMj9pwQI+HAsyvz3BAr4ZCzI/fcECPhsLMr9RwQK+GAsyP7KZoTlZ+ZQ6bgjKvgc6az/0LjM67ftEO/r3vL6v7G0/uKJkOn+hmjthM6y+XBVxPzvpbDo1AcM7heydvluDcz+qg2g6rRTQO7B2mL6CYXQ/wOoyOhlQljvKB5y+79FzP1lsoTlr/fU6+eagvpMHcz/VJwa4hNgRuQDuor4wsXI/FXWfuVnSxLqj56C+ggdzP7HPELo0HDa7X9Obvsfacz/KQ0a6tMGBuy1jlb7U23Q/8fVsuv8co7tQqY6+s9t1P29/grra2ry7aryIvoWydj8ShYe6GqTKuyg3hb6ALXc/6lKIuj3lv7se0oq+62d2P/pParpBK4G7uOylvp8ucj9JrcC5TwKmunCUxb6dK2w/spmhOVn5lDpuCMq+BzprP1GXq7v8K1Q6fjWaPtQbdD/uGYe8Lj1DO/vilD5I5nQ/g8zmvADuujtXVY0+d/F1P0ICGL0TAAc89k6FPpD6dj/tPCS97LcbPOADfT6H1nc/iJbvvNcb7DvP528+csF4PzagSbz+DEg7nvNkPoF/eT+xPo86KstDuW4PYT59vXk/ODksPLkN+7rbtmQ+joR5P7KvkjzlszG7L1dtPlP8eD/K77c8U8M+uxVUdz5cWng/Trm/PEI2NLtbkYA+Wbl3P5P6szxLnB671zSGPu77dj8EXJo8OcICu8WJjD6NHnY/R8RuPCvgyLrjlZI+U0F1P+pjGjwTPIe63JSXPvKCdD9RsG87xnrpuW/Emj61BXQ/UZeru/wrVDp+NZo+1Bt0Pybl5LsKWAW730cHPxVUWT+OVS68xAGQOGn6hT6aEHc/gnAsvBwR/Tup0fu9Ewl+P1xezLqf8H48+FD/vgjdXT8QHMQ7dhaQPI0RL79WuDo/OykIO+yHczxPmTm/b0cwPwOGObzhTP87mt4Jv76sVz/ui3e8SzVlOps+Zb7oeHk/nRSBvMstQLs1PJC91FR/P3Jde7x0VPi7pjXzPZQmfj8zMX+8QLwfvLN5Dz5Zbn0/mSKAvE7HPrxtQSc+QoN8P+UXgbw7XlO8n8ovPkYlfD/uAny8ynBXvCkuSz5J23o/lmNpvAFBULwL9Io+7ld2P0ruRLz1DlC8/17fPiRPZj9octW736EMvPrkIz+no0Q/JuXkuwpYBbvfRwc/FVRZP+cGIjMvvP8uRHhIO7L/fz+GZiAz1BO3Ldf0Rzuy/38/1ikiM57WSDC6Bhs9C9F/P3OwDzMS36MysRH6PmxjXz+WCdEycQ/zMmsOPD+Psi0/D3LTMk73/TJw80M/ar0kP/ISADO6UsgybxIeP1FeST/MzBgzyjxWMjzeqD7YrHE/3NAZMwMVQDKQ4ps+oNhzP/W2HjM47v0xyLdVPsFcej9otx0zNBYlMv2wgT6rpnc/65QbM2ruOzKGWJA+n511P2GYFTPk22Myiem1Pv5Lbz/y+RIz0mCHMqqT0T4qkmk/GR4SM3h6iDKcptg+pfNnPzrTGTOgglYyV5yoPlm4cT+SlSEzkAhPsEjcjLxQ9n8/5wYiMy+8/y5EeEg7sv9/P9H9YrsF3xm8jSpav/bpBT/hAGe8hw6vvKfkWL8N1Qc/ayPavJex6bwXpVi/4wQIP0cD/7xs9hq9YPZpv7JNzj5Q+we9SlIZvXQxar8OMM0+lKjSvADYzLzIO1e/LUwKP5xDCbxdhw287eYyvxIWNz8Hmu463qyNOgNzBr/i2Vk/4GcaPB8t+zvNehK/u+1RP7ZehTyu13I8yrkTvzUAUT9/B648yW22PO+6G782CEs/rILFPGNc5zzgwyG/my9GPzIwvzxfIgY9GXEuv0YVOz8j0p88wYUDPZeEO79SAy4/pstkPIzS2DwMfUq/fHIcP/61BDx4uJA8aypZv5t2Bz/+lH87nUfDO8DpU7+pnQ8/0f1iuwXfGbyNKlq/9ukFP1Q7ZDzd29c7FcdfPv7HeT8FyYY8F+YhPNa7Rj6gFXs/UzOKPKvNWjw8504+yqh6P0+5iDxWiog8vfxzPr2NeD9NbH48XdWRPLeOmz7Q0nM/gqVoPEi+ejwuKME+9gVtP7dXYDzgAzo8LPHcPoXkZj+AsU88IDgmPEUJCz/D6VY/JUxaPKEX6Tuf7xA/HvxSP4E5djzUgAg71cEyP2I2Nz9fR3A8VCNSusKDbT5z/Xg/E9YnPHm6KLzj35G+k1x1P/cCLzvDxYK85P0RvxtAUj9fZbq68RyNvNmhK7895D0/MeChO3A5YbxJExi/luZNP7aeYTwwoMe7FXiivh29cj8h9YM8ZSWjOtaH2bpb938/VDtkPN3b1zsVx18+/sd5P00FIjPw+7UvKe8SO9b/fz+hgh8zBaHVMf9mMD4/LHw/eusdM8FBOjL6G5E+0oB1P9qqFjPn72Ay49euPk+ccD9taRMzTD5zMhG5tD6khW8/yzkZM8mvVTJSJJw+G85zP72OHjOM5woyk85bPlkIej88EiIzPowxMMo7jzz79X8/Z44iMyaorjG2xw8+w3Z9P1Q8JDNm2rOvgl91PKb4fz/ipxwzRDcmMotggz7GbXc/7CsXMxqxajJyHbY+H0JvP73S8DI5L9MyuqMjP+reRD+SZuAysQnrMko0PD+GiS0/eqvvMiXE1DI3DCk/NT9APyYNCTM/Vacy5DUFP4ecWj/iwhszxtVAMo4Llj6kwnQ/TQUiM/D7tS8p7xI71v9/PzZv6rsex567ylT8vpS9Xj93TpO8QIyNvL1xHL/2iEo/FYjNvEuqAL20izO/yzA2Pxg41bwjcSm9grNDv8CPJD8YeqW8vSQkvVWsT79CQBU/XltNvOxf27yaylO/g5sPP3Agt7vuKiS8y3FPvwL7FT+ayQo6l7flOsgaRL9njiQ/JvuKO7q5TDzzO1e/U48KP35j2DuhquA8swJYv7EyCT8wLFk8qOvwPHNyZL+5eeY+DvOnPFWm9jwtRWi/6HjWPpJx1DxvIg49D6hov79z1D5T8AI93r0IPXHoTL/C/xg/UkDbPA3+vDxxBSm/qA5AP2uwbDwbfVA8CHcev7n/SD9VmaM7nbWIO2/nD78EuFM/Nm/qux7HnrvKVPy+lL1eP3vjijfuVds4YfHePLrnfz9rdHA3v4MdOmPlIj0kzH8/bZ1rt2kbqDrUCks9YK9/P9UkZ7j4gAA74p5nPQKXfz+dtbu4mLkfO/ZRdz06iH8/Nd2puNLnGTsKu3A9iY5/P98SZLdR27U6HZc9PbK5fz/e5KA352SXOTHk4jzb5n8/wTHdt10rNjh8uTQ8A/x/P4vi3ri8PRo6mZzXu5L+fz+bIjO5m2LEOrc607wj6n8/99FOuWjMJjvFHjS9ZMB/PxQZRrm12mU7SZtxvXyNfz/hdTC5l4yGO7eOir1KaX8/tvI0uQppfztUUYK9sHp/P+UlN7mDFhg7FBYSvSHWfz+vi4W4yt3zOdpH9zrg/38/e+OKN+5V2zhh8d48uud/PwT1abjzUMW49ogXvyZVTj+p1KK5hpUGujRGGb87C00/KUcxurvDjrpNrBu/ejpLP6T9ibqc6Ni6dAoev2tkST/nuK26/ykGuzaxH7/BFUg/qgmnuhpgAbuOYh+/dFRIPzdFQLpBTZq6UQocv1DySj9Rdh25T8yDucIvGL892k0/r/9ANyfvpDeTEBe/Wa1OP9p5DLR13uOzfSUXvw6eTj+sPwy0hVLls3wlF78Pnk4/UQYMtEUx4rN9JRe/Dp5OP1RVDbRAtN+zfCUXvw+eTj+eGw207ebhs30lF78Onk4/yuALtC3E5bN9JRe/Dp5OP1sDDbTPweKzfCUXvw+eTj8vEYc1Lef0NXEjF7+On04/BPVpuPNQxbj2iBe/JlVOPzm4u6GSh4egDFpjvlCceT8B9qegc9+EIVOnUr5Lhno/TH46I/JFUqCuXUW+MDN7P8O22aGgV4sh2VlHvhsaez/00FKjAfOHIqFPWL4dOXo/hHOzIjp8NqIEnXG+mMV4Pzlh+SDue6ahSwuFvr40dz+mFhyhEBIoILR2jb7ZCHY/Uhofoc/yRCFvGYG+drp3P98hCqIlStygUWJVvQKnfz/TtpagieYPoknhlT1EUH8/i3mHoY25TyKGZbY9k/t+PxDt0KG0rs8grSS+Pe/kfj8IH8qheq8oItHRrT2IE38/HAWXIWN8BCFsR4o8qvZ/Pxw3GKEYtBKhn53QvRyrfj9sne8hWQ8/IQXGUb4ckno/Obi7oZKHh6AMWmO+UJx5Pwf8oiGYXgKh5xQVvr1FfT9ni62hj7RAILuR2L2MkH4/Epw7IxVCZqKJiZe9Wkx/P0uLCCNeo5eiYDKNvQ9kfz8CsBUjiOdvopcLm73tQ38/wHeWIWtnhCGxya+9Iw5/P4/gWqFs5Dkh5/TDvVHTfj+GlYmeHjFgoEfm0b3kpn4/wGtgoCpyI5/KMKy99Bd/Pzx2KCImkWyfkI5bPcihfz+ZzWwih90NoeKABD4G2X0/+BTYovXEhaEWft89m3h+P937UKIzARehfvl/PeZ/fz9on4aiAxqZoEKSTTzX+n8/nkKKohkVph9OZzK9z8F/P2GigiGfd0AgbvXTvRGgfj+8eBmiv61MIENEF74CMX0/B/yiIZheAqHnFBW+vUV9P6u6OLPASKk0bzVnPwLO2z4fAjyzTzqpNGV5Zz8qr9o+rwhFszcRqTTHMmg/cJfXPml/ZrOkZ6g0gsxqP8IDzD6zv4+zjQenNCvrbj/f47c+0Buxs8YDpTS0O3M/cqufPri9zrOx2KI0Rpd2P8eIiT4wIuKzPjqhNKGJeD+2cHU+Kp7bsxzKoTT353c/THR/PqedhbPzjac0v39tP7gavz7dxOyysTWqNBuRYT/pHvI+C0pJsmi8qjSDP1s/+CgEP/ZSgLEM16o0FN1XP2SeCT/B6z2xadiqNFJxVz/aRgo/i+IhsuLGqjQTSlo/17wFP+bbu7Kpcqo0pltfP3Qt+j6glhWzU9OpNNBIZD9qtec+q7o4s8BIqTRvNWc/As7bPmeQPjpwkeI6PBcJP+AyWD+y0h0784ilO/KFAj/HOFw/ciKJOy3NBjziNPk+4Z1fP+FTozuyoSY8zzr/Ps3nXT9s+Iw707cdPKpwBz9rOFk/rdEyO9k03DsqLw8/ZjRUP+YpijrpRjs7ogAWP6xyTz/mmRW5pG3tuQ96HD9InEo/N9uguh06hrutSCI/mfxFP81+dbtf+xu8VV8RPx+0Uj/5Q9+7wBpXvETJ9T6pimA/TV4evFEccrwqGMc+IM9rP5KPQbyiwWi8Gn6PPvSxdT/VZvC7UEI0vPo7xD46bWw/YFCEu1c/+bvgUfQ+YvZgP3gq8rokp427e7cLPx2CVj/bGSC6U2K3uvZ8Dj8zrlQ/Z5A+OnCR4jo8Fwk/4DJYP6m+vzETupsyMO6YvkBQdD98qcMxapSZMoSvor6ru3I/KWb1MWr4kzI3Gri+tOBuPzzRCjLjno4yfW7UvuLsaD/EDiEyBfqMMuaW877QK2E/lKopMkRrhzLTCwi/rNtYP1DFOTLkmoQy3VETv/BcUT8zdEoy/E59MhvPH78i/kc/CoB2MkafUzLNgkK/CnAmPw4DczJ7Ly4yblNMv+k6Gj9dPloyeL5JMqDOP7/piyk/ZMlaMgK1bDJcOiu/v04+P36gOzIeBowybQwLvwLyVj8WfCgyffqKMkcnC7+h4FY/vA05Mh51iTIkUQe/WlBZP1foHzLBgY4yzGr0vmHyYD+oPOsxF7+XMvqqtr4lJ28/qb6/MRO6mzIw7pi+QFB0P5ofDTw4X8A64ZV/Pw89Zr2rLss8Y4t6O8Sqfz8nyTW96xkgPTDnmzsYhH8/mE5BvdEePj1rdI87hkh/P9x1b73n+Co9pe44Ox0Zfz8a3ZS9yYPhPOuOmzoMBX8/9u2pvQ+CNTyJr5Y5hw1/P+uJrr1TKNG6mQtUOeJ8fj9pP969ynFGvJwyYzsCrnA/z1euvneAurztrE88Z5RXP9vmCb+13wK9CtSePGx2Tz/DrRW//lYfvYw+vjxCcE0/0U0Yv+CJL71hob48pP1PP1a6FL+f7SC9/NV0PGagWz/WFgO/Kg/9vLSY6Ttcnmg/lCfVvj7inrzr0K46TIl1P+6KkL4nOeO7h6A8uhPGfT9MkAa+mh8NPDhfwDrhlX8/Dz1mvR3QCzvmpz475NCrPkYncT8L9SA8Iu44PCJxhD7WQXc/J1bjPOVXAj3o74M+Nh53P93B3zzNXQA9Av+DPgwedz9844M8HTaXPDPcgz77SHc/g0n/O0MQGjzD+5I+UzR1P7quDTuG60k7ewS7PhtPbj+jEz65DV3uuZn73j5XcmY/V/ujuh0HLbu8AgQ/N1ZbPylr7rqlc4K7PJMDP8SYWz84cVK7sqC4u5Nc4z5XXmU/Osqgu83Q7LtJS78+R3NtP3FI2LsUNgq84gSePrN8cz9MZBm8s+xLvOegpz6j23E/HXcevC1RXbzdALY+4j1vPw00j7v3wvS76yfgPrwmZj+GHKq6DSAbu/bH6T4owWM/HdALO+anPjvk0Ks+RidxPzbyOjJ/P4cyM0UUv+OwUD+KWhgyzGmBMj+CA7+so1s/5RjDMQNYmzKYSuC+BCFmPzMvJzKLUosyOFHmvtuiZD9m3j0yFdSVMumc/75r0F0/a9M3MsAajzJx3wO/xGtbP2JmGzI/S4wy/Fb8vsW/Xj+qFRQy3KmPMl4j6r7zqWM/IZn9MYmKlDKjTs2+XYRqP1dEqDHvg5wyyzl1vgSNeD9iiogx45GfMhFYZb4lf3k/GpSMMSuYmDJWooC+8sl3P/FAwjFbHpgy/pecvo+7cz/sfDoyjXWHMsW4Eb97elI/K6tmMmRZYDJX3jG/wh04P4NNXzLAuV8yJN81v7spND9HVVwyEhFuMjqTK7+k/j0/NvI6Mn8/hzIzRRS/47BQP6ncFrzAYZw75r1Sv/5QET85MeO8NX+UPJ8sU79zdhA/iMpFvYjYPj0nRFW/j5AMPyorYr0/XT89sXZWvwCPCj+sgD+9KE7rPGJrWL/7BAg/VQL3vCJVZjxHvV2//k3/PpP6RLyzpXo7XS5mv/H73z47zds66od5t27Ebr8urLg+ZAhGPKetkznBSnq/waxWPkworjyZ6qI7Sul/v033cDxTUPA8SLfNO9/cf78pxFa8kd0OPakqtTvw0X+/wgVOvNiIFz3q90U71tJ/v7u9dLnTbQc9mygQvMqNfL9SvyM+4erQPNpfc7zT13O/pyubPqMYlzyMpRi8JB1lv1kq5D4txuo714xNuzEmWL+1Jwk/qdwWvMBhnDvmvVK//lARP8CwAz5PUjO/W84Bvp3BMD9WeQU+wL41vwb1/71VQy4/Bg4HPtDlN79Tnvy9af0rP7rbBz4P/ji/NeP6vdnPKj9KWgc+fEs4vw4B/L1OkCs/J80FPhAvNr/ySv+9yM0tPwf9Az58uDO/MIMBvp1ZMD8KlQI+dM8xv3nsAr65RjI/bHkBPihMML+GBgS+scUzP5xcAD6HyC6/MhsFvqo+NT8Jyf49vHYtv60IBr4PgjY/SmP9PSGDLL/ZsQa+Y2g3P4a//D3NEyy/Yf4Gvt7QNz+vYP09eYEsv+ayBr70aTc/MBn/PWOtLb9n4gW+D042P++5AD6vRy+/1cAEvrbDND8/AwI+zwgxv2l9A778CzM/wLADPk9SM79bzgG+ncEwPwygmDK30WWxx2k9vhOVez+0Z5gyOvxusbz3RL4xOHs//jCYMkeMd7FiBky+At56P8L4lzL+BICx7AVTvlGBej+trJcyJ4qFsVQfXL7pA3o/k0qXMp5SjLGmTWe+M2J5P7vZljJwuJOxXX9zvjKoeD/fX5YyvkqbsWf6f75S33c/LdqVMmwro7FRe4a+8AJ3PyYxlTIflKyxhzyOvlTsdT9zjZQymzC1sWxVlb583nQ/iSqUMuIuurH1cpm+bzt0P2tulTLAO6mxuHqLvlBRdj+qf5gyEiJrsfbKQb6vX3s/7ouaMqlO9bCdLcq94L9+PzMWmzJoxIOwYjNZvcujfz/MwJoy9VfRsJuJrL0EF38/cTKbMsB2ObAz2xi9WdJ/P7T0mjIPlKawiEqJvZRsfz8reJoy+LkAsTww1L1Nn34/2+qZMhO6JbHglgi+XbZ9P82DmTKNHDyx1gkbvn4MfT8tLpky9tFMsTTPKL5Zf3w/7uGYMgeZWrEnKjS+rAF8PwygmDK30WWxx2k9vhOVez8xhWYnYduupS9Rwb1i234/qsRmJ5x+mKUOmKi9kCF/PykLZydB43WlZeyHvYFvfz/+VWcnvNAgpQHLMb07wn8/SYdnJx20XKTyAHS8u/h/P2l+ZydjJqkk8wG7POzufz+LDWcnZqJzJYOthj0kcn8/PkFmJ1T2wyWFptg9RZB+P81rZSff2/ol36sKPkqkfT8JlmQno9ITJsttIz72t3w/Z99jJ06BJCZS3zU+C+57P0h6YyfuBy0mY0w/PkB+ez++AGQnjZchJtemMj7nEnw/vGVlJ/o9/CWebws+lZ19PwKCZiej5q8lqXjCPd/Xfj8n6mYnBJSJJUwamD0CS38/XYJmJynJryURWMI9Qth+P9yKZyfcBhUkj8IkPLD8fz/rKGcnYh9YJXTwbj1mkH8/HidmJ599yyVN+eA9YnN+P0NrZSc7+/olN70KPrKjfT/Sf2Yn4p2wJTpDwz1z1X4/uYhnJ/sjQyQAvlc8Ufp/P2gbZydUHWaljmh+vXeBfz8xhWYnYduupS9Rwb1i234/vncjvLj2CzzqlsS+a1psP9Dd97tGgj08ZlWjvjWZcj+Qixa7Ud+bPPtsjb65/XU/AGkFO6bV1zyYsHG+26x4P0l9oTrxROI8DoU4vsS1ez/E8rK6APLSPL9h+b1cAn4/Rvl5uwFCwTzFWYC9a2x/Pxs3z7uiSKw8JUUhPAXtfz/TIBC859eQPFPwwz2Ixn4/URtMvNRtQjzHG24+q/F4P/uRcrwyWeQ7lhI3PjfXez8QHU28DEnfO8VEFD6lRn0/iy05vMV3Bzwbwak9CRh/P3qqVrzkPSA8/X+iPmS6cj8C87C8ig+HPHZbID+dbkc/pR8UvUxR0jyjwxw/yxFKPye3KLxgnjA7KdD/Ply9XT/1/W+8973pOqtSYr70o3k/zPg0vLKV+js7aPu+bvxeP1EIurq2P108OXUyvxqDNz+FR4w8TvSdPFHISL+nrR4/uFkYPHp7jzwtrD6/+74qPzj8g7sqGFE8lrgfv5wISD9cYg68xichPEKj8b7Xq2E/vncjvLj2CzzqlsS+a1psP7ma8jLvrdAyZyYoP1cIQT/sm+sy2yvYMnhrKj8aCD8/6RTxMhqy1jL/6C4/0e06Pw9K4jKWR+4yWY4uP3pCOz+YffoybynUMh0IJD9Oi0Q/cg0BM6TawTK0EhM/VIlRP0dfCjPbsKAylO78PsWUXj8DjBQzAq5hMgYjzj7EVWo/7/gXMyL9HDKRg5U+cdd0Pxv7IzPODdAwP31IO7H/fz/FgyIzNneyLhqAkbtb/38/VqUlM836wDEsoQE+wvB9P3sHCzOkbZ4ypuL3Pvv+Xz9I8wszeLGoMjzCAz9PfVs/dgwjM20zzDG9JxI+BmF9PxAGIDNyX/CwPgNIO7L/fz8aTCAzWSHFr2smSDuy/38/DCsZMxmRVDIS06c+WttxP29rAzMtgL8ypScWP9JWTz9HPPAyxvPbMv4MLj+8ujs/kY/7Mj5txjIDYig/WtRAP4oV+zIp4MAyni4hP0PjRj+FLf0yuFTRMuXvIj/ac0U/ttbuMinpzjK5nyc/Vn1BP7ma8jLvrdAyZyYoP1cIQT/ON3a7l0mlu3/fWL9KAwg/+6mXuy0pJLz7GVC/2xEVP9RcqbszjqS8h55EvwzbIz8ojla7G43yvNFQNr9BjTM/zyJnuoRx/7xJxCe/ZzNBP7uzVTkBEu68wzYXvxxvTj/2EB06ZLDbvJcEBb/wnlo/UANOOtFSyLyh3Ou+3SFjP2SfXTn5S7G8gMHZvmugZz8asV677DeOvO4Jr75NiHA/XDCJuwumWby2R8i+BpNrP0/aUrvGQja8Jv8Av60aXT//Ebg5DVdAvHV6Pb9xHiw/lDGiO7NDfLzdF2S/J1DoPm1wEjx4UOS8GTZmv4Jz3z7593Y86sEzvY85Z7/icto+XYD6OL2XH7z6xWW/pLDhPo/bP7kcNi+6FHRzvzhSnj6dg1C793uOuqyTc78QjZ0+nzY5vMtzVLp6PWa/Y8LfPqkd7bxHHSI7SblPv/hvFT9TtbK8y3WFOZPVSb+vYB0/2NgZvNX7S7uK+VG/uGwSP5I8qbuk0pK7rgtav4wfBj/ON3a7l0mlu3/fWL9KAwg/qv61PTiF9jxFQiq/C6k9P7NXsD3MSZ08f288v9zOKz+zA0M9Idi1OjdrRL91uiM/KSxfPPopM7wJ0ke/O/YfPwrdVjwZuEG8G5hSv/d7ET8WVl08AYQevJQ7ML9Fojk/ZmiEPIRGhLs3mr2+88JtP62Qhjx3Oc06sU8xvaO5fz+aSYI80w2+OpJFGz2IyH8/GohjPF6EmLsOxmw9X4t/P1R0QzxFvEy8NaPZPRGDfj9TeDk8op2PvNFAHD4Y8nw//RtDPLKvlbyCOUw+gMt6P4M8XTz/45u8FFyWPp+jdD/GK388n0S5vLuSxT4+EWw/T1eLPAT18ryRhdg+E9FnP/Q3eTzVcQG9LrS7PrkBbj+N0J88QQFOPLcxKz0RtX8/pPvsPJ2otjx1rAy+gGZ9PzaQGj3PTvc80SVpvhP4eD/UqCs97x0TPQUucL4IdXg/htI9PfW/DD1NI6C+EbVyP3bFZT1F2gU9i4rhvsA4ZT8gN5M9bNj+PGj7E79P7k8/qv61PTiF9jxFQiq/C6k9Px2VKDM4lh8zKEs2P2+8Mz8k8eYyF5rQMmmRPz8R0Sk/cyrYMjos7DL5ZDs/UGkuP1LY8TJdGtYyBYspP2rPPz9O9PwyC2vJMvkgID+cvEc/w7IFM3I8tzJcvhA//SZTP9z3DjOUopgyccLwPkfuYT/yExgzCotgMvNrsT5lI3A/m8YZMwCeSDI3tpw+s7ZzPwQ2GzM1dEcyoTeUPuEJdT8Qbx8zFVAFMl6EgT6BrHc/3DMfM3IbHDJtZ3M+qal4P8WwHjNp6EIyJ1aTPt0rdT/swRQzbZFjMr22sj4L5m8/TVkYMyApbTLu0NA+wL1pP7kf8DJheZAyorv1PpCWYD/EHA4zK+BzMtyoAT9rvFw/bhwNMzDbrjIx1AY/9p1ZPy5pBTMEQZ0yiqgNPwI8VT/HSxEzSc5+Movy0z4aCWk/LiAHM0N7EjIJ7YU+QxZ3P2bgCTNrWJIyRtzHPrywaz+qaQQz3nK9MlJvCT8P+1c/AYvWMogVujLgvCc/EWRBPx2VKDM4lh8zKEs2P2+8Mz8tCaw9NvZAvO7lfT+F/cO9+nehPfigDLy6zHg/bxFjvr+sGT0kTi271SVrP4x7yb6Au9Q6Ywm+ufY1VD/FLw+/WI/vOmGCP7qyq0Y/4nIhv93NUThEgSe5iPwpP9hqP78i1Dw5Wa4Uueo4Aj+NZ1y/OWlROA/oobc5S7o+33Nuv4ucXzk3/8O6ExehPqf/cr/Ious5Un0GvIz6nT4BgHO/31yJOjwdi7xHI58+B0hzvyCWDjs/n7m8sECrPlgvcb8j8q474iDAvLyNzD7OmWq/nOM9PLIyvrzu1fQ+Hrxgv13dozxy6sG8YDINP5VkVb9D5u88njTQvEXaHT+8S0m/Yp/YPPkm8bzBpyo/YI0+v9/UvDrrfCQ8io9RP/sDE7/FGXs8qquhPHkJaj+HF8++5Y4RPWQWPjwm13M/6r2avufFOT2DzHu6q3l1PwZuj75dcUQ9p/GluV8nez8+IEC+45ZiPTdbIruuan4/gSDFvVvKjD3hrvC7Ye1+Pz0xdb0tCaw9NvZAvO7lfT+F/cO9bOdCMxJQTTK6Y4I+M493PzcWQzNLhEoyN52APpzKdz/2jkMzMhpDMsnPdz73Y3g/cUREMxtcNzKW5Wg+d0p5P2w5RTNqHiYyjf9SPqeBej8sdEYzRMEMMkPIMj5sEXw/RaVHM9AY3THlaQw+9JR9Pxl4SDPmtqYx7MDTPcCgfj8V4EgzJsKDMdJapz3TJH8/0g1JMyH2YTH2gI89615/PygjSTP+G04xbuWCPQF6fz/cM0kz6Bo9MboxcD05j38/I0dJM/dSJzFAh1Q9uad/P0BXSTOFqxIxfUs6PS68fz/GYUkzQ2kDMX/qJj2QyX8/AGZJM7GR+TCLfx496s5/PwpZSTNkMxAx5Cg3PXK+fz+aLUgzX8S7MdZ97j0fQn4/ezZIM9thuTEHd+s9aE1+P6A/SDND5bYxbk7oPQZZfj9KREgzzZ21Mait5j3zXn4/yJpHM7By3zFG6A0+pod9P7LWRTO0/BkyzpZDPmxJez9vp0MzJ5BBMg/bdT4Pg3g/bOdCMxJQTTK6Y4I+M493P+cZCbSntuyz0c8Pv7zJUz8KTwm0Rjvss/QuEL8DiVM/H4UJtFG967PajxC/10ZTP3i7CbREPuuzT/EQvwcEUz9j8Qm0yb/qsxVSEb9uwVI/BycKtG5B6rN1shG/2X5SP5RcCrTowumzuBISvxc8Uj/OkQq0qkTps4FyEr9p+VE/oMYKtOXG6LOl0RK/7rZRPzX7CrRRSeizbDATv3R0UT9fLwu0Qszns4iOE78zMlE/rmMLtGFO57P+7BO/cu9QP5OJC7Tq8uazejEUv+S+UD9AnQu0V8PmswtVFL+gpVA/AscLtCFe5rOXoBS/1m9QPwkqDLT9bOWz61MVv4LvTz+ZOA20i9His4I/F78Di04/CyUItETp7rOFGg6/HfBUP7ouCLQz0+6zySsOv5fkVD+zQAi0L6rus9NLDr8uz1Q/w1sItFBs7rMefA6/265UPwKFCLTlDe6ztsUOv3t9VD/fuAi0t5bts1MiD78kP1Q/+fAItDwV7bOjhg+/W/tTP+cZCbSntuyz0c8Pv7zJUz+1VleaAwp4G34ZVr6JV3o/yxepGUeKiho9ZU++xrF6P2zpHxp9vsKalK5CvrFUez9PuEuZ16XEmGDpJL6MqHw/UZJhGYL5CRp6Vs29xLV+P6PPA5m/EZ4aeNqCPKT3fz/7UYEaAktPmouGGz61B30/SZoOGhptmhgaRoA+5tV3P3hb45gcRQqbSVaEPgdNdz+mJE+a/aJoGImGXj7d4Xk/S4EOGoGQnprkqyg+0oB8P4edvZm9G4eaD5wEPiPYfT+fOJEZVyGBGW6gJD6Fq3w/UFozGggSPBq5wIQ+wz53P7eMIhqAmIcZWju5Psyobj8TaO6Ym4B5GtG70j6DT2k/+o1lGT3smRqLBsA+LVBtP1MpeZh1whYa0VNHPmcaez/VazoZT9i0GeY1RT3/s38//UH/GJDmORm3A+S9j2h+P2W4eBreqKIaQv9Gvpgeez8th2aZ5ZZImnX0Tr6Zt3o/R9USGiZM9ZgTgVG+tpV6P5qpyRl2AkmaBGZSvrmJej+1VleaAwp4G34ZVr6JV3o/lcVnG+NnthtZdn++1ud3P+HwOxonmY8aBKcHvmi+fT8kUAaagIqdmShtDbyP/X8/jq/+mTlBT5g5Qc89jq9+P/bBAZnqn8yZFeQWPpg0fT95GFiaJo7GmSCQIT4ny3w/UekoGo8kuBoqIiU+O6Z8P0Wng5oHXuUaMN0oPsN+fD/IDHaahuImGmwtNT4O9ns/3sOwmKF13JZ1v0k+ePt6P5dmyxmMEEoaLlxePjjkeT9J3+iZlXcxmPPYaj4uLXk/oX/LmGYrKZrPLlc+rEh6P6/PQZlQzsEYvhcUPgVPfT+BS4gawTyNmVwEaT3elX8/JPODGl192pc9LuO8y+Z/P1I/FhnjNM8a2ozPvZeufj/mzqwZEZ7QmOb2Fb8Wek8/t5FRmrh4PZpQkQG/PspcP6EIB5qGoEcYjLnOvps0aj9KCSOYnOSEF6o5pL5HeXI/aMfKGedWoplBBpO+2jd1P+LZD5roZ9iZTgaNvvoYdj+ec38ao1eFmQNOhL4iTnc/lcVnG+NnthtZdn++1ud3P4bNA7RhoZ00GbZ7P7GmOj5USdKz/o+iND32dj982IY+alWZs/N+pjQNN3A/ZgGxPlwZPbNzNak07o9nP6ZP2j6/xaiynoaqNDB6Xj8OTP0+IAcsMbXYqjTpH1U/zdINP4lJxTIBaKo0lY9LPws9Gz83Yi8zfnCpNO96Qj88eSY/CSxtM45CqDR+qjo/2DAvPw9UkDOO/6Y0F84zP705Nj+cRqMzb+elNCuMLj+CRDs/yt+sM5BLpTTX0Cs/7sY9P8B5rDM6UqU0H+4rP2isPT9asacz4qClNNNLLT8bbTw/2rGdM7o9pjRcHTA/aMs5P9oAjTP7LKc0m7U0PylUNT/5KnAzjjGoNIpGOj8bmy8/7fUrtPijkzSdp38/96hUPW1QMLTmWZI00tJ/PyURGD027jS0ju+QNCfxfz+RXa48Vzc3tFU3kDQi+n8/wz1bPPuVMbRd95E0ydx/P0ZCBj2SuyO09vWVNIwwfz8M06I9gO4QtPS4mjQUc30/cy8QPobNA7RhoZ00GbZ7P7GmOj5ilOG8T/3tvc5YLD9Kzzo/VNThvFNK6r3nois/CIk7P5iUEb0fIda9KLUZPwLCSj/z9yy9pByovRQw8T6dk2A/DM8zvXXFj7243M4+xTZpP7rhMr3TEoS9kfG+PmqxbD/32gu9sM9XvQVSyD44C2s/3v7NvFAiIr2zvsw+I1VqP2x3orx+OQG9phbPPkTuaT8oOGi8yrC+vADG1T54g2g/apHzu86bUrzV/uA++exlPzaufLp13ea6tFDvPkBQYj9WCmQ7O27vO3otAj/Ra1w/ko2OO5ApNzxxthE/W3ZSP1qhbTvb6kY80HsiP5vMRT/00S47xyxJPOUSMT9L2jg//uTdOxW70DxaUCg/h8VAP5wPIrxy8rq8dtgJP/SfVz8b7le87kXivGyyAj/i+1s/EfjHvPnCNb1tXOs+ePpiPwX3Cb1k2mC9JNPTPsF6aD8zehK9EkOIvSHc7D42ImI/L/gOvdsRt728ghA//+BRP/xv97wg9eG9+eMlPyHEQD9ilOG8T/3tvc5YLD9Kzzo/S4QxMv1PmzJVuyS/MPVDP+RfEzLzh3cy8FMVv3/vTz900AAyWSixMlCly74A4Wo/i0OGscIdizKQWWa+UXB5P/OhhjGcYIUycvNlvjV2eT8XOicwOAKxMjhIiL7Bw3Y/3siDMjSQdDLPwOK+aoZlP2vSkTIUHYgycxoQv/yWUz/RUFMypLCLMrqAHb9d0Ek/ZGYkMnY8RDJlZiS/eDxEP0DopTLLlnUyosYpv6iaPz9DU0wyHrZaMtLNML+EIzk/DzBrMqX+WDJ0Jjy/hpgtP3pXSTKY/xwyeE5Kv5/eHD9sVokybn71McwTWL9qSAk/fBSdMiChsDEeE2S/i4joPtCZiTIYiRQyDetrv0/Ixj55iTgyNZ+MMl+MWr9jUAU/f5iYMvfioTEjVEO/LHolP1chkjJAz4Iy0r0av1zwSz8fZC0y2hr9MWjp6r7sdmM/cpgGMqTfajLMb/6+5yZeP1dIezKVLi4y5M4Xv7ghTj/t6e8xN9w/MqMMJb+6sEM/S4QxMv1PmzJVuyS/MPVDP6y/Nr2vQ6m92CddP6dc/b7hW0O9wJaUvbCDbz80Nq++jPc2vXVPj72fVX0/z8vwvd/aJ73uBpG94LJ+P511cD3nyCu9u9aNvQQCfj/huME97YgwvcFog70EKn4/58S6PRzJR70mkma9nT9/P7VTkTz3hVm9BvpOvcI6fz92ss68B8NbvYmZN71ESX8/5cfVvL2bXb1iWS69oVl/Pxg1lbxy6Ga90NM0vbZPfz/8aYC8nNF0vSahP72nMH8/JD7BvOcngL2d/j299fx+Py7aLr1ppH29xegjvXjGfj/3SIO9QIhuvbLyAL0GZH4/9eS4vZ2NVb0escG85Vd9P331Br5TpTe92AXVvOrUdT+ZYYy+mFZgvVjhDr5aNwo/hAlUv2bwxrxIqwu+5JwJPxPvVL8Hxj47ZHUEvuE6Fj8Dn0y/+EKRPHroAL4UgyY/ULQ/v+onrztyufe9bSQvP+ceOL8zZpi8kczevcyaOz/g4Cu/wD8bvT2mvr0EP08/ZRAUv6y/Nr2vQ6m92CddP6dc/b5wlYU9AdoePj5ACj++G1M/3puDPZkzHT6GoAo/UPVSP6EzbD1z7SA+2eQTPyCETD9qnEo9RkQjPiEfHj/RvUQ/klgzPb0MHz7iWyM/w7lAP0PoID0OjBo+/lgnP/SRPT+x8iA9b6wZPtEWJz+a1z0/nn5CPfEAFj5f8hs/jydHP4DjZz3Y8QM+SFIHP7FNVj+h9mg9ybDQPVO55T6S02I/6iFMPbJPoD0EUMs+Pb9pP/yOND0dbYQ9Ugq9Pg4RbT/koyA9fslxPcnUwj5pC2w/efniPFgmOz3+TNc+1NxnPzLQgzxwXew8OGDoPj71Yz99XQk8f5iAPHOw7z5RK2I/BjYrO0mruTuu4wg/KVJYP1R0+Tz1tk0+Koc4P1ylKT+1ELa6lppkPtlwTz9xswo/sqrevFCzgT42xFo/urfnPpCTpLwPj4I+VnZXP1KC8z50Vm08weFjPjEyRT9g8Bg/PYAtPQRTQz6giCw/zmM2P3rPcz0HWik+JfMUP0FJSz9wlYU9AdoePj5ACj++G1M/Fq76MTWhjDIkFgy/NUVWP+8qtjFlrJ4yUhoDv8XhWz+7EgYyfg2MMkjMA79Hd1s/6TaDMqGmVjIVfQW/FnFaP7SjDzLI2p8yxe4Dv41iWz/Z1gwy+hRSMmVSAr9+WFw/O9eBMaPEfzKGkPK+lHJhPwOuxTBHR7Ay8qLDviCTbD98sgAxXsCnMjcbkL6fpnU/HFfCMUApqTKhVo2+dQ12P1gsDDK3W5Yya+e3vnzqbj8gdUoyFmWJMkvB4L4PBGY/vp6JMteRWzJeZAC/xnldPw6zojFJZIoy+0ENvwCAVT+Cz2sy8FmEMtH2Eb94T1I/B9ARMl5qUjIH0BG/XmpSPycnazJwRWIy1s4ovx11QD/MZ1wyEGE5Mn3qQ78PyCQ/q3KMMmCaTjENfEu/pFYbPzygmDKmQiAyseVRv8SOEj/xMAkyvjF7Mg47Ur83FBI/klSeMqbxbzL7IEm/cmAeP/TWLTJUbW4y/Xo2v96LMz8AxiQy4JuKMgkWHb90I0o/Fq76MTWhjDIkFgy/NUVWP1O6F71P2Jq9Z1oxv6dZNz/VyxS9rh2OvVEZPr98SCo/SxAivTTyeb19LEq/4O4bP09pL73jqE69jbtWv+VXCj/2TTO9VtwdvUj2Yr879eo+aGE4vQJ5Er2ug26/HKK3PoUCQL0ptSO9fst4vwTXaD7Sbjq9QnYkvai+fr/77589ElYlvX61Cr2Hd3+/v2UYvRW9HL1eVQW9JC1/v7jQf73XYyq9Ai4gvc17f78LZ+O8HVU0vZhvI70oiX+/PwoevHsAKb1Ef+i8joJ/v0ihFL3Rwi29zrvGvDKcfr/4J7y9KwxDvRoJ4bwwdny/Tw0gvg1RVr0vtAe9HaV6v7t2Rr557Vq9fqgKvS6Xfb+7lPi9KFjvvbCLgb2nh2G/+oHoPmnR/L3DCKe9exVWvxoqBz+LDQC+K8rbvQcgRL9ICB8/IMzgvdE05L29kjG/UQA0P+bArL1G47i97NUkv7xMQT9oNXu90JemvWzxIL+YXUU/QNAzvcBPoL1Mvie/NQRAP1O6F71P2Jq9Z1oxv6dZNz/SbzA+JJAvv5pvML4lkC8/jXoqPjvuL79Ueiq+PO4vP21PJz7fHjC/N08nvt8eMD8nXSU+Rjwwv/ZcJb5GPDA/QPciPgBgML8N9yK+AWAwP/b9Hz6KizC/vv0fvouLMD/0Th0+HLIwv8lOHb4csjA/zIQbPnPLML+hhBu+c8swP726HT4brDC/krodvhusMD8IMSk+GwIwv90wKb4bAjA/KzE4PoQQL78JMTi+hBAvP5pzQT5wcC6/gXNBvnBwLj8uY0I+yl8uvxtjQr7JXy4/4z1CPmNiLr/NPUK+YWIuP1TTQT7MaS6/NdNBvsppLj8FA0E+PHguv+cCQb46eC4/Saw6PnXmLr8rrDq+c+YuPyHhcT7jniq/8eBxvuOeKj/fa24+suwqv69rbr6y7Co/3LloPhtqK7+suWi+G2orP8kNYT63DSy/mQ1hvrcNLD8RXVU+Yvssv9pcVb5i+yw/9qxGPmUSLr+/rEa+ZRIuP5RpOD7ODC+/XWk4vs8MLz/SbzA+JJAvv5pvML4lkC8/UFCuNb5pxEEHPCRCw0CtNb5pxEGamCRCLzGsNbxpxEEt9SRCoyGrNb1pxEG/USVCGBKqNb1pxEFSriVCiQKpNbxpxEHlCiZC9fKnNbtpxEF4ZyZCYuOmNbtpxEEMxCZC2NOlNbtpxEGfICdCRsSkNbtpxEEyfSdCVrKjNbtpxEGV2idCI3+kNbppxEHElCdCE8ClNbppxEFcJydCAAGnNbtpxEH0uSZC80GoNbxpxEGLTCZC5IKpNbxpxEEi3yVC1sOqNbppxEG5cSVCvwSsNb9pxEFVBCVCs0WtNbxpxEHqliRCooauNb5pxEGDKSRCjsevNbxpxEEavCNCgQixNbxpxEGxTiNCdUmyNb5pxEFK4SJCY4qzNb5pxEHicyJCU8u0Nb9pxEF5BiJCPQy2Nb9pxEETmSFCh1C3Nb9pxEGGKiFCfvC3Nb1pxEH98yBC4vu2Nb9pxEFjRyFCgxC2Nb5pxEGdlyFCLyW1Nb9pxEHY5yFC1Tm0Nb5pxEESOCJCeU6zNb1pxEFMiCJCF2OyNb1pxEGM2CJCxHexNbxpxEHEKCNCboywNb5pxEH/eCNCCqGvNb5pxEE+ySNCtLWuNbxpxEF2GSRCWsqtNb1pxEGxaSRC/N6sNb1pxEHtuSRCpPOrNbtpxEEoCiVCSwirNbxpxEFjWiVC9ByqNbxpxEGfqiVClDGpNbtpxEHa+iVCO0aoNbtpxEEUSyZC4lqnNbxpxEFRmyZCiW+mNbxpxEGM6yZCKoSlNbtpxEHHOydC05ikNbtpxEECjCdCYKOjNbtpxEGu3ydCmjSkNbxpxEEtridCYxilNbtpxEGGYCdCJ/ylNbxpxEHiEidC4N+mNb1pxEFAxSZCpcOnNbtpxEGYdyZCZ6eoNbxpxEH1KSZCKYupNb1pxEFT3CVC726qNbxpxEGqjiVCr1KrNbxpxEEHQSVCejasNb9pxEFj8yRCOBqtNbxpxEG8pSRC+P2tNbxpxEEYWCRCvOGuNb1pxEFzCiRCfsWvNb1pxEHQvCNCQKmwNbxpxEEqbyNCAY2xNb5pxEGGISNCzHCyNb5pxEHg0yJCjFSzNb5pxEE7hiJCSTi0Nb5pxEGZOCJCEBy1Nb1pxEHy6iFC0P+1Nb5pxEFPnSFCl+O2Nb1pxEGoTyFCUdm3Nb5pxEHk+yBC66S3Nb1pxEHADSFC5Yi2Nb5pxEGTbiFCV3m1Nb5pxEEmyyFCxGm0NbxpxEG5JyJCO1qzNb5pxEFLhCJCq0qyNb5pxEHg4CJCGTuxNb5pxEFyPSNCjCuwNbtpxEEDmiNC/BuvNb1pxEGY9iNCUFCuNb5pxEEHPCRCE45kPr9pxEGLNCBCIaUmP79pxEEuxSBCeZCEP75pxEFGhCFCF9WdP75pxEHuaiJCobqNP71pxEG2CyRCzKM6P7xpxEGxvydCeSuWPrtpxEF4yidCoRcmvbxpxEElSSVCF9GavrxpxEEsiCRCbe0Pv7xpxEGSZCVCtmxJv7xpxEHFoSZC5J5yv7tpxEGzyCdCu6+Cv7tpxEH5ZShCRuZyv7tpxEGGdydCLyZAv71pxEEDLSVCvlb0vr5pxEG5hSJCS1Izvr5pxEFGiiBCE45kPr9pxEGLNCBCV7LCNUk0uEGsFAdCFvK/NSw2tkHmgQZCpFq/NVeetUESiwZCZ7q9NY5atUH7MwdCQO+1Nfjjs0HvqghC0vqiNVyvr0Ft7gpCUySJNav+qUHQ3Q1C/q5iNeFopUHPQxFCsRRSNeGnpkHGihVC1/N4NanmskFl2RtCjrSiNUhDxUH0RiJC1oLKNYQ91UHv+iVCFVL1Nc4M4UEMsCRCt38WNpOU7UGV5R9CI5ouNtGc90GO4xpCD7Y5NkC3+0EIKhhC0g4oNpMr80HCchtCdDcZNkhjA0KvlzJCI0QfNjGkA0LuTy9CAsIlNsdiA0JTyipCxL4rNtpvAkKXQCVCf6UhNuov9kG1zhxCEKcGNq8720HIgxJC1SLWNZ1rwUHB6QlCV7LCNUk0uEGsFAdC", + "byteLength": 119904 + } + ], + "images": [ + { + "uri": "", + "mimeType": "image/png" + } + ], + "materials": [ + { + "name": "fox_material", + "pbrMetallicRoughness": { + "baseColorTexture": { + "index": 0 + }, + "metallicFactor": 0, + "roughnessFactor": 0.58 + } + } + ], + "meshes": [ + { + "name": "fox1", + "primitives": [ + { + "attributes": { + "POSITION": 0, + "TEXCOORD_0": 1, + "JOINTS_0": 2, + "WEIGHTS_0": 3 + }, + "material": 0 + } + ] + } + ], + "nodes": [ + { + "children": [ + 1, + 2 + ], + "name": "root" + }, + { + "name": "fox", + "mesh": 0, + "skin": 0 + }, + { + "children": [ + 3 + ], + "name": "_rootJoint" + }, + { + "children": [ + 4 + ], + "name": "b_Root_00", + "rotation": [ + -0.7071080924875391, + 0.0, + 0.0, + 0.7071054698831242 + ] + }, + { + "children": [ + 5, + 15, + 18, + 22 + ], + "name": "b_Hip_01", + "rotation": [ + 0.12769094176175547, + -0.6954820192393762, + -0.12769022650601444, + 0.695481840425441 + ], + "translation": [ + 0, + 26.748403549194336, + 42.93817138671875 + ] + }, + { + "children": [ + 6 + ], + "name": "b_Spine01_02", + "rotation": [ + 0.0, + 0.0, + -0.5904157638238317, + 0.8070992664030376 + ], + "translation": [ + 12.850601196289062, + 0, + 0 + ] + }, + { + "children": [ + 7, + 9, + 12 + ], + "name": "b_Spine02_03", + "rotation": [ + 0.0, + 0.0, + 0.017411952404281082, + 0.9998484004655261 + ], + "translation": [ + 21.65575408935547, + -0.000118255615234375, + 0 + ] + }, + { + "children": [ + 8 + ], + "name": "b_Neck_04", + "rotation": [ + 0.0, + 0.0, + 0.30337914028264346, + 0.9528699267168443 + ], + "translation": [ + 25.64914321899414, + 0, + 0 + ] + }, + { + "name": "b_Head_05", + "rotation": [ + 0.0, + 0.0, + -0.4002854151487349, + 0.9163905206947555 + ], + "translation": [ + 13.376960754394531, + 0, + 0 + ] + }, + { + "children": [ + 10 + ], + "name": "b_RightUpperArm_06", + "rotation": [ + 0.0004673273262011562, + -0.0004461484692255928, + -0.7121792881110691, + 0.7019973248825985 + ], + "translation": [ + 18.677913665771484, + -4.297340393066406, + 6.9675750732421875 + ] + }, + { + "children": [ + 11 + ], + "name": "b_RightForeArm_07", + "rotation": [ + 0.0, + 0.0, + 0.03712589977348744, + 0.9993105961441663 + ], + "translation": [ + 23.04512596130371, + 0, + 0 + ] + }, + { + "name": "b_RightHand_08", + "rotation": [ + -0.012037406914797018, + -0.00782221012465276, + 0.4605623277185148, + 0.8875112709988741 + ], + "translation": [ + 19.350055694580078, + -0.14598655700683594, + 0 + ] + }, + { + "children": [ + 13 + ], + "name": "b_LeftUpperArm_09", + "rotation": [ + 0.0004972619220940174, + -0.0008821923166442875, + -0.7120874929914663, + 0.7020900061903927 + ], + "translation": [ + 18.67791748046875, + -4.297344207763672, + -6.967987060546875 + ] + }, + { + "children": [ + 14 + ], + "name": "b_LeftForeArm_010", + "rotation": [ + 0.0, + 0.0, + 0.03712589977348744, + 0.9993105961441663 + ], + "translation": [ + 23.045124053955078, + 0, + 0 + ] + }, + { + "name": "b_LeftHand_011", + "rotation": [ + 0.01651791440721507, + 0.014013739873997781, + 0.46007557521271, + 0.8876154790736099 + ], + "translation": [ + 19.350051879882812, + -0.14599037170410156, + 0 + ] + }, + { + "children": [ + 16 + ], + "name": "b_Tail01_012", + "rotation": [ + 0.0, + 0.0, + 0.9818928940656295, + 0.1894369145214904 + ], + "translation": [ + 4.2603759765625, + 15.958770751953125, + 0 + ] + }, + { + "children": [ + 17 + ], + "name": "b_Tail02_013", + "rotation": [ + 0.0, + 0.0, + -0.0696171663387466, + 0.9975737818081244 + ], + "translation": [ + 12.411918640136719, + 0, + 0 + ] + }, + { + "name": "b_Tail03_014", + "rotation": [ + 0.0, + 0.0, + -0.05383274484207684, + 0.9985499664927979 + ], + "translation": [ + 24.24032211303711, + 0, + 0 + ] + }, + { + "children": [ + 19 + ], + "name": "b_LeftLeg01_015", + "rotation": [ + 0.0, + -0.0001717522536559936, + 0.9700158834020681, + -0.2430414706359161 + ], + "translation": [ + 4.813770294189453, + 5.154018402099609, + -6.968006134033203 + ] + }, + { + "children": [ + 20 + ], + "name": "b_LeftLeg02_016", + "rotation": [ + 0.0, + 0.0, + -0.36804378855511655, + 0.9298084586117706 + ], + "translation": [ + 18.944175720214844, + 0, + 0 + ] + }, + { + "children": [ + 21 + ], + "name": "b_LeftFoot01_017", + "rotation": [ + 0.0002484105929664666, + 0.0, + 0.4584841122585099, + 0.888702569535333 + ], + "translation": [ + 17.942811965942383, + 0, + 0 + ] + }, + { + "name": "b_LeftFoot02_018", + "rotation": [ + 0.0, + 0.0, + 0.5472882949090243, + 0.8369441571906533 + ], + "translation": [ + 15.779938697814941, + 0, + 0 + ] + }, + { + "children": [ + 23 + ], + "name": "b_RightLeg01_019", + "rotation": [ + 0.0, + 0.0, + 0.9699585942054535, + -0.24327006705918533 + ], + "translation": [ + 4.813777923583984, + 5.154026031494141, + 6.967563629150391 + ] + }, + { + "children": [ + 24 + ], + "name": "b_RightLeg02_020", + "rotation": [ + 0.0, + 0.0, + -0.36804381432052885, + 0.9298084484131106 + ], + "translation": [ + 18.944183349609375, + 0, + 0 + ] + }, + { + "children": [ + 25 + ], + "name": "b_RightFoot01_021", + "rotation": [ + -0.00015345455876803163, + 0.0, + 0.4579093746168346, + 0.888998864504178 + ], + "translation": [ + 17.94281005859375, + 0, + 0 + ] + }, + { + "name": "b_RightFoot02_022", + "rotation": [ + 0.0, + 0.0, + 0.5472882949090243, + 0.8369441571906533 + ], + "translation": [ + 15.779935836791992, + 0, + 0 + ] + } + ], + "samplers": [ + { + "magFilter": 9729, + "minFilter": 9987 + } + ], + "scene": 0, + "scenes": [ + { + "nodes": [ + 0 + ] + } + ], + "skins": [ + { + "inverseBindMatrices": 4, + "joints": [ + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25 + ], + "skeleton": 2 + } + ], + "textures": [ + { + "sampler": 0, + "source": 0 + } + ] +} diff --git a/demos/model3D/files/face.obj b/demos/model3D/files/face.obj new file mode 100644 index 0000000000000000000000000000000000000000..a2e82ee9cb6dd5a9fc6cb612dfea0bd5e7eab162 --- /dev/null +++ b/demos/model3D/files/face.obj @@ -0,0 +1,2471 @@ +#### +# +# OBJ File Generated by Meshlab +# +#### +# Object face.obj +# +# Vertices: 845 +# Faces: 1610 +# +#### +v 54.126293 -49.502399 71.230705 0.384314 0.254902 0.200000 +v 51.424591 -54.578999 75.431709 0.337255 0.227451 0.172549 +v 44.556496 -61.237099 65.307907 0.384314 0.254902 0.192157 +v 18.416197 -75.205498 35.343601 0.529412 0.376471 0.298039 +v 13.523697 -77.731102 34.633598 0.513725 0.364706 0.290196 +v 11.454597 -74.201599 29.775103 0.639216 0.454902 0.372549 +v 5.855427 -77.386299 30.315100 0.603922 0.435294 0.356863 +v -0.378855 -77.287903 29.743700 0.611765 0.443137 0.360784 +v 6.812867 -79.041397 33.545300 0.505882 0.368627 0.298039 +v 21.881296 -70.810898 34.982002 0.588235 0.415686 0.329412 +v 17.653797 -69.034798 30.263802 0.674510 0.478431 0.388235 +v 39.436996 -66.435501 64.968597 0.164706 0.109804 0.082353 +v 33.808598 -70.338699 57.717205 0.364706 0.247059 0.184314 +v 31.909595 -68.409302 47.974705 0.439216 0.301961 0.227451 +v 38.451797 -64.744904 55.703503 0.427451 0.294118 0.219608 +v 28.802397 -72.939499 50.408905 0.372549 0.254902 0.192157 +v 22.955397 -75.486603 43.228905 0.400000 0.274510 0.215686 +v 26.511995 -70.622101 41.049904 0.494118 0.341176 0.262745 +v 24.465696 -76.217796 49.972805 0.345098 0.239216 0.184314 +v 15.571197 -78.986099 40.602001 0.396078 0.278431 0.219608 +v 17.437696 -79.466103 47.124001 0.352941 0.247059 0.196078 +v 28.846695 -74.018898 56.477203 0.164706 0.113725 0.086275 +v 9.321696 -81.938202 48.001999 0.172549 0.129412 0.105882 +v -0.898453 -82.647102 47.089699 0.172549 0.129412 0.105882 +v -0.725759 -82.110100 43.572498 0.400000 0.301961 0.254902 +v 18.763496 -79.316498 51.133400 0.172549 0.117647 0.094118 +v 8.731546 -81.557503 44.441002 0.392157 0.286275 0.235294 +v 27.614496 -65.079002 38.432205 0.596078 0.419608 0.321569 +v 33.274998 -61.490501 43.398605 0.568627 0.400000 0.301961 +v 38.784996 -60.440899 50.047802 0.513725 0.356863 0.266667 +v 42.862595 -58.651798 55.019802 0.490196 0.337255 0.250980 +v 7.726847 -80.575996 38.638500 0.415686 0.301961 0.247059 +v -0.490965 -80.930901 37.912300 0.427451 0.317647 0.262745 +v -0.419731 -79.354401 33.152100 0.513725 0.376471 0.305882 +v -0.332592 -73.782600 27.050400 0.705882 0.505882 0.415686 +v -0.212143 -66.515099 24.546000 0.815686 0.584314 0.501961 +v 11.557498 -67.907898 26.621702 0.749020 0.529412 0.443137 +v 23.830296 -66.563599 34.771904 0.631373 0.447059 0.352941 +v 35.915897 105.133003 38.176804 0.219608 0.152941 0.117647 +v 36.548496 101.879997 36.786003 0.454902 0.309804 0.235294 +v 27.391598 102.010002 31.503502 0.278431 0.188235 0.141176 +v 59.787598 -0.163902 47.832703 0.611765 0.403922 0.321569 +v 50.721996 -9.559180 38.382904 0.721569 0.490196 0.403922 +v 52.439697 -0.358719 38.911705 0.741176 0.501961 0.419608 +v 29.889196 -56.737301 37.395603 0.662745 0.470588 0.360784 +v 26.097795 -54.826500 33.666504 0.694118 0.486275 0.372549 +v 26.293499 -49.727501 32.217205 0.717647 0.501961 0.388235 +v 25.434498 -44.035900 30.291403 0.729412 0.509804 0.400000 +v 31.436096 -44.876701 34.064003 0.737255 0.533333 0.411765 +v 32.500095 -51.078300 37.202503 0.690196 0.490196 0.376471 +v 21.003098 -62.278099 31.444601 0.705882 0.501961 0.400000 +v 26.550097 -59.714100 35.467205 0.666667 0.474510 0.364706 +v 44.267796 -52.222500 50.556103 0.552941 0.384314 0.290196 +v 44.155598 -45.754700 45.234005 0.607843 0.423529 0.325490 +v 39.424698 -54.441200 45.685303 0.588235 0.411765 0.309804 +v 42.849094 -40.630600 40.559803 0.662745 0.462745 0.364706 +v 38.941998 -42.900600 37.800304 0.713725 0.505882 0.400000 +v 52.563396 -19.698900 43.829704 0.650980 0.443137 0.356863 +v 46.654697 -16.837099 36.168205 0.749020 0.517647 0.427451 +v 33.321995 -35.720200 31.409004 0.745098 0.541176 0.427451 +v 32.657997 -40.731899 33.174603 0.752941 0.549020 0.427451 +v 35.472797 -44.317001 36.017105 0.737255 0.533333 0.415686 +v 27.102999 -39.309502 30.560902 0.713725 0.494118 0.388235 +v 21.412498 -21.051500 22.568802 0.733333 0.509804 0.415686 +v 23.988897 -17.175900 24.872402 0.803922 0.549020 0.447059 +v 27.558098 -24.650700 25.424603 0.745098 0.533333 0.443137 +v 27.926598 -35.123001 29.129301 0.701961 0.494118 0.384314 +v 24.306997 -32.355598 25.602802 0.674510 0.478431 0.384314 +v 26.352098 -28.906099 25.178001 0.725490 0.537255 0.439216 +v 22.071098 -41.536701 27.588202 0.670588 0.447059 0.368627 +v 20.085999 -45.811401 26.494501 0.701961 0.486275 0.384314 +v 19.001799 -42.619900 24.806602 0.662745 0.431373 0.364706 +v 28.976398 -21.374100 26.378202 0.788235 0.556863 0.454902 +v 26.341497 -16.211300 25.941402 0.839216 0.584314 0.474510 +v 30.814697 -16.946400 27.290703 0.866667 0.611765 0.501961 +v 15.764998 -20.247000 19.382002 0.698039 0.478431 0.392157 +v 16.598598 -15.898800 21.267502 0.737255 0.486275 0.400000 +v 22.444199 -3.466390 25.169203 0.752941 0.505882 0.415686 +v 21.588697 -7.433040 25.304302 0.760784 0.513725 0.423529 +v 18.939598 -4.099130 23.521101 0.556863 0.321569 0.270588 +v 26.227198 -11.129200 26.175901 0.894118 0.639216 0.533333 +v 23.958097 -13.787900 25.571701 0.843137 0.584314 0.474510 +v 3.233079 -28.114599 12.996900 0.807843 0.517647 0.474510 +v 3.691189 -24.150000 13.560400 0.788235 0.545098 0.450980 +v 7.239779 -23.905701 14.043200 0.760784 0.533333 0.439216 +v 3.876879 -20.045601 14.070800 0.803922 0.580392 0.490196 +v 9.195189 -19.025499 15.793001 0.705882 0.498039 0.411765 +v 3.141149 -17.198000 13.771500 0.807843 0.584314 0.498039 +v 4.931409 -13.967200 13.240000 0.737255 0.509804 0.435294 +v 30.555098 -31.658199 28.330402 0.737255 0.537255 0.439216 +v 36.921795 -39.106701 34.709404 0.749020 0.541176 0.427451 +v 37.097694 -31.720600 32.396603 0.737255 0.521569 0.415686 +v 32.560898 -26.616501 28.413202 0.749020 0.533333 0.435294 +v 10.314199 -9.869830 13.888401 0.564706 0.352941 0.301961 +v 3.716749 -10.896600 9.270600 0.549020 0.333333 0.278431 +v 6.998729 -8.745080 9.093191 0.458824 0.274510 0.247059 +v 11.017399 -7.650950 11.325301 0.407843 0.235294 0.196078 +v 13.094099 -8.179750 13.619401 0.596078 0.372549 0.305882 +v 14.387198 -9.345590 16.544502 0.682353 0.423529 0.349020 +v 14.674398 -10.957500 19.197702 0.619608 0.352941 0.286275 +v 12.273198 -13.638600 18.082401 0.670588 0.415686 0.349020 +v 15.706099 -12.324600 21.310001 0.654902 0.400000 0.341176 +v 0.160743 -11.927500 9.164860 0.631373 0.415686 0.345098 +v 16.748499 -0.088195 17.466702 0.486275 0.262745 0.211765 +v 14.135499 2.999720 13.703901 0.498039 0.278431 0.223529 +v 15.227698 3.521270 17.552402 0.509804 0.286275 0.227451 +v 11.515499 5.295930 9.697881 0.517647 0.298039 0.235294 +v 12.664099 6.361880 14.138000 0.529412 0.305882 0.243137 +v 17.526098 -1.031370 20.210901 0.478431 0.250980 0.203922 +v 18.114098 -7.909870 23.033703 0.556863 0.313725 0.266667 +v 10.384699 8.630760 10.439901 0.541176 0.321569 0.250980 +v 17.828499 0.413114 21.808401 0.541176 0.305882 0.250980 +v 17.929298 -3.542410 20.437902 0.482353 0.247059 0.203922 +v 17.031097 -10.684200 22.274002 0.619608 0.368627 0.313725 +v 0.287526 -2.020300 -3.337250 0.925490 0.694118 0.627451 +v 3.060050 -2.048090 -2.924980 0.894118 0.650980 0.584314 +v 3.007730 -4.729930 -2.346410 0.870588 0.611765 0.537255 +v 5.864850 -1.934710 -1.552539 0.835294 0.592157 0.525490 +v 5.417400 -4.893230 -0.945915 0.788235 0.533333 0.458824 +v 8.198860 -5.353820 2.653151 0.627451 0.403922 0.329412 +v 5.432270 -7.772490 2.088590 0.639216 0.411765 0.337255 +v 6.036009 -8.309330 5.213161 0.458824 0.270588 0.223529 +v 8.222100 -6.896640 5.293671 0.498039 0.305882 0.247059 +v 5.315060 7.954630 2.505800 0.662745 0.400000 0.321569 +v 5.391600 3.642640 -0.798212 0.729412 0.454902 0.372549 +v 3.235490 4.316670 -1.382350 0.764706 0.482353 0.396078 +v 5.431940 1.019950 -1.779530 0.788235 0.521569 0.443137 +v 3.012540 0.964488 -2.729010 0.847059 0.572549 0.494118 +v 3.567950 -7.050370 -0.455861 0.772549 0.517647 0.439216 +v 0.254061 -9.470920 1.815530 0.694118 0.466667 0.388235 +v 3.185970 -9.021570 1.994320 0.686275 0.458824 0.380392 +v 3.347260 -9.952950 5.307401 0.568627 0.360784 0.294118 +v 11.644599 -4.814710 6.525851 0.666667 0.439216 0.360784 +v 10.245199 -6.916610 8.546041 0.431373 0.254902 0.207843 +v 14.322199 -5.140650 10.096601 0.682353 0.439216 0.360784 +v 13.032799 -7.158690 11.593801 0.564706 0.352941 0.286275 +v 16.428497 -5.656990 13.658102 0.650980 0.396078 0.321569 +v 15.041399 -7.855270 14.466301 0.674510 0.423529 0.345098 +v 17.493698 -6.043210 17.118502 0.572549 0.313725 0.254902 +v 16.415197 -8.234700 17.133102 0.619608 0.356863 0.290196 +v 0.234891 4.747230 -1.584250 0.788235 0.498039 0.407843 +v 7.301090 1.952910 -0.069825 0.709804 0.443137 0.364706 +v 9.047320 -0.970925 1.557191 0.690196 0.443137 0.368627 +v 9.465290 3.177850 3.547511 0.596078 0.352941 0.282353 +v 17.660997 -6.569220 20.282202 0.505882 0.258824 0.215686 +v 16.557198 -9.033780 19.871101 0.552941 0.290196 0.235294 +v 20.394499 -10.617700 24.778902 0.776471 0.517647 0.427451 +v 19.250498 -13.611500 23.636002 0.780392 0.513725 0.423529 +v 11.990899 1.078080 6.089581 0.576471 0.337255 0.266667 +v 12.157999 -1.685630 5.705281 0.647059 0.403922 0.329412 +v 8.839929 9.251840 7.807421 0.568627 0.341176 0.262745 +v 8.096309 14.803000 11.047301 0.600000 0.368627 0.290196 +v 11.552299 11.023700 14.935801 0.584314 0.360784 0.278431 +v 8.089608 23.007601 17.162300 0.607843 0.376471 0.290196 +v 12.042598 18.267500 20.407701 0.627451 0.396078 0.305882 +v 21.344799 3.444300 24.364801 0.760784 0.525490 0.435294 +v 10.378798 43.596600 19.092800 0.760784 0.545098 0.439216 +v 11.674199 50.650799 15.859901 0.796078 0.596078 0.509804 +v 54.439495 58.174599 40.267605 0.525490 0.352941 0.262745 +v 56.231796 64.326599 44.901005 0.525490 0.349020 0.258824 +v 20.091297 46.555901 20.626602 0.615686 0.435294 0.352941 +v 12.458998 40.488800 23.149502 0.682353 0.470588 0.364706 +v 11.517699 58.712601 14.732701 0.894118 0.666667 0.576471 +v 20.941198 69.476898 17.756903 0.811765 0.568627 0.458824 +v 28.594099 70.756203 20.988201 0.768627 0.537255 0.427451 +v 36.831398 72.183800 26.344303 0.705882 0.490196 0.380392 +v 44.649097 71.571800 32.518906 0.650980 0.447059 0.337255 +v 44.312595 65.052498 30.244703 0.650980 0.450980 0.349020 +v 51.160194 68.888397 38.786102 0.580392 0.392157 0.290196 +v 50.121696 63.216999 35.800903 0.592157 0.400000 0.301961 +v 29.676498 38.193501 27.577202 0.278431 0.203922 0.172549 +v 32.242195 35.520000 28.930403 0.176471 0.149020 0.133333 +v 36.059795 38.007198 28.101904 0.337255 0.254902 0.223529 +v 29.195498 28.762300 30.062502 0.537255 0.407843 0.376471 +v 35.387295 30.454100 30.872303 0.494118 0.427451 0.419608 +v 40.619995 36.623299 30.930103 0.376471 0.290196 0.262745 +v 40.689995 30.856199 33.447403 0.560784 0.435294 0.415686 +v 46.166798 34.721901 35.938004 0.427451 0.274510 0.219608 +v 24.791199 28.750900 30.347101 0.631373 0.439216 0.380392 +v 23.558298 30.911301 30.865202 0.654902 0.525490 0.490196 +v 23.990099 35.138500 30.007702 0.588235 0.525490 0.505882 +v 18.925999 31.543200 29.964102 0.607843 0.411765 0.345098 +v 22.978798 22.609301 29.898302 0.698039 0.478431 0.415686 +v 44.176495 24.024099 36.367702 0.666667 0.462745 0.368627 +v 48.844097 28.759600 40.696102 0.568627 0.372549 0.290196 +v 29.935898 20.776899 30.510502 0.764706 0.541176 0.462745 +v 37.725395 21.069901 32.600403 0.768627 0.552941 0.450980 +v 43.673397 41.639000 29.921003 0.639216 0.447059 0.364706 +v 30.249598 43.423698 24.863802 0.698039 0.498039 0.396078 +v 21.971298 38.089298 28.511002 0.552941 0.376471 0.305882 +v 18.851599 37.250599 29.058102 0.600000 0.403922 0.317647 +v 26.141699 38.694302 27.701101 0.415686 0.305882 0.258824 +v 24.366098 42.716400 25.250301 0.670588 0.470588 0.364706 +v 33.047497 40.919201 25.876904 0.588235 0.415686 0.341176 +v 38.202995 45.220299 25.513803 0.741176 0.541176 0.447059 +v 37.181396 41.326099 26.587204 0.592157 0.415686 0.341176 +v 40.767696 39.773300 28.946104 0.533333 0.368627 0.305882 +v 17.566698 40.536701 25.680403 0.682353 0.478431 0.372549 +v 12.599898 34.387402 26.919203 0.635294 0.439216 0.356863 +v 9.244298 36.241699 22.858601 0.670588 0.454902 0.349020 +v 42.106094 27.525101 34.601604 0.588235 0.396078 0.337255 +v 9.833448 28.316700 23.639999 0.592157 0.392157 0.298039 +v 18.639698 24.671700 29.695803 0.650980 0.447059 0.376471 +v 17.292599 20.688499 27.482101 0.654902 0.439216 0.341176 +v 13.333098 24.688499 26.033302 0.607843 0.407843 0.305882 +v 22.784698 17.533800 28.735502 0.721569 0.498039 0.407843 +v 30.601099 15.688600 30.290201 0.780392 0.560784 0.466667 +v 41.169495 16.181299 33.723103 0.792157 0.564706 0.458824 +v 47.120296 20.681999 37.970406 0.709804 0.501961 0.400000 +v 51.931698 25.841200 43.142902 0.639216 0.443137 0.341176 +v 52.340096 32.697899 43.622303 0.576471 0.384314 0.298039 +v 55.356895 32.597599 46.411205 0.619608 0.439216 0.341176 +v 53.222797 37.287899 42.089905 0.568627 0.392157 0.301961 +v 29.678698 24.733801 30.073902 0.717647 0.501961 0.431373 +v 36.489197 25.085699 31.599504 0.698039 0.498039 0.427451 +v 7.209608 -47.131500 19.961300 0.694118 0.474510 0.392157 +v 14.446698 -46.892300 22.922901 0.701961 0.486275 0.392157 +v 14.611198 -50.406300 25.080801 0.741176 0.521569 0.407843 +v 59.776695 32.152901 51.172405 0.615686 0.435294 0.333333 +v 55.757698 22.840000 45.449802 0.650980 0.447059 0.341176 +v 50.009796 17.205099 38.838005 0.725490 0.501961 0.396078 +v 41.713795 8.508140 32.452805 0.839216 0.580392 0.486275 +v 57.126797 40.041698 45.909004 0.552941 0.380392 0.294118 +v 60.104397 43.092098 50.342705 0.509804 0.345098 0.262745 +v 54.672398 42.407398 40.515404 0.556863 0.380392 0.305882 +v 56.906197 46.631001 42.925304 0.462745 0.305882 0.239216 +v 51.822495 43.786900 36.258904 0.596078 0.415686 0.337255 +v 54.271397 50.864399 37.835804 0.419608 0.282353 0.223529 +v 47.592297 46.765598 30.486204 0.627451 0.454902 0.384314 +v 49.821495 53.293598 31.830803 0.427451 0.298039 0.243137 +v 42.391796 49.445400 25.742804 0.607843 0.454902 0.388235 +v 44.034695 54.943100 26.506004 0.443137 0.317647 0.266667 +v 36.751995 50.112900 22.968603 0.545098 0.407843 0.349020 +v 37.753296 55.541100 22.525805 0.490196 0.364706 0.313725 +v 28.692497 48.042801 21.970001 0.600000 0.435294 0.356863 +v 31.105598 56.180599 19.828001 0.596078 0.450980 0.392157 +v 36.435097 81.925400 28.781404 0.682353 0.470588 0.364706 +v 45.338295 80.322098 35.563904 0.603922 0.411765 0.305882 +v 24.592999 80.095299 21.969002 0.772549 0.541176 0.427451 +v 11.213599 69.043297 15.977401 0.835294 0.588235 0.474510 +v 11.825998 81.413200 18.962801 0.803922 0.564706 0.447059 +v 21.538898 53.003700 17.177603 0.588235 0.439216 0.380392 +v -0.179365 43.542702 17.002100 0.898039 0.666667 0.564706 +v 5.625159 37.419102 18.996799 0.803922 0.576471 0.466667 +v 4.198629 23.955999 12.407200 0.686275 0.435294 0.345098 +v 14.535299 -2.114900 9.443011 0.631373 0.380392 0.309804 +v 15.685598 8.142320 20.454601 0.658824 0.427451 0.337255 +v 30.598497 1.488610 27.147802 0.839216 0.576471 0.490196 +v 29.978397 -6.397050 26.571701 0.894118 0.635294 0.545098 +v 41.297398 -1.405200 31.022003 0.854902 0.596078 0.509804 +v 36.111397 -6.540340 28.005903 0.882353 0.623529 0.537255 +v 44.276794 -9.991890 32.788902 0.811765 0.568627 0.478431 +v 36.580196 -12.147500 28.853804 0.874510 0.623529 0.525490 +v 23.545498 26.550501 30.193302 0.670588 0.454902 0.392157 +v 7.536978 -50.700600 22.940800 0.737255 0.513725 0.407843 +v 0.049966 -50.745201 22.357901 0.713725 0.490196 0.403922 +v -0.059187 -47.707500 19.745001 0.662745 0.450980 0.376471 +v 13.614799 -61.189201 26.770203 0.772549 0.549020 0.447059 +v 7.402448 -54.763500 24.320801 0.792157 0.549020 0.443137 +v 5.676798 -60.044102 24.120001 0.815686 0.568627 0.478431 +v 0.007680 -58.305000 23.528999 0.823529 0.568627 0.478431 +v 14.550098 -55.003899 26.621601 0.780392 0.549020 0.431373 +v 20.750698 -49.841400 28.390602 0.729412 0.505882 0.396078 +v 14.341599 -43.669201 21.142101 0.690196 0.443137 0.392157 +v 9.106318 -44.220402 18.280300 0.749020 0.454902 0.427451 +v 4.624769 -44.514198 17.213200 0.768627 0.458824 0.439216 +v 13.494699 1.203290 9.375581 0.541176 0.305882 0.247059 +v 17.587399 -3.090150 17.170603 0.521569 0.282353 0.231373 +v 15.390899 0.616895 13.529201 0.525490 0.290196 0.239216 +v 16.498499 -2.610490 13.351402 0.580392 0.333333 0.270588 +v 0.114789 -17.205601 13.556900 0.803922 0.576471 0.490196 +v 0.213039 -10.739900 5.333460 0.631373 0.419608 0.345098 +v 0.155695 9.698840 1.605760 0.737255 0.458824 0.372549 +v 63.699497 35.875702 57.276005 0.541176 0.364706 0.274510 +v 62.952995 26.737499 54.915302 0.588235 0.400000 0.301961 +v 62.913197 46.593300 56.027405 0.486275 0.321569 0.239216 +v 66.067696 49.149700 63.298607 0.435294 0.282353 0.207843 +v 67.025894 36.883900 64.329010 0.478431 0.313725 0.235294 +v 66.947090 22.464199 62.047707 0.505882 0.325490 0.243137 +v 62.186794 10.766600 50.973103 0.576471 0.376471 0.290196 +v 68.964989 11.545400 68.556404 0.415686 0.266667 0.200000 +v 64.644791 3.438430 56.958504 0.498039 0.317647 0.243137 +v 7.315678 30.263700 20.278500 0.635294 0.407843 0.309804 +v 16.478199 14.480500 23.730602 0.674510 0.435294 0.341176 +v 22.498598 11.176800 26.488401 0.752941 0.505882 0.411765 +v 30.975899 9.046680 28.818901 0.800000 0.545098 0.447059 +v 59.705097 18.493999 48.250504 0.619608 0.415686 0.317647 +v 53.774796 10.607700 40.580803 0.741176 0.505882 0.411765 +v 4.194539 31.168200 16.627800 0.733333 0.498039 0.388235 +v -0.049233 31.606899 15.159500 0.800000 0.552941 0.435294 +v 60.551994 58.758701 51.876305 0.482353 0.313725 0.231373 +v 64.570694 60.979000 60.018402 0.403922 0.266667 0.196078 +v 58.582897 51.884102 46.769802 0.482353 0.317647 0.239216 +v 58.461395 70.455803 49.594505 0.466667 0.313725 0.231373 +v 52.436497 76.538399 42.343403 0.533333 0.356863 0.262745 +v -0.208444 49.913601 15.256100 0.917647 0.698039 0.611765 +v -0.124523 58.086498 14.326200 0.905882 0.674510 0.584314 +v 0.274219 81.382401 18.191799 0.819608 0.576471 0.458824 +v 0.481933 93.290398 21.740499 0.725490 0.498039 0.384314 +v 12.405998 93.661400 22.874903 0.713725 0.486275 0.376471 +v 24.880598 93.906502 26.578302 0.658824 0.447059 0.341176 +v 36.480595 93.078102 32.634003 0.576471 0.388235 0.294118 +v 46.004696 90.203003 39.649605 0.505882 0.345098 0.258824 +v 53.584496 85.144096 46.494904 0.450980 0.305882 0.223529 +v 62.545998 71.367798 56.403603 0.364706 0.250980 0.188235 +v 59.255596 78.845100 52.443905 0.400000 0.274510 0.203922 +v 61.191795 85.050301 57.241005 0.333333 0.235294 0.180392 +v 65.452393 75.230003 61.807304 0.286275 0.207843 0.160784 +v 68.381790 63.713902 67.643311 0.266667 0.188235 0.149020 +v 69.324196 50.443100 71.447411 0.341176 0.227451 0.172549 +v 70.128990 37.903400 72.923409 0.360784 0.239216 0.180392 +v 70.487595 24.768299 72.393105 0.396078 0.250980 0.192157 +v 10.803699 -24.072800 15.435301 0.713725 0.501961 0.407843 +v 15.684198 -24.840200 18.155502 0.698039 0.494118 0.403922 +v 14.923498 -28.631399 17.459002 0.729412 0.498039 0.431373 +v 19.121199 -30.573601 20.995502 0.694118 0.478431 0.403922 +v 21.119598 -26.506599 21.583101 0.701961 0.509804 0.423529 +v 36.499996 -22.712601 30.213703 0.811765 0.572549 0.466667 +v 40.448395 -36.176701 36.400604 0.725490 0.509804 0.407843 +v 44.144596 -32.603699 38.731205 0.705882 0.490196 0.392157 +v 38.536495 -47.817600 40.317505 0.666667 0.474510 0.364706 +v 46.546295 -37.311100 43.387104 0.635294 0.439216 0.349020 +v 50.373398 -34.235699 47.127705 0.611765 0.423529 0.333333 +v 49.724796 -40.818298 50.185303 0.588235 0.403922 0.317647 +v 49.255295 -27.889099 42.907104 0.658824 0.454902 0.360784 +v 44.257797 -23.479799 35.807602 0.752941 0.525490 0.427451 +v 40.645798 -27.765900 34.063705 0.764706 0.537255 0.431373 +v 40.754898 -19.093399 32.012905 0.815686 0.576471 0.478431 +v 10.416199 -27.973200 14.961201 0.756863 0.498039 0.443137 +v 0.075350 -28.306400 12.898400 0.803922 0.521569 0.466667 +v 0.092755 -24.430799 13.505000 0.772549 0.529412 0.443137 +v 0.110785 -20.513000 13.908800 0.807843 0.588235 0.501961 +v 0.085609 -54.512001 23.610901 0.784314 0.537255 0.443137 +v 20.909399 -54.946800 30.047201 0.729412 0.509804 0.392157 +v 35.645298 -55.715099 42.223003 0.623529 0.439216 0.337255 +v 49.814896 -48.565498 56.933704 0.517647 0.356863 0.274510 +v 47.977795 -55.414200 62.039703 0.443137 0.301961 0.231373 +v 55.688496 -28.994600 53.447903 0.560784 0.380392 0.301961 +v 55.983391 -43.000198 65.692207 0.450980 0.305882 0.239216 +v 56.362797 -36.061699 59.322903 0.517647 0.349020 0.274510 +v 57.892796 -19.573200 52.540302 0.560784 0.376471 0.294118 +v 70.365593 -2.993800 89.379608 0.321569 0.211765 0.164706 +v 71.177193 8.937180 81.271606 0.321569 0.211765 0.164706 +v 72.558990 10.622100 91.867805 0.298039 0.200000 0.156863 +v 66.125992 -21.471800 81.920410 0.341176 0.223529 0.168627 +v 67.528091 -10.306600 77.117210 0.364706 0.239216 0.180392 +v 61.701691 -27.660801 67.740509 0.443137 0.294118 0.227451 +v 68.337189 -0.022244 71.967606 0.380392 0.243137 0.188235 +v 63.424397 -15.896200 64.452606 0.443137 0.290196 0.219608 +v 68.125694 -16.648800 92.619408 0.301961 0.200000 0.156863 +v 63.768192 -32.212200 86.796310 0.305882 0.203922 0.156863 +v 61.167294 -36.372501 75.628105 0.376471 0.250980 0.192157 +v 59.626293 -41.868698 80.668411 0.333333 0.223529 0.172549 +v 64.162796 -6.066620 60.428703 0.454902 0.294118 0.223529 +v 57.393696 -11.239100 47.991703 0.611765 0.411765 0.329412 +v 72.524994 24.387699 82.025009 0.282353 0.188235 0.145098 +v 73.856789 35.723499 88.540108 0.105882 0.074510 0.062745 +v 73.683792 23.761801 91.300209 0.243137 0.164706 0.129412 +v 74.501190 30.125500 94.839706 0.094118 0.062745 0.050980 +v 74.034592 22.480499 96.303810 0.141176 0.098039 0.078431 +v 72.831192 7.859240 98.770004 0.149020 0.101961 0.082353 +v 69.296593 -13.425300 99.241905 0.305882 0.200000 0.160784 +v 71.395790 -3.606020 100.302010 0.325490 0.215686 0.172549 +v 71.129791 -7.143250 103.242004 0.188235 0.125490 0.101961 +v 68.107590 -18.211399 101.004005 0.133333 0.086275 0.070588 +v 72.363594 -0.137348 102.838005 0.176471 0.117647 0.094118 +v 46.213596 99.739601 44.501404 0.388235 0.266667 0.200000 +v 54.685898 92.834099 51.120205 0.376471 0.258824 0.192157 +v 55.596695 97.970802 54.777103 0.294118 0.207843 0.160784 +v 59.781796 92.442200 58.018204 0.125490 0.090196 0.066667 +v 50.586895 101.808998 50.572002 0.172549 0.121569 0.094118 +v 43.422997 104.478996 44.205505 0.184314 0.125490 0.098039 +v 72.007690 49.799099 78.898109 0.250980 0.176471 0.137255 +v 73.057594 49.127201 82.269409 0.094118 0.066667 0.054902 +v 49.949097 58.855202 33.782906 0.564706 0.388235 0.301961 +v 44.336697 60.042801 28.311203 0.603922 0.419608 0.337255 +v 37.959198 59.937000 23.450504 0.674510 0.482353 0.400000 +v 4.464459 16.161301 7.486950 0.682353 0.423529 0.341176 +v 0.094371 16.649401 6.087460 0.745098 0.466667 0.376471 +v 0.014745 24.425800 10.934700 0.745098 0.482353 0.384314 +v 71.478493 58.516998 75.568504 0.105882 0.074510 0.058824 +v 68.260490 72.263603 66.620407 0.137255 0.101961 0.082353 +v 70.731094 66.735497 71.686806 0.109804 0.082353 0.066667 +v 72.507889 38.181301 81.341507 0.254902 0.176471 0.137255 +v 64.500496 82.174896 61.573006 0.149020 0.109804 0.082353 +v 55.767296 99.280998 55.781605 0.145098 0.101961 0.078431 +v 12.876298 100.102997 25.744701 0.317647 0.215686 0.164706 +v 0.286601 -4.793040 -2.721520 0.894118 0.643137 0.568627 +v 64.638489 -29.722000 98.167007 0.121569 0.082353 0.062745 +v 58.149193 -45.228298 86.664307 0.290196 0.196078 0.152941 +v 62.356594 -36.605999 93.365707 0.274510 0.184314 0.141176 +v 60.716892 -40.186600 93.595604 0.113725 0.078431 0.058824 +v 56.109493 -48.650299 86.931511 0.141176 0.098039 0.074510 +v 49.385094 -57.278099 77.067108 0.160784 0.109804 0.082353 +v 66.355392 -24.387800 96.374504 0.270588 0.184314 0.141176 +v 37.257298 34.215500 30.609003 0.415686 0.392157 0.388235 +v 39.520298 33.790501 31.976805 0.529412 0.494118 0.490196 +v 27.428999 33.649700 29.901602 0.372549 0.333333 0.309804 +v 23.755198 -35.746101 28.257301 0.482353 0.278431 0.235294 +v 3.793149 -35.116299 16.927900 0.600000 0.278431 0.294118 +v 3.855958 -38.129200 17.080799 0.756863 0.376471 0.407843 +v -0.023884 -38.223301 16.909401 0.749020 0.368627 0.400000 +v 8.071998 -35.035198 18.102501 0.588235 0.266667 0.286275 +v 8.431998 -37.966801 18.149799 0.717647 0.352941 0.384314 +v 13.239598 -35.231899 20.689901 0.545098 0.262745 0.274510 +v 13.372499 -37.816101 20.728703 0.631373 0.317647 0.337255 +v 17.666399 -35.273201 23.658503 0.447059 0.227451 0.227451 +v 17.640099 -37.751598 24.088802 0.556863 0.282353 0.286275 +v 21.365198 -34.941399 26.083202 0.478431 0.266667 0.231373 +v 21.738897 -38.277302 27.387302 0.564706 0.325490 0.298039 +v 21.377197 -34.903000 26.050001 0.490196 0.278431 0.239216 +v -0.125513 -44.742699 17.141100 0.749020 0.454902 0.419608 +v 14.317698 -31.063400 17.972801 0.662745 0.403922 0.364706 +v 6.533319 -27.864201 13.520501 0.788235 0.505882 0.458824 +v 17.674997 -35.227402 23.629501 0.427451 0.219608 0.211765 +v 18.364597 -33.324001 22.496202 0.580392 0.341176 0.301961 +v 13.245798 -35.168499 20.655602 0.537255 0.258824 0.270588 +v 13.862498 -33.057598 19.452902 0.596078 0.333333 0.313725 +v 8.065038 -34.963299 18.048201 0.580392 0.270588 0.282353 +v 9.277578 -32.971199 17.116100 0.631373 0.349020 0.337255 +v 3.799159 -35.048901 16.841700 0.600000 0.278431 0.294118 +v 5.629269 -33.251099 16.003500 0.643137 0.349020 0.341176 +v 2.758119 -33.165501 15.103900 0.650980 0.345098 0.341176 +v 0.038323 -35.330101 16.649599 0.396078 0.176471 0.192157 +v 0.067189 -33.274799 14.942100 0.662745 0.345098 0.352941 +v 2.880549 -31.155199 13.597900 0.701961 0.388235 0.380392 +v 5.936328 -30.985800 14.264301 0.694118 0.396078 0.380392 +v 4.098669 -41.269699 16.459999 0.811765 0.458824 0.486275 +v 8.892108 -41.014599 17.645000 0.760784 0.427451 0.450980 +v 9.781240 -30.931801 15.664701 0.682353 0.400000 0.376471 +v 13.905798 -40.587799 20.457802 0.658824 0.360784 0.364706 +v 18.077698 -39.992001 24.048601 0.603922 0.341176 0.325490 +v 0.069898 -31.269300 13.405600 0.725490 0.411765 0.407843 +v 37.322296 65.013603 24.625504 0.709804 0.498039 0.396078 +v 29.652199 63.115200 19.714302 0.780392 0.560784 0.466667 +v 21.287199 60.616798 16.368002 0.847059 0.623529 0.533333 +v 0.127883 -14.200400 12.254200 0.741176 0.509804 0.435294 +v 0.278404 1.040420 -3.071150 0.870588 0.596078 0.513725 +v -0.116712 37.803699 17.313200 0.882353 0.650980 0.533333 +v 0.279360 -7.378550 -0.992634 0.819608 0.560784 0.478431 +v 0.046502 68.758400 15.460200 0.854902 0.607843 0.494118 +v 0.599951 99.454498 24.243299 0.349020 0.235294 0.180392 +v 0.031221 -35.395699 16.746401 0.458824 0.203922 0.219608 +v -0.106864 -41.376099 16.290199 0.800000 0.447059 0.474510 +v -53.841106 -48.983299 71.426689 0.407843 0.274510 0.215686 +v -51.275307 -53.996498 75.538391 0.368627 0.247059 0.192157 +v -44.535206 -60.645199 65.560791 0.411765 0.274510 0.211765 +v -18.750103 -74.796997 35.786999 0.529412 0.372549 0.298039 +v -14.085703 -77.391403 34.978100 0.509804 0.364706 0.290196 +v -11.957403 -73.963402 30.096098 0.635294 0.450980 0.368627 +v -6.566503 -77.262100 30.449800 0.596078 0.431373 0.349020 +v -7.564453 -78.871101 33.695099 0.501961 0.360784 0.290196 +v -22.016403 -70.478699 35.529198 0.588235 0.415686 0.329412 +v -17.863401 -68.837303 30.791098 0.674510 0.478431 0.388235 +v -39.540703 -65.852203 65.266602 0.180392 0.121569 0.090196 +v -33.939205 -69.790604 58.118694 0.388235 0.262745 0.200000 +v -31.925804 -67.925903 48.449497 0.458824 0.317647 0.239216 +v -38.444904 -64.204102 56.125298 0.450980 0.305882 0.231373 +v -28.939505 -72.407097 50.816597 0.392157 0.270588 0.203922 +v -23.188004 -74.982597 43.634598 0.415686 0.290196 0.223529 +v -26.559404 -70.188103 41.544697 0.505882 0.352941 0.270588 +v -24.695004 -75.705597 50.416195 0.364706 0.250980 0.192157 +v -16.072004 -78.604698 40.981701 0.403922 0.282353 0.223529 +v -17.844904 -79.063103 47.658199 0.360784 0.250980 0.196078 +v -29.056807 -73.493698 56.917194 0.176471 0.117647 0.090196 +v -10.376904 -81.684601 48.519402 0.168627 0.121569 0.101961 +v -19.158804 -78.889801 51.744801 0.176471 0.121569 0.094118 +v -9.669264 -81.344200 44.934101 0.376471 0.274510 0.223529 +v -27.571703 -64.815102 39.005997 0.603922 0.423529 0.329412 +v -33.198803 -61.133202 43.968197 0.576471 0.403922 0.305882 +v -38.691704 -59.988998 50.588497 0.525490 0.364706 0.274510 +v -42.734406 -58.145699 55.489697 0.501961 0.341176 0.258824 +v -8.533234 -80.387604 38.906601 0.407843 0.294118 0.239216 +v -11.915502 -67.795502 26.995598 0.745098 0.529412 0.443137 +v -23.853804 -66.357597 35.367195 0.635294 0.447059 0.352941 +v -34.301003 104.745003 38.021896 0.207843 0.141176 0.109804 +v -35.090004 101.537003 36.596096 0.427451 0.282353 0.215686 +v -26.006802 101.713997 31.525198 0.270588 0.176471 0.133333 +v -59.540703 -0.172551 48.112595 0.619608 0.403922 0.325490 +v -50.470104 -9.587020 38.842495 0.729412 0.490196 0.411765 +v -52.236305 -0.444375 39.310497 0.745098 0.501961 0.419608 +v -29.805405 -56.547798 37.997498 0.666667 0.474510 0.364706 +v -26.022703 -54.744801 34.242695 0.694118 0.490196 0.376471 +v -26.218403 -49.663700 32.767998 0.717647 0.498039 0.388235 +v -25.394102 -44.041801 30.750198 0.729412 0.505882 0.396078 +v -31.448503 -44.790001 34.639797 0.737255 0.525490 0.403922 +v -32.419804 -50.899601 37.823597 0.690196 0.490196 0.376471 +v -21.044302 -62.170700 31.980398 0.705882 0.498039 0.400000 +v -26.501503 -59.568001 36.049995 0.670588 0.474510 0.368627 +v -44.034306 -51.844898 51.117294 0.560784 0.384314 0.294118 +v -43.882004 -45.489799 45.821396 0.611765 0.419608 0.329412 +v -39.261204 -54.099098 46.284496 0.592157 0.411765 0.309804 +v -42.625404 -40.450100 41.156296 0.662745 0.458824 0.360784 +v -38.801704 -42.761002 38.411594 0.713725 0.501961 0.396078 +v -52.231606 -19.653799 44.279896 0.658824 0.443137 0.356863 +v -46.410305 -16.803400 36.662895 0.756863 0.517647 0.427451 +v -33.261505 -35.711102 31.876297 0.741176 0.537255 0.423529 +v -32.671204 -40.674500 33.693596 0.749020 0.545098 0.423529 +v -35.453705 -44.188400 36.643997 0.733333 0.529412 0.411765 +v -27.096502 -39.330601 30.955198 0.713725 0.498039 0.384314 +v -21.293402 -21.040701 22.753899 0.729412 0.498039 0.407843 +v -23.889301 -17.153200 25.090498 0.796078 0.537255 0.431373 +v -27.442001 -24.677700 25.678598 0.741176 0.529412 0.435294 +v -27.894802 -35.143299 29.500797 0.698039 0.494118 0.384314 +v -24.245901 -32.390999 25.918598 0.666667 0.470588 0.380392 +v -26.250002 -28.942699 25.473698 0.721569 0.529412 0.431373 +v -22.010002 -41.590900 27.971397 0.670588 0.450980 0.364706 +v -20.023802 -45.808498 26.881199 0.705882 0.486275 0.384314 +v -18.923801 -42.662899 25.164799 0.666667 0.435294 0.364706 +v -28.864202 -21.376200 26.642797 0.784314 0.545098 0.443137 +v -26.229301 -16.210501 26.192198 0.827451 0.568627 0.454902 +v -30.681902 -16.933201 27.620897 0.858824 0.603922 0.490196 +v -15.621302 -20.221901 19.470098 0.690196 0.470588 0.380392 +v -16.465702 -15.840100 21.345999 0.729412 0.474510 0.384314 +v -22.337402 -3.399040 25.406399 0.741176 0.494118 0.396078 +v -21.458002 -7.348170 25.506098 0.721569 0.474510 0.380392 +v -18.854101 -4.005630 23.601898 0.533333 0.301961 0.250980 +v -26.091501 -11.087000 26.476297 0.878431 0.623529 0.513725 +v -23.841803 -13.780800 25.798899 0.831373 0.572549 0.458824 +v -3.088731 -28.148701 13.002100 0.811765 0.521569 0.478431 +v -3.510681 -24.156099 13.543200 0.788235 0.541176 0.450980 +v -7.061972 -23.912500 14.032299 0.764706 0.529412 0.435294 +v -3.687661 -20.046000 14.031400 0.807843 0.584314 0.494118 +v -9.043321 -19.022600 15.774699 0.705882 0.494118 0.403922 +v -2.931611 -17.201000 13.721800 0.807843 0.584314 0.494118 +v -4.743171 -14.022100 13.188100 0.737255 0.505882 0.431373 +v -30.459501 -31.690300 28.703999 0.729412 0.537255 0.435294 +v -36.833103 -39.026501 35.269897 0.749020 0.537255 0.423529 +v -36.962105 -31.691099 32.883995 0.741176 0.517647 0.411765 +v -32.433002 -26.637400 28.764599 0.749020 0.529412 0.427451 +v -10.186301 -10.045900 13.821699 0.560784 0.341176 0.290196 +v -3.445531 -10.998200 9.252610 0.556863 0.337255 0.278431 +v -6.762481 -8.908630 9.055569 0.494118 0.294118 0.258824 +v -10.854001 -7.895510 11.215299 0.427451 0.250980 0.211765 +v -12.950301 -8.438200 13.560799 0.588235 0.368627 0.305882 +v -14.310402 -9.532510 16.465097 0.674510 0.411765 0.333333 +v -14.624502 -11.047600 19.142298 0.615686 0.345098 0.282353 +v -12.154902 -13.660100 18.041199 0.662745 0.403922 0.337255 +v -15.637602 -12.306800 21.315199 0.635294 0.376471 0.313725 +v -16.678001 0.018672 17.475899 0.454902 0.239216 0.188235 +v -14.077101 3.077540 13.715799 0.470588 0.254902 0.203922 +v -15.178302 3.616140 17.563799 0.490196 0.270588 0.215686 +v -11.450801 5.402890 9.661229 0.498039 0.278431 0.219608 +v -12.646701 6.457730 14.109399 0.513725 0.294118 0.231373 +v -17.444702 -0.924688 20.193298 0.450980 0.227451 0.184314 +v -18.059002 -7.877630 23.064198 0.529412 0.286275 0.243137 +v -10.368801 8.722010 10.384299 0.521569 0.301961 0.235294 +v -17.744202 0.517129 21.854698 0.521569 0.294118 0.239216 +v -17.907402 -3.455530 20.442198 0.458824 0.231373 0.188235 +v -16.974201 -10.677600 22.292898 0.596078 0.341176 0.286275 +v -2.506120 -2.028510 -3.080180 0.913725 0.674510 0.607843 +v -2.469770 -4.768590 -2.486050 0.886275 0.623529 0.552941 +v -5.439900 -1.886710 -1.785390 0.847059 0.584314 0.517647 +v -4.991440 -4.960640 -1.139691 0.803922 0.541176 0.462745 +v -7.917010 -5.451350 2.487329 0.647059 0.415686 0.341176 +v -5.044560 -7.893640 1.983989 0.650980 0.415686 0.349020 +v -5.685171 -8.434240 5.155859 0.486275 0.290196 0.243137 +v -7.915720 -7.024910 5.173709 0.537255 0.337255 0.282353 +v -5.069190 8.041960 2.428190 0.662745 0.396078 0.317647 +v -5.017550 3.745630 -0.921486 0.737255 0.454902 0.372549 +v -2.789870 4.372350 -1.462200 0.772549 0.486275 0.396078 +v -4.999330 1.117930 -1.968431 0.792157 0.509804 0.427451 +v -2.481880 1.025610 -2.840810 0.854902 0.576471 0.494118 +v -3.088550 -7.134860 -0.568535 0.784314 0.529412 0.447059 +v -2.741080 -9.109190 1.948480 0.694118 0.462745 0.384314 +v -2.959080 -10.054000 5.285800 0.576471 0.360784 0.298039 +v -11.491201 -4.921930 6.367449 0.674510 0.447059 0.372549 +v -10.020901 -7.086960 8.412829 0.474510 0.290196 0.243137 +v -14.259301 -5.239610 9.939149 0.690196 0.443137 0.368627 +v -12.878401 -7.387150 11.456599 0.564706 0.352941 0.290196 +v -16.464901 -5.716880 13.556098 0.647059 0.388235 0.317647 +v -14.983801 -8.065290 14.371499 0.670588 0.415686 0.337255 +v -17.583902 -6.038910 17.100498 0.560784 0.305882 0.247059 +v -16.457602 -8.372230 17.068798 0.623529 0.352941 0.286275 +v -6.973730 2.091660 -0.242824 0.705882 0.435294 0.356863 +v -8.818600 -0.891477 1.383239 0.690196 0.439216 0.364706 +v -9.290710 3.329020 3.458919 0.580392 0.337255 0.266667 +v -17.710503 -6.541460 20.280298 0.498039 0.250980 0.207843 +v -16.597502 -9.103660 19.840698 0.560784 0.290196 0.239216 +v -20.254002 -10.584600 24.919098 0.725490 0.466667 0.380392 +v -19.110601 -13.563800 23.751698 0.756863 0.490196 0.400000 +v -11.853701 1.210450 5.993569 0.552941 0.313725 0.247059 +v -12.033501 -1.648010 5.569239 0.631373 0.388235 0.313725 +v -8.771261 9.366440 7.745239 0.549020 0.317647 0.247059 +v -8.091181 14.909600 10.967199 0.588235 0.352941 0.278431 +v -11.574701 11.120500 14.904899 0.564706 0.341176 0.262745 +v -8.252582 23.095100 17.156300 0.592157 0.356863 0.274510 +v -12.164402 18.366899 20.500298 0.607843 0.372549 0.286275 +v -21.284002 3.497090 24.570698 0.768627 0.525490 0.431373 +v -10.742502 43.732601 19.227800 0.772549 0.552941 0.447059 +v -12.018201 50.872398 15.973799 0.796078 0.596078 0.513725 +v -53.977802 58.171299 39.694695 0.501961 0.325490 0.250980 +v -55.620903 64.281502 44.285595 0.509804 0.329412 0.247059 +v -20.308903 46.723099 20.792599 0.607843 0.427451 0.345098 +v -12.843102 40.605900 23.333698 0.694118 0.474510 0.368627 +v -11.662601 58.885700 14.851099 0.890196 0.662745 0.576471 +v -20.507902 69.580101 17.878298 0.800000 0.549020 0.435294 +v -27.933802 70.843803 20.968597 0.749020 0.509804 0.400000 +v -36.014503 72.235001 26.102497 0.690196 0.466667 0.356863 +v -43.836502 71.610802 32.086895 0.631373 0.423529 0.317647 +v -43.620102 65.109001 29.763796 0.635294 0.427451 0.329412 +v -50.451702 68.894699 38.239597 0.564706 0.372549 0.278431 +v -49.542004 63.241699 35.253395 0.576471 0.380392 0.290196 +v -29.960102 38.037498 27.851099 0.282353 0.203922 0.168627 +v -32.476303 35.348900 29.197298 0.176471 0.149020 0.133333 +v -36.246204 37.764400 28.355696 0.329412 0.254902 0.223529 +v -29.328802 28.733900 30.342098 0.529412 0.392157 0.360784 +v -35.523403 30.304701 31.130497 0.482353 0.411765 0.400000 +v -40.727005 36.324501 31.155497 0.392157 0.313725 0.294118 +v -40.839203 30.600300 33.689297 0.568627 0.435294 0.411765 +v -46.191402 34.452000 36.131695 0.427451 0.274510 0.223529 +v -24.977001 28.765301 30.636297 0.627451 0.431373 0.372549 +v -23.804102 30.909100 31.155798 0.686275 0.556863 0.521569 +v -24.319902 35.130699 30.242397 0.592157 0.521569 0.505882 +v -19.257402 31.576700 30.228998 0.611765 0.411765 0.341176 +v -23.152302 22.654400 30.191898 0.721569 0.498039 0.431373 +v -44.272903 23.796400 36.654297 0.666667 0.454902 0.360784 +v -48.903404 28.476500 40.922897 0.552941 0.352941 0.274510 +v -30.033503 20.755199 30.809198 0.784314 0.556863 0.474510 +v -37.799706 20.942499 32.892296 0.772549 0.545098 0.443137 +v -43.489803 41.473999 30.150797 0.639216 0.439216 0.360784 +v -30.361101 43.423199 25.189299 0.698039 0.494118 0.392157 +v -22.342802 38.114101 28.789198 0.560784 0.376471 0.301961 +v -19.248802 37.309799 29.324799 0.603922 0.396078 0.309804 +v -26.459501 38.629799 27.978798 0.427451 0.305882 0.258824 +v -24.593601 42.781898 25.542498 0.670588 0.466667 0.360784 +v -33.258904 40.763699 26.193096 0.592157 0.419608 0.345098 +v -37.950806 45.187599 25.795197 0.741176 0.533333 0.435294 +v -37.224903 41.155800 26.895596 0.592157 0.411765 0.337255 +v -40.750904 39.547798 29.199097 0.537255 0.368627 0.305882 +v -17.907701 40.627102 25.913097 0.686275 0.478431 0.372549 +v -12.980102 34.449100 27.123398 0.639216 0.439216 0.352941 +v -9.614821 36.339699 23.000999 0.678431 0.458824 0.352941 +v -42.234406 27.275101 34.868195 0.588235 0.388235 0.329412 +v -10.124502 28.367300 23.751200 0.580392 0.372549 0.282353 +v -18.888203 24.715599 29.982798 0.658824 0.454902 0.380392 +v -17.454302 20.764400 27.755598 0.639216 0.419608 0.321569 +v -13.572302 24.756201 26.250998 0.592157 0.388235 0.286275 +v -22.865002 17.581499 29.052998 0.733333 0.505882 0.411765 +v -30.623402 15.645700 30.650799 0.803922 0.576471 0.482353 +v -41.184105 16.006500 34.079998 0.796078 0.560784 0.450980 +v -47.160904 20.448400 38.277298 0.705882 0.490196 0.388235 +v -51.919205 25.598900 43.368195 0.623529 0.423529 0.321569 +v -52.268005 32.498501 43.699497 0.568627 0.372549 0.290196 +v -55.200302 32.461800 46.434196 0.611765 0.419608 0.329412 +v -53.071705 37.138699 42.057297 0.576471 0.388235 0.301961 +v -29.791203 24.710300 30.338198 0.729412 0.513725 0.439216 +v -36.564205 24.958700 31.851896 0.698039 0.490196 0.415686 +v -7.289592 -47.139000 20.103399 0.694118 0.474510 0.392157 +v -14.413102 -46.868698 23.217598 0.705882 0.486275 0.392157 +v -14.603202 -50.371601 25.371597 0.741176 0.517647 0.407843 +v -59.491802 32.046799 51.147495 0.603922 0.415686 0.321569 +v -55.639103 22.632401 45.670296 0.639216 0.431373 0.325490 +v -49.984604 16.973101 39.163597 0.725490 0.494118 0.388235 +v -41.621704 8.346640 32.884995 0.843137 0.576471 0.478431 +v -56.876003 39.973801 45.675396 0.556863 0.372549 0.298039 +v -59.767105 43.045399 49.976097 0.501961 0.329412 0.258824 +v -54.420605 42.338902 40.295395 0.568627 0.384314 0.313725 +v -56.593704 46.599098 42.486496 0.454902 0.294118 0.239216 +v -51.546104 43.681000 36.144497 0.615686 0.423529 0.349020 +v -53.910103 50.838902 37.405296 0.403922 0.266667 0.215686 +v -47.176605 46.687801 30.461897 0.658824 0.470588 0.400000 +v -49.335606 53.263500 31.465897 0.419608 0.286275 0.239216 +v -41.835705 49.451500 25.770996 0.623529 0.458824 0.388235 +v -43.368805 54.963402 26.223997 0.435294 0.305882 0.258824 +v -36.252106 50.171902 23.068497 0.549020 0.400000 0.341176 +v -37.054005 55.634499 22.359797 0.482353 0.352941 0.301961 +v -28.583101 48.147099 22.169699 0.588235 0.423529 0.345098 +v -30.643501 56.322201 19.778698 0.596078 0.443137 0.384314 +v -35.441105 81.907204 28.633097 0.662745 0.443137 0.337255 +v -44.335304 80.277100 35.155895 0.584314 0.388235 0.286275 +v -23.805302 80.078201 22.057999 0.756863 0.517647 0.403922 +v -11.024801 69.106598 16.104898 0.835294 0.584314 0.470588 +v -11.198602 81.384598 19.098099 0.800000 0.556863 0.435294 +v -21.602503 53.225300 17.283098 0.596078 0.443137 0.384314 +v -5.917871 37.487801 19.084600 0.811765 0.580392 0.466667 +v -4.247971 24.037399 12.356400 0.686275 0.435294 0.345098 +v -14.467901 -2.056030 9.347089 0.611765 0.356863 0.290196 +v -15.684502 8.225480 20.506998 0.647059 0.411765 0.325490 +v -30.492302 1.468230 27.575397 0.847059 0.576471 0.486275 +v -29.855103 -6.375450 26.988998 0.890196 0.627451 0.537255 +v -41.125404 -1.490210 31.515596 0.854902 0.580392 0.494118 +v -35.953903 -6.553680 28.526196 0.882353 0.615686 0.525490 +v -44.049503 -10.001100 33.293495 0.819608 0.564706 0.478431 +v -36.408905 -12.117100 29.324495 0.878431 0.615686 0.517647 +v -23.772902 26.589300 30.467398 0.690196 0.466667 0.400000 +v -7.501412 -50.686699 23.065300 0.737255 0.509804 0.403922 +v -13.754702 -61.147598 27.150497 0.772549 0.545098 0.443137 +v -7.330832 -54.754902 24.476400 0.796078 0.552941 0.447059 +v -5.799892 -60.043400 24.272900 0.815686 0.568627 0.478431 +v -14.562901 -54.969002 26.952198 0.784314 0.549020 0.431373 +v -20.703901 -49.802700 28.816797 0.729412 0.501961 0.392157 +v -14.287502 -43.688099 21.461899 0.698039 0.447059 0.392157 +v -9.185982 -44.236801 18.529900 0.749020 0.454902 0.427451 +v -4.844681 -44.535198 17.332600 0.772549 0.458824 0.443137 +v -13.385301 1.321240 9.319969 0.517647 0.282353 0.223529 +v -17.594803 -2.992360 17.184399 0.494118 0.258824 0.207843 +v -15.316101 0.718187 13.531699 0.490196 0.262745 0.211765 +v -16.484503 -2.517690 13.317098 0.556863 0.305882 0.247059 +v -63.277405 35.791199 57.119396 0.525490 0.345098 0.266667 +v -62.593704 26.610701 54.955097 0.576471 0.380392 0.290196 +v -62.468002 46.489700 55.637897 0.466667 0.301961 0.227451 +v -65.474205 48.985901 62.915993 0.419608 0.262745 0.196078 +v -66.472511 36.767601 64.102196 0.454902 0.290196 0.219608 +v -66.524406 22.424500 62.011292 0.490196 0.309804 0.235294 +v -61.938904 10.699000 51.148296 0.568627 0.364706 0.286275 +v -68.543007 11.577000 68.501892 0.411765 0.258824 0.200000 +v -64.340508 3.476640 57.093597 0.498039 0.313725 0.247059 +v -7.594552 30.348700 20.315800 0.627451 0.396078 0.298039 +v -16.549402 14.557100 23.902597 0.662745 0.419608 0.325490 +v -22.511202 11.211700 26.775698 0.764706 0.505882 0.407843 +v -30.923302 8.988230 29.229298 0.815686 0.549020 0.447059 +v -59.490303 18.310400 48.448795 0.607843 0.396078 0.301961 +v -53.647404 10.434700 40.909695 0.737255 0.494118 0.403922 +v -4.381762 31.257401 16.638100 0.737255 0.494118 0.388235 +v -60.029804 58.640598 51.293797 0.462745 0.294118 0.219608 +v -64.019104 60.767300 59.519794 0.392157 0.250980 0.188235 +v -58.184303 51.842499 46.189598 0.458824 0.298039 0.227451 +v -57.762302 70.295197 48.925396 0.447059 0.290196 0.215686 +v -51.554703 76.438698 41.738796 0.513725 0.337255 0.247059 +v -11.345502 93.571404 23.007797 0.709804 0.482353 0.372549 +v -23.729801 93.736099 26.669699 0.647059 0.435294 0.329412 +v -35.271004 92.898697 32.481598 0.556863 0.364706 0.274510 +v -44.764503 89.974899 39.158897 0.482353 0.313725 0.235294 +v -52.434803 84.860397 45.720497 0.427451 0.278431 0.207843 +v -61.925304 71.077103 55.743397 0.360784 0.239216 0.180392 +v -58.381702 78.523102 51.614697 0.380392 0.250980 0.188235 +v -60.005302 84.621002 56.387897 0.313725 0.215686 0.168627 +v -64.720604 74.840401 61.180397 0.278431 0.196078 0.152941 +v -67.735107 63.471001 67.175995 0.274510 0.188235 0.149020 +v -68.669807 50.221901 71.097496 0.333333 0.215686 0.168627 +v -69.477310 37.736198 72.644493 0.352941 0.227451 0.176471 +v -69.931206 24.711700 72.207596 0.388235 0.239216 0.188235 +v -10.646601 -24.065701 15.460499 0.713725 0.498039 0.403922 +v -15.570902 -24.833599 18.256699 0.694118 0.490196 0.400000 +v -14.838702 -28.652700 17.550598 0.725490 0.498039 0.427451 +v -19.051203 -30.614100 21.181898 0.694118 0.478431 0.403922 +v -21.021603 -26.519899 21.785698 0.698039 0.501961 0.415686 +v -36.361103 -22.694599 30.639095 0.811765 0.568627 0.462745 +v -40.278202 -36.076199 36.963898 0.725490 0.509804 0.403922 +v -43.906403 -32.487301 39.282295 0.705882 0.486275 0.392157 +v -38.385506 -47.603401 40.941395 0.666667 0.470588 0.364706 +v -46.264404 -37.117699 43.960796 0.643137 0.439216 0.349020 +v -50.024704 -34.044201 47.640896 0.619608 0.419608 0.337255 +v -49.385105 -40.522999 50.694595 0.596078 0.403922 0.321569 +v -48.941204 -27.787399 43.411995 0.662745 0.450980 0.364706 +v -44.039505 -23.420401 36.323795 0.756863 0.529412 0.431373 +v -40.469105 -27.708000 34.571297 0.768627 0.537255 0.435294 +v -40.584103 -19.038799 32.502396 0.819608 0.576471 0.474510 +v -10.270801 -27.988501 14.987799 0.760784 0.501961 0.447059 +v -20.882402 -54.889301 30.517797 0.729412 0.509804 0.392157 +v -35.545204 -55.400200 42.849697 0.627451 0.439216 0.337255 +v -49.520702 -48.135101 57.375698 0.533333 0.360784 0.282353 +v -47.788506 -54.890400 62.359497 0.466667 0.313725 0.243137 +v -55.262604 -28.814100 53.853397 0.572549 0.380392 0.305882 +v -55.605106 -42.532398 65.974190 0.466667 0.313725 0.247059 +v -55.941505 -35.714100 59.684597 0.529412 0.349020 0.282353 +v -57.457302 -19.495899 52.872997 0.568627 0.376471 0.301961 +v -69.852905 -2.797300 89.256996 0.333333 0.215686 0.168627 +v -70.631210 9.026070 81.100189 0.333333 0.211765 0.164706 +v -72.047607 10.667300 91.656296 0.305882 0.200000 0.160784 +v -65.526306 -21.184401 81.961395 0.352941 0.227451 0.176471 +v -66.953011 -10.110300 77.137192 0.368627 0.235294 0.180392 +v -61.182209 -27.386299 67.969193 0.447059 0.290196 0.227451 +v -67.878204 0.099053 71.940689 0.384314 0.243137 0.188235 +v -62.927803 -15.756000 64.638695 0.447059 0.286275 0.223529 +v -67.671104 -16.365200 92.531090 0.329412 0.215686 0.168627 +v -63.259407 -31.738800 86.818794 0.321569 0.211765 0.164706 +v -60.684906 -35.904400 75.737091 0.392157 0.258824 0.203922 +v -59.222309 -41.333500 80.770195 0.352941 0.235294 0.184314 +v -63.768204 -5.981940 60.569996 0.462745 0.294118 0.231373 +v -57.061104 -11.211700 48.339996 0.615686 0.407843 0.329412 +v -71.885208 24.282400 81.760689 0.294118 0.184314 0.149020 +v -73.277611 35.372601 88.210091 0.105882 0.070588 0.058824 +v -73.102806 23.570700 90.919289 0.247059 0.160784 0.129412 +v -74.068710 29.841700 94.291794 0.094118 0.062745 0.050980 +v -73.606911 22.268999 95.906693 0.137255 0.090196 0.074510 +v -72.477509 7.978640 98.615295 0.152941 0.101961 0.082353 +v -69.024506 -13.136300 99.036591 0.333333 0.215686 0.172549 +v -71.098709 -3.316490 100.109993 0.341176 0.223529 0.180392 +v -70.885109 -6.826520 103.005989 0.192157 0.125490 0.101961 +v -67.819908 -17.923401 100.792992 0.145098 0.094118 0.074510 +v -72.112007 0.218792 102.677994 0.180392 0.117647 0.094118 +v -44.566803 99.373398 43.969296 0.364706 0.243137 0.184314 +v -53.142704 92.472603 50.275696 0.345098 0.231373 0.176471 +v -53.622902 97.571404 53.947998 0.262745 0.176471 0.137255 +v -58.044403 92.007202 57.123795 0.121569 0.086275 0.066667 +v -48.604305 101.376999 49.915794 0.156863 0.105882 0.082353 +v -41.549603 104.077003 43.819798 0.172549 0.113725 0.086275 +v -71.393410 49.452900 78.631592 0.247059 0.168627 0.137255 +v -72.491310 48.692600 82.087189 0.094118 0.066667 0.054902 +v -49.436703 58.866501 33.259895 0.545098 0.364706 0.290196 +v -43.665604 60.113602 27.862896 0.592157 0.403922 0.325490 +v -37.226006 60.068802 23.153795 0.670588 0.474510 0.392157 +v -4.352591 16.224400 7.395720 0.682353 0.419608 0.337255 +v -70.843208 58.216900 75.191589 0.101961 0.074510 0.058824 +v -67.510704 71.916199 66.095291 0.133333 0.098039 0.078431 +v -69.946907 66.516602 71.206192 0.109804 0.078431 0.066667 +v -71.842804 37.894199 81.078789 0.254902 0.168627 0.137255 +v -63.468903 81.661102 60.812897 0.137255 0.094118 0.074510 +v -53.695305 98.844704 54.975895 0.129412 0.086275 0.066667 +v -11.574702 100.000999 25.843098 0.317647 0.211765 0.160784 +v -64.204407 -29.280001 98.039894 0.129412 0.086275 0.066667 +v -57.808506 -44.627602 86.710495 0.313725 0.207843 0.164706 +v -61.904308 -36.036499 93.323090 0.290196 0.192157 0.152941 +v -60.306007 -39.574100 93.578392 0.125490 0.082353 0.066667 +v -55.835407 -48.028099 86.987991 0.156863 0.105882 0.082353 +v -49.323906 -56.665699 77.172592 0.176471 0.117647 0.090196 +v -65.933609 -24.037500 96.256691 0.290196 0.188235 0.149020 +v -37.446705 33.968201 30.858696 0.407843 0.384314 0.380392 +v -39.703102 33.516899 32.215996 0.572549 0.533333 0.541176 +v -27.674603 33.585201 30.179197 0.356863 0.309804 0.290196 +v -23.713802 -35.788601 28.594898 0.482353 0.282353 0.235294 +v -3.734711 -35.148399 16.966900 0.596078 0.274510 0.290196 +v -3.894611 -38.155800 17.165199 0.756863 0.372549 0.407843 +v -8.034562 -35.082500 18.211599 0.584314 0.262745 0.282353 +v -8.452592 -38.003201 18.352200 0.713725 0.349020 0.380392 +v -13.179702 -35.288399 20.849298 0.541176 0.258824 0.270588 +v -13.330002 -37.864399 20.994598 0.635294 0.317647 0.337255 +v -17.577602 -35.332802 23.885798 0.447059 0.223529 0.223529 +v -17.583403 -37.785702 24.382399 0.549020 0.274510 0.278431 +v -21.285702 -34.999901 26.378998 0.474510 0.262745 0.231373 +v -21.699402 -38.312199 27.727598 0.564706 0.325490 0.294118 +v -21.295403 -34.956501 26.346899 0.486275 0.270588 0.239216 +v -14.235902 -31.116699 18.050999 0.666667 0.407843 0.368627 +v -6.377821 -27.889299 13.529899 0.796078 0.509804 0.466667 +v -17.588001 -35.285000 23.855999 0.427451 0.215686 0.211765 +v -18.272202 -33.384800 22.694597 0.576471 0.337255 0.298039 +v -13.185702 -35.228500 20.810898 0.533333 0.254902 0.266667 +v -13.791502 -33.117401 19.544298 0.596078 0.329412 0.313725 +v -8.025412 -35.018002 18.154800 0.576471 0.266667 0.282353 +v -9.206802 -33.017300 17.168400 0.631373 0.345098 0.337255 +v -3.731441 -35.080601 16.883200 0.596078 0.274510 0.290196 +v -5.548481 -33.276402 16.041901 0.643137 0.341176 0.337255 +v -2.653011 -33.159401 15.113800 0.650980 0.341176 0.341176 +v -2.764671 -31.169201 13.618300 0.705882 0.388235 0.384314 +v -5.831661 -30.993200 14.292099 0.698039 0.388235 0.380392 +v -4.266491 -41.302898 16.592800 0.807843 0.458824 0.490196 +v -8.956841 -41.049999 17.898399 0.749020 0.415686 0.439216 +v -9.671581 -30.964100 15.692699 0.686275 0.400000 0.376471 +v -13.864402 -40.635300 20.778898 0.654902 0.360784 0.364706 +v -18.022501 -40.030899 24.391897 0.603922 0.345098 0.325490 +v -36.597202 65.101097 24.312796 0.701961 0.478431 0.380392 +v -29.114101 63.241402 19.640799 0.772549 0.541176 0.447059 +v -21.118702 60.808300 16.469297 0.843137 0.607843 0.517647 +# 845 vertices, 0 vertices normals + +f 1 2 3 +f 4 5 6 +f 7 6 5 +f 8 7 9 +f 10 4 6 +f 3 12 13 +f 14 15 13 +f 14 16 17 +f 4 10 18 +f 17 16 19 +f 19 16 13 +f 5 4 17 +f 20 17 19 +f 21 19 22 +f 22 13 12 +f 23 24 25 +f 26 23 27 +f 10 6 11 +f 18 28 29 +f 14 29 30 +f 3 15 31 +f 32 20 21 +f 32 33 34 +f 27 25 33 +f 9 5 20 +f 35 36 37 +f 7 8 35 +f 31 15 30 +f 18 10 38 +f 39 40 41 +f 42 43 44 +f 45 46 47 +f 47 48 49 +f 45 47 50 +f 28 38 51 +f 46 45 52 +f 29 28 52 +f 53 31 30 +f 54 53 55 +f 56 54 57 +f 61 62 49 +f 61 48 63 +f 64 65 66 +f 67 68 69 +f 48 70 63 +f 71 72 70 +f 73 74 75 +f 64 76 77 +f 78 79 80 +f 79 81 82 +f 83 84 85 +f 84 86 87 +f 86 88 89 +f 91 60 92 +f 60 90 93 +f 94 89 95 +f 94 95 96 +f 94 96 97 +f 94 97 98 +f 94 98 99 +f 94 99 100 +f 94 100 101 +f 94 101 89 +f 101 100 102 +f 103 95 89 +f 104 105 106 +f 107 108 105 +f 112 109 106 +f 113 109 80 +f 115 116 117 +f 116 118 119 +f 119 120 121 +f 122 121 120 +f 124 125 126 +f 125 127 128 +f 127 118 116 +f 129 117 119 +f 130 131 132 +f 131 121 122 +f 120 133 134 +f 133 135 136 +f 135 137 138 +f 137 139 140 +f 141 126 128 +f 125 142 127 +f 144 142 125 +f 96 95 132 +f 139 145 146 +f 145 110 114 +f 110 147 114 +f 147 148 114 +f 147 82 148 +f 104 109 113 +f 144 107 149 +f 96 123 134 +f 120 143 150 +f 143 144 149 +f 151 152 153 +f 152 154 155 +f 100 146 114 +f 145 113 80 +f 78 112 156 +f 161 162 157 +f 166 167 168 +f 167 169 170 +f 169 160 159 +f 172 171 173 +f 190 192 182 +f 193 189 190 +f 189 194 192 +f 195 196 194 +f 188 197 196 +f 162 198 199 +f 198 191 182 +f 178 185 184 +f 202 199 182 +f 203 204 205 +f 203 183 206 +f 183 186 207 +f 186 187 208 +f 187 184 209 +f 184 185 210 +f 185 211 212 +f 213 211 178 +f 179 174 214 +f 174 175 215 +f 201 215 175 +f 216 217 218 +f 210 212 219 +f 209 210 220 +f 221 222 208 +f 223 224 219 +f 225 226 223 +f 227 228 226 +f 229 230 228 +f 229 231 232 +f 231 233 234 +f 233 235 236 +f 166 237 238 +f 165 239 237 +f 164 239 165 +f 240 241 239 +f 161 242 236 +f 243 157 244 +f 245 154 152 +f 246 135 133 +f 153 247 106 +f 106 247 156 +f 156 248 249 +f 248 250 251 +f 250 252 251 +f 250 44 43 +f 253 251 252 +f 82 74 65 +f 202 205 155 +f 214 215 187 +f 183 254 214 +f 182 180 179 +f 193 190 191 +f 189 193 235 +f 195 189 233 +f 188 195 231 +f 178 188 229 +f 178 225 213 +f 196 197 176 +f 194 196 173 +f 192 194 171 +f 182 192 181 +f 255 256 257 +f 258 37 36 +f 259 260 261 +f 262 259 255 +f 71 263 218 +f 264 72 71 +f 265 264 217 +f 266 265 216 +f 266 216 257 +f 150 149 267 +f 143 118 127 +f 144 125 124 +f 80 79 147 +f 109 104 106 +f 104 113 268 +f 105 104 269 +f 107 105 269 +f 106 105 108 +f 151 111 107 +f 267 149 107 +f 151 107 144 +f 268 113 145 +f 109 112 80 +f 270 246 267 +f 268 270 269 +f 270 268 139 +f 246 270 137 +f 119 118 143 +f 131 129 121 +f 136 98 97 +f 138 140 99 +f 100 99 140 +f 102 114 148 +f 101 102 77 +f 87 89 101 +f 89 88 271 +f 103 272 132 +f 129 131 130 +f 128 116 115 +f 126 141 273 +f 153 108 111 +f 211 213 223 +f 219 274 275 +f 220 219 275 +f 274 276 277 +f 275 274 278 +f 275 279 280 +f 281 282 280 +f 154 283 202 +f 155 205 204 +f 284 204 206 +f 285 206 207 +f 286 207 208 +f 221 220 287 +f 288 287 280 +f 286 222 250 +f 285 286 248 +f 284 285 156 +f 155 284 247 +f 182 203 205 +f 289 244 200 +f 244 289 290 +f 202 283 200 +f 276 274 219 +f 291 292 277 +f 293 291 276 +f 291 293 159 +f 294 291 160 +f 169 295 294 +f 158 157 243 +f 163 158 296 +f 240 163 297 +f 298 241 240 +f 241 298 299 +f 239 241 300 +f 237 239 301 +f 238 237 302 +f 295 238 303 +f 295 169 167 +f 294 295 304 +f 305 292 291 +f 305 294 306 +f 305 306 307 +f 292 305 308 +f 277 292 309 +f 278 277 310 +f 279 278 311 +f 312 281 279 +f 42 44 280 +f 313 314 315 +f 313 87 76 +f 87 313 85 +f 69 68 316 +f 66 69 317 +f 64 317 314 +f 77 148 65 +f 92 93 318 +f 319 56 57 +f 56 319 320 +f 57 321 62 +f 57 54 321 +f 54 56 322 +f 323 324 322 +f 325 323 322 +f 326 327 318 +f 253 328 318 +f 66 73 93 +f 93 73 75 +f 82 81 75 +f 82 147 79 +f 249 81 79 +f 253 249 251 +f 249 253 75 +f 85 313 329 +f 314 317 316 +f 76 87 77 +f 84 83 330 +f 86 84 331 +f 88 86 332 +f 36 261 260 +f 259 262 258 +f 259 333 256 +f 47 46 334 +f 55 335 50 +f 262 334 51 +f 334 262 218 +f 46 52 51 +f 11 37 258 +f 38 11 51 +f 335 29 45 +f 55 30 29 +f 53 54 324 +f 336 337 31 +f 91 61 60 +f 327 320 319 +f 326 325 320 +f 59 328 252 +f 325 338 323 +f 1 337 336 +f 339 336 324 +f 340 324 323 +f 338 325 58 +f 342 343 344 +f 345 346 342 +f 346 345 347 +f 348 346 349 +f 350 351 345 +f 345 351 352 +f 352 353 1 +f 347 352 339 +f 349 347 338 +f 354 349 341 +f 43 58 59 +f 355 58 43 +f 282 354 355 +f 281 348 354 +f 344 343 356 +f 343 342 346 +f 343 348 281 +f 356 343 312 +f 356 312 311 +f 357 358 356 +f 358 357 359 +f 344 358 360 +f 342 344 361 +f 362 350 342 +f 48 47 263 +f 49 62 321 +f 61 91 57 +f 61 49 48 +f 363 364 365 +f 366 364 363 +f 326 58 325 +f 326 59 58 +f 326 328 59 +f 183 182 254 +f 184 187 215 +f 303 367 368 +f 302 40 367 +f 369 370 307 +f 371 369 368 +f 372 371 367 +f 373 374 357 +f 301 41 40 +f 226 293 224 +f 228 159 293 +f 230 375 159 +f 232 376 375 +f 234 377 376 +f 234 236 377 +f 161 235 193 +f 162 200 244 +f 162 161 198 +f 242 161 158 +f 378 379 380 +f 245 289 283 +f 380 290 289 +f 378 124 273 +f 152 151 124 +f 381 382 383 +f 384 311 310 +f 381 374 373 +f 385 307 370 +f 308 307 385 +f 309 308 382 +f 373 310 309 +f 306 304 368 +f 352 351 353 +f 65 74 73 +f 82 65 148 +f 44 250 222 +f 288 222 221 +f 371 386 369 +f 387 300 299 +f 301 300 387 +f 386 370 369 +f 39 372 40 +f 388 117 129 +f 390 391 392 +f 390 393 394 +f 2 394 12 +f 391 395 389 +f 390 2 1 +f 390 353 351 +f 391 351 395 +f 395 351 350 +f 395 362 365 +f 397 175 396 +f 173 176 397 +f 397 178 177 +f 175 397 177 +f 180 398 174 +f 398 180 181 +f 178 397 176 +f 172 398 171 +f 172 173 396 +f 172 396 175 +f 399 68 67 +f 400 401 402 +f 403 404 401 +f 405 406 404 +f 407 408 406 +f 409 410 408 +f 399 410 409 +f 410 399 63 +f 413 315 316 +f 411 415 416 +f 415 417 418 +f 417 419 420 +f 419 421 422 +f 421 423 422 +f 421 424 425 +f 426 427 422 +f 426 83 414 +f 399 67 63 +f 266 428 429 +f 427 430 420 +f 70 410 63 +f 264 265 429 +f 72 264 431 +f 410 70 72 +f 406 408 432 +f 404 406 431 +f 401 404 429 +f 428 266 412 +f 402 401 428 +f 413 316 416 +f 430 413 418 +f 329 315 413 +f 414 329 430 +f 433 426 423 +f 330 83 426 +f 159 375 170 +f 375 376 168 +f 376 377 434 +f 435 434 377 +f 165 166 434 +f 164 165 435 +f 436 163 164 +f 436 435 236 +f 436 242 158 +f 1 3 337 +f 7 5 9 +f 8 9 34 +f 11 6 37 +f 3 13 15 +f 14 13 16 +f 14 17 18 +f 4 18 17 +f 19 13 22 +f 5 17 20 +f 20 19 21 +f 21 22 26 +f 23 25 27 +f 26 27 21 +f 10 11 38 +f 18 29 14 +f 14 30 15 +f 3 31 337 +f 32 21 27 +f 32 34 9 +f 27 33 32 +f 9 20 32 +f 35 37 6 +f 35 6 7 +f 18 38 28 +f 47 49 50 +f 45 50 335 +f 28 51 52 +f 29 52 45 +f 53 30 55 +f 54 55 321 +f 60 61 67 +f 61 63 67 +f 67 69 90 +f 71 70 48 +f 64 77 65 +f 78 80 112 +f 83 85 414 +f 84 87 85 +f 86 89 87 +f 67 90 60 +f 91 92 319 +f 60 93 92 +f 103 89 437 +f 115 117 388 +f 116 119 117 +f 119 121 129 +f 122 120 123 +f 123 96 122 +f 124 126 273 +f 125 128 126 +f 127 116 128 +f 130 132 272 +f 131 122 132 +f 120 134 123 +f 133 136 134 +f 135 138 136 +f 137 140 138 +f 141 128 438 +f 143 142 144 +f 96 132 122 +f 139 146 140 +f 145 114 146 +f 96 134 97 +f 120 150 133 +f 143 149 150 +f 151 153 111 +f 152 155 153 +f 108 107 111 +f 100 114 102 +f 145 80 110 +f 157 158 161 +f 164 163 240 +f 167 170 168 +f 169 159 170 +f 182 183 203 +f 188 178 197 +f 190 182 191 +f 189 192 190 +f 195 194 189 +f 188 196 195 +f 162 199 200 +f 198 182 199 +f 178 201 177 +f 178 184 201 +f 202 182 205 +f 203 206 204 +f 183 207 206 +f 186 208 207 +f 187 209 208 +f 184 210 209 +f 185 212 210 +f 179 214 254 +f 174 215 214 +f 201 175 177 +f 216 218 255 +f 210 219 220 +f 209 220 221 +f 221 208 209 +f 178 211 185 +f 223 219 212 +f 225 223 213 +f 227 226 225 +f 229 228 227 +f 229 232 230 +f 231 234 232 +f 233 236 234 +f 166 238 167 +f 165 237 166 +f 240 239 164 +f 161 236 235 +f 243 244 439 +f 245 152 378 +f 246 133 150 +f 153 106 108 +f 106 156 112 +f 156 249 78 +f 248 251 249 +f 250 43 252 +f 253 252 328 +f 214 187 186 +f 183 214 186 +f 182 179 254 +f 193 191 198 +f 189 235 233 +f 195 233 231 +f 188 231 229 +f 178 229 227 +f 178 227 225 +f 197 178 176 +f 196 176 173 +f 194 173 171 +f 192 171 181 +f 182 181 180 +f 255 257 216 +f 258 36 260 +f 259 261 333 +f 262 255 218 +f 71 218 217 +f 264 71 217 +f 265 217 216 +f 266 257 412 +f 150 267 246 +f 143 127 142 +f 144 124 151 +f 80 147 110 +f 107 269 267 +f 268 145 139 +f 270 267 269 +f 268 269 104 +f 270 139 137 +f 246 137 135 +f 119 143 120 +f 136 97 134 +f 98 136 138 +f 138 99 98 +f 100 140 146 +f 102 148 77 +f 101 77 87 +f 89 271 437 +f 103 132 95 +f 129 130 440 +f 128 115 438 +f 211 223 212 +f 220 275 287 +f 274 277 278 +f 275 278 279 +f 275 280 287 +f 281 280 279 +f 154 202 155 +f 155 204 284 +f 284 206 285 +f 285 207 286 +f 286 208 222 +f 221 287 288 +f 288 280 44 +f 286 250 248 +f 285 248 156 +f 284 156 247 +f 155 247 153 +f 289 200 283 +f 244 290 439 +f 202 200 199 +f 276 219 224 +f 291 277 276 +f 293 276 224 +f 291 159 160 +f 169 294 160 +f 158 243 296 +f 163 296 297 +f 240 297 441 +f 298 240 441 +f 241 299 300 +f 239 300 301 +f 237 301 302 +f 238 302 303 +f 295 303 304 +f 295 167 238 +f 294 304 306 +f 305 291 294 +f 305 307 308 +f 292 308 309 +f 277 309 310 +f 278 310 311 +f 279 311 312 +f 42 280 282 +f 313 315 329 +f 313 76 314 +f 69 316 317 +f 66 317 64 +f 64 314 76 +f 92 318 327 +f 319 57 91 +f 56 320 322 +f 54 322 324 +f 325 322 320 +f 326 318 328 +f 253 318 75 +f 90 69 66 +f 66 93 90 +f 93 75 318 +f 82 75 74 +f 249 79 78 +f 249 75 81 +f 85 329 414 +f 314 316 315 +f 84 330 331 +f 86 331 332 +f 88 332 271 +f 259 258 260 +f 259 256 255 +f 47 334 263 +f 55 50 321 +f 262 51 258 +f 334 218 263 +f 46 51 334 +f 11 258 51 +f 55 29 335 +f 53 324 336 +f 336 31 53 +f 327 319 92 +f 326 320 327 +f 1 336 339 +f 339 324 340 +f 340 323 338 +f 338 58 341 +f 341 58 355 +f 345 342 350 +f 346 347 349 +f 348 349 354 +f 345 352 347 +f 352 1 339 +f 347 339 340 +f 347 340 338 +f 349 338 341 +f 354 341 355 +f 43 59 252 +f 355 43 42 +f 282 355 42 +f 281 354 282 +f 344 356 358 +f 343 346 348 +f 343 281 312 +f 356 311 384 +f 357 356 384 +f 358 359 360 +f 344 360 361 +f 342 361 363 +f 362 342 363 +f 48 263 71 +f 49 321 50 +f 61 57 62 +f 363 365 362 +f 184 215 201 +f 303 368 304 +f 302 367 303 +f 369 307 368 +f 371 368 367 +f 372 367 40 +f 373 357 384 +f 301 40 302 +f 226 224 223 +f 228 293 226 +f 230 159 228 +f 232 375 230 +f 234 376 232 +f 161 193 198 +f 162 244 157 +f 378 380 245 +f 245 283 154 +f 380 289 245 +f 378 273 379 +f 152 124 378 +f 384 310 373 +f 308 385 382 +f 309 382 381 +f 373 309 381 +f 306 368 307 +f 65 73 66 +f 44 222 288 +f 387 299 442 +f 301 387 41 +f 388 129 440 +f 390 392 393 +f 390 394 2 +f 2 12 3 +f 391 389 392 +f 390 1 353 +f 390 351 391 +f 395 350 362 +f 395 365 389 +f 173 397 396 +f 180 174 179 +f 398 181 171 +f 172 175 174 +f 172 174 398 +f 400 402 443 +f 403 401 400 +f 405 404 403 +f 407 406 405 +f 409 408 407 +f 411 68 399 +f 411 416 68 +f 415 418 416 +f 417 420 418 +f 419 422 420 +f 421 425 423 +f 426 422 423 +f 426 414 427 +f 266 429 265 +f 427 420 422 +f 264 429 431 +f 72 431 432 +f 410 72 432 +f 408 410 432 +f 406 432 431 +f 404 431 429 +f 401 429 428 +f 428 412 444 +f 402 428 444 +f 413 416 418 +f 430 418 420 +f 316 68 416 +f 329 413 430 +f 414 430 427 +f 433 423 425 +f 330 426 433 +f 375 168 170 +f 376 434 168 +f 435 377 236 +f 166 168 434 +f 165 434 435 +f 164 435 436 +f 436 236 242 +f 436 158 163 +f 363 361 366 +f 445 447 446 +f 448 450 449 +f 451 449 450 +f 8 452 451 +f 453 450 448 +f 447 456 455 +f 457 456 458 +f 457 460 459 +f 448 461 453 +f 460 462 459 +f 462 456 459 +f 449 460 448 +f 463 462 460 +f 464 465 462 +f 465 455 456 +f 466 25 24 +f 467 468 466 +f 453 454 450 +f 461 470 469 +f 457 471 470 +f 447 472 458 +f 473 464 463 +f 473 34 33 +f 468 33 25 +f 452 463 449 +f 35 474 36 +f 451 35 8 +f 472 471 458 +f 461 475 453 +f 476 478 477 +f 479 481 480 +f 482 484 483 +f 484 486 485 +f 482 487 484 +f 469 488 475 +f 483 489 482 +f 470 489 469 +f 490 471 472 +f 491 492 490 +f 493 494 491 +f 498 486 499 +f 498 500 485 +f 501 503 502 +f 504 506 505 +f 485 500 507 +f 508 507 509 +f 510 512 511 +f 501 514 513 +f 515 517 516 +f 516 519 518 +f 520 522 521 +f 521 524 523 +f 523 526 525 +f 528 529 497 +f 497 530 527 +f 531 532 526 +f 531 533 532 +f 531 534 533 +f 531 535 534 +f 531 536 535 +f 531 537 536 +f 531 538 537 +f 531 526 538 +f 538 539 537 +f 103 526 532 +f 540 542 541 +f 543 541 544 +f 548 542 545 +f 549 517 545 +f 115 552 551 +f 551 554 553 +f 554 556 555 +f 557 555 556 +f 559 561 560 +f 560 563 562 +f 562 551 553 +f 564 554 552 +f 130 566 565 +f 565 557 556 +f 555 568 567 +f 567 570 569 +f 569 572 571 +f 571 574 573 +f 141 563 561 +f 560 562 575 +f 577 560 575 +f 533 566 532 +f 573 579 578 +f 578 550 546 +f 546 550 580 +f 580 550 581 +f 580 581 519 +f 540 549 545 +f 577 582 543 +f 533 568 558 +f 555 583 576 +f 576 582 577 +f 584 586 585 +f 585 588 587 +f 537 550 579 +f 578 517 549 +f 515 589 548 +f 594 590 595 +f 599 601 600 +f 600 603 602 +f 602 592 593 +f 605 606 604 +f 623 615 625 +f 626 623 622 +f 622 625 627 +f 628 627 629 +f 621 629 630 +f 595 632 631 +f 631 615 624 +f 611 617 618 +f 635 615 632 +f 636 638 637 +f 636 639 616 +f 616 640 619 +f 619 641 620 +f 620 642 617 +f 617 643 618 +f 618 645 644 +f 646 611 644 +f 612 647 607 +f 607 648 608 +f 634 608 648 +f 649 651 650 +f 643 652 645 +f 642 653 643 +f 654 641 655 +f 656 652 657 +f 658 656 659 +f 660 659 661 +f 662 661 663 +f 662 665 664 +f 664 667 666 +f 666 669 668 +f 599 671 670 +f 598 670 672 +f 597 598 672 +f 673 672 674 +f 594 669 675 +f 243 676 590 +f 677 585 587 +f 678 567 569 +f 586 542 679 +f 542 589 679 +f 589 681 680 +f 680 683 682 +f 682 683 684 +f 682 480 481 +f 685 684 683 +f 519 502 511 +f 635 588 638 +f 647 620 648 +f 616 647 686 +f 615 612 613 +f 626 624 623 +f 622 668 626 +f 628 666 622 +f 621 664 628 +f 611 662 621 +f 611 646 658 +f 629 609 630 +f 627 606 629 +f 625 604 627 +f 615 614 625 +f 687 257 256 +f 688 36 474 +f 689 261 690 +f 691 687 689 +f 508 651 692 +f 693 508 509 +f 694 650 693 +f 695 649 694 +f 695 257 649 +f 583 696 582 +f 576 562 553 +f 577 559 560 +f 517 580 516 +f 545 542 540 +f 540 697 549 +f 541 698 540 +f 543 698 541 +f 542 544 541 +f 584 543 547 +f 696 543 582 +f 584 577 543 +f 697 578 549 +f 545 517 548 +f 699 696 678 +f 697 698 699 +f 699 573 697 +f 678 571 699 +f 554 576 553 +f 565 556 564 +f 570 534 535 +f 572 536 574 +f 537 574 536 +f 539 581 550 +f 538 514 539 +f 524 538 526 +f 526 271 525 +f 103 566 272 +f 564 130 565 +f 563 115 551 +f 561 273 141 +f 586 547 544 +f 644 656 646 +f 652 701 700 +f 653 701 652 +f 700 703 702 +f 701 704 700 +f 701 706 705 +f 707 706 708 +f 587 635 709 +f 588 637 638 +f 710 639 637 +f 711 640 639 +f 712 641 640 +f 654 713 653 +f 714 706 713 +f 712 682 655 +f 711 680 712 +f 710 589 711 +f 588 679 710 +f 615 638 636 +f 715 633 676 +f 676 290 715 +f 635 633 709 +f 702 652 700 +f 716 703 717 +f 718 702 716 +f 716 592 718 +f 719 593 716 +f 602 719 720 +f 591 243 590 +f 596 296 591 +f 673 297 596 +f 298 673 674 +f 674 299 298 +f 672 721 674 +f 670 722 672 +f 671 723 670 +f 720 724 671 +f 720 600 602 +f 719 725 720 +f 726 716 717 +f 726 727 719 +f 726 728 727 +f 717 729 726 +f 703 730 717 +f 704 731 703 +f 705 732 704 +f 733 705 707 +f 479 706 481 +f 734 736 735 +f 734 513 524 +f 524 522 734 +f 506 737 505 +f 503 738 506 +f 501 735 738 +f 514 502 581 +f 529 739 530 +f 740 494 493 +f 493 741 740 +f 494 499 742 +f 494 742 491 +f 491 743 493 +f 744 743 745 +f 746 743 744 +f 747 739 748 +f 685 739 749 +f 503 530 510 +f 530 512 510 +f 519 512 518 +f 519 516 580 +f 681 516 518 +f 685 683 681 +f 681 512 685 +f 522 750 734 +f 735 737 738 +f 513 514 524 +f 521 330 520 +f 523 331 521 +f 525 332 523 +f 36 690 261 +f 689 688 691 +f 689 256 333 +f 484 751 483 +f 492 487 752 +f 691 488 751 +f 751 651 691 +f 483 488 489 +f 454 688 474 +f 475 488 454 +f 752 482 470 +f 492 470 471 +f 490 745 491 +f 753 472 754 +f 528 497 498 +f 748 740 741 +f 747 741 746 +f 496 684 749 +f 746 744 755 +f 445 753 754 +f 756 745 753 +f 757 744 745 +f 755 495 746 +f 759 761 760 +f 762 759 763 +f 763 764 762 +f 765 766 763 +f 767 762 768 +f 762 769 768 +f 769 445 770 +f 764 756 769 +f 766 755 764 +f 771 758 766 +f 480 496 495 +f 772 480 495 +f 708 772 771 +f 707 771 765 +f 761 773 760 +f 760 763 759 +f 760 707 765 +f 773 733 760 +f 773 732 733 +f 774 773 775 +f 775 776 774 +f 761 777 775 +f 759 778 761 +f 779 759 767 +f 485 692 484 +f 486 742 499 +f 498 494 528 +f 498 485 486 +f 780 782 781 +f 783 780 781 +f 747 746 495 +f 747 495 496 +f 747 496 749 +f 616 686 615 +f 617 648 620 +f 724 785 784 +f 723 784 477 +f 786 728 787 +f 788 785 786 +f 789 784 788 +f 790 774 791 +f 722 477 478 +f 659 657 718 +f 661 718 592 +f 663 592 792 +f 665 792 793 +f 667 793 794 +f 667 794 669 +f 594 626 668 +f 595 676 633 +f 595 631 594 +f 675 591 594 +f 795 380 379 +f 677 709 715 +f 380 715 290 +f 795 273 559 +f 585 559 584 +f 796 798 797 +f 799 731 732 +f 796 790 791 +f 800 787 728 +f 729 800 728 +f 730 797 729 +f 790 730 731 +f 727 785 725 +f 769 770 768 +f 502 510 511 +f 519 581 502 +f 481 655 682 +f 714 654 655 +f 788 786 801 +f 802 299 721 +f 722 802 721 +f 801 786 787 +f 476 477 789 +f 388 564 552 +f 804 806 805 +f 804 808 807 +f 446 455 808 +f 805 803 809 +f 804 445 446 +f 804 768 770 +f 805 809 768 +f 809 767 768 +f 809 782 779 +f 811 810 608 +f 606 811 609 +f 811 610 611 +f 608 610 811 +f 613 607 812 +f 812 614 613 +f 611 609 811 +f 605 604 812 +f 605 810 606 +f 605 608 810 +f 813 504 505 +f 814 402 815 +f 816 815 817 +f 818 817 819 +f 820 819 821 +f 822 821 823 +f 813 822 823 +f 823 500 813 +f 825 737 736 +f 824 828 827 +f 827 830 829 +f 829 832 831 +f 831 834 833 +f 833 834 835 +f 833 425 424 +f 836 834 837 +f 836 826 520 +f 813 500 504 +f 695 839 838 +f 837 832 840 +f 507 500 823 +f 693 839 694 +f 509 841 693 +f 823 509 507 +f 819 842 821 +f 817 841 819 +f 815 839 817 +f 838 412 695 +f 402 838 815 +f 825 828 737 +f 840 830 825 +f 750 825 736 +f 826 840 750 +f 433 835 836 +f 330 836 520 +f 592 603 792 +f 792 601 793 +f 793 843 794 +f 844 794 843 +f 598 843 599 +f 597 844 598 +f 845 597 596 +f 845 669 844 +f 845 591 675 +f 445 754 447 +f 451 452 449 +f 8 34 452 +f 454 474 450 +f 447 458 456 +f 457 459 456 +f 457 461 460 +f 448 460 461 +f 462 465 456 +f 449 463 460 +f 463 464 462 +f 464 467 465 +f 466 468 25 +f 467 464 468 +f 453 475 454 +f 461 457 470 +f 457 458 471 +f 447 754 472 +f 473 468 464 +f 473 452 34 +f 468 473 33 +f 452 473 463 +f 35 450 474 +f 35 451 450 +f 461 469 475 +f 484 487 486 +f 482 752 487 +f 469 489 488 +f 470 482 489 +f 490 492 471 +f 491 742 492 +f 497 504 498 +f 498 504 500 +f 504 527 506 +f 508 485 507 +f 501 502 514 +f 515 548 517 +f 520 826 522 +f 521 522 524 +f 523 524 526 +f 504 497 527 +f 528 740 529 +f 497 529 530 +f 103 437 526 +f 115 388 552 +f 551 552 554 +f 554 564 556 +f 557 558 555 +f 558 557 533 +f 559 273 561 +f 560 561 563 +f 562 563 551 +f 130 272 566 +f 565 566 557 +f 555 558 568 +f 567 568 570 +f 569 570 572 +f 571 572 574 +f 141 438 563 +f 576 577 575 +f 533 557 566 +f 573 574 579 +f 578 579 550 +f 533 534 568 +f 555 567 583 +f 576 583 582 +f 584 547 586 +f 585 586 588 +f 544 547 543 +f 537 539 550 +f 578 546 517 +f 590 594 591 +f 597 673 596 +f 600 601 603 +f 602 603 592 +f 615 636 616 +f 621 630 611 +f 623 624 615 +f 622 623 625 +f 628 622 627 +f 621 628 629 +f 595 633 632 +f 631 632 615 +f 611 610 634 +f 611 634 617 +f 635 638 615 +f 636 637 639 +f 616 639 640 +f 619 640 641 +f 620 641 642 +f 617 642 643 +f 618 643 645 +f 612 686 647 +f 607 647 648 +f 634 610 608 +f 649 687 651 +f 643 653 652 +f 642 654 653 +f 654 642 641 +f 611 618 644 +f 656 645 652 +f 658 646 656 +f 660 658 659 +f 662 660 661 +f 662 663 665 +f 664 665 667 +f 666 667 669 +f 599 600 671 +f 598 599 670 +f 673 597 672 +f 594 668 669 +f 243 439 676 +f 677 795 585 +f 678 583 567 +f 586 544 542 +f 542 548 589 +f 589 515 681 +f 680 681 683 +f 682 684 480 +f 685 749 684 +f 647 619 620 +f 616 619 647 +f 615 686 612 +f 626 631 624 +f 622 666 668 +f 628 664 666 +f 621 662 664 +f 611 660 662 +f 611 658 660 +f 630 609 611 +f 629 606 609 +f 627 604 606 +f 625 614 604 +f 615 613 614 +f 687 649 257 +f 688 690 36 +f 689 333 261 +f 691 651 687 +f 508 650 651 +f 693 650 508 +f 694 649 650 +f 695 412 257 +f 583 678 696 +f 576 575 562 +f 577 584 559 +f 517 546 580 +f 543 696 698 +f 697 573 578 +f 699 698 696 +f 697 540 698 +f 699 571 573 +f 678 569 571 +f 554 555 576 +f 570 568 534 +f 535 572 570 +f 572 535 536 +f 537 579 574 +f 539 514 581 +f 538 524 514 +f 526 437 271 +f 103 532 566 +f 564 440 130 +f 563 438 115 +f 644 645 656 +f 653 713 701 +f 700 704 703 +f 701 705 704 +f 701 713 706 +f 707 705 706 +f 587 588 635 +f 588 710 637 +f 710 711 639 +f 711 712 640 +f 712 655 641 +f 654 714 713 +f 714 481 706 +f 712 680 682 +f 711 589 680 +f 710 679 589 +f 588 586 679 +f 715 709 633 +f 676 439 290 +f 635 632 633 +f 702 657 652 +f 716 702 703 +f 718 657 702 +f 716 593 592 +f 602 593 719 +f 591 296 243 +f 596 297 296 +f 673 441 297 +f 298 441 673 +f 674 721 299 +f 672 722 721 +f 670 723 722 +f 671 724 723 +f 720 725 724 +f 720 671 600 +f 719 727 725 +f 726 719 716 +f 726 729 728 +f 717 730 729 +f 703 731 730 +f 704 732 731 +f 705 733 732 +f 479 708 706 +f 734 750 736 +f 734 735 513 +f 506 738 737 +f 503 501 738 +f 501 513 735 +f 529 748 739 +f 740 528 494 +f 493 743 741 +f 491 745 743 +f 746 741 743 +f 747 749 739 +f 685 512 739 +f 527 503 506 +f 503 527 530 +f 530 739 512 +f 519 511 512 +f 681 515 516 +f 681 518 512 +f 522 826 750 +f 735 736 737 +f 521 331 330 +f 523 332 331 +f 525 271 332 +f 689 690 688 +f 689 687 256 +f 484 692 751 +f 492 742 487 +f 691 688 488 +f 751 692 651 +f 483 751 488 +f 454 488 688 +f 492 752 470 +f 490 753 745 +f 753 490 472 +f 748 529 740 +f 747 748 741 +f 445 756 753 +f 756 757 745 +f 757 755 744 +f 755 758 495 +f 758 772 495 +f 762 767 759 +f 763 766 764 +f 765 771 766 +f 762 764 769 +f 769 756 445 +f 764 757 756 +f 764 755 757 +f 766 758 755 +f 771 772 758 +f 480 684 496 +f 772 479 480 +f 708 479 772 +f 707 708 771 +f 761 775 773 +f 760 765 763 +f 760 733 707 +f 773 799 732 +f 774 799 773 +f 775 777 776 +f 761 778 777 +f 759 780 778 +f 779 780 759 +f 485 508 692 +f 486 487 742 +f 498 499 494 +f 780 779 782 +f 617 634 648 +f 724 725 785 +f 723 724 784 +f 786 785 728 +f 788 784 785 +f 789 477 784 +f 790 799 774 +f 722 723 477 +f 659 656 657 +f 661 659 718 +f 663 661 592 +f 665 663 792 +f 667 665 793 +f 594 631 626 +f 595 590 676 +f 795 677 380 +f 677 587 709 +f 380 677 715 +f 795 379 273 +f 585 795 559 +f 799 790 731 +f 729 797 800 +f 730 796 797 +f 790 796 730 +f 727 728 785 +f 502 503 510 +f 481 714 655 +f 802 442 299 +f 722 478 802 +f 388 440 564 +f 804 807 806 +f 804 446 808 +f 446 447 455 +f 805 806 803 +f 804 770 445 +f 804 805 768 +f 809 779 767 +f 809 803 782 +f 606 810 811 +f 613 612 607 +f 812 604 614 +f 605 607 608 +f 605 812 607 +f 814 443 402 +f 816 814 815 +f 818 816 817 +f 820 818 819 +f 822 820 821 +f 824 813 505 +f 824 505 828 +f 827 828 830 +f 829 830 832 +f 831 832 834 +f 833 835 425 +f 836 835 834 +f 836 837 826 +f 695 694 839 +f 837 834 832 +f 693 841 839 +f 509 842 841 +f 823 842 509 +f 821 842 823 +f 819 841 842 +f 817 839 841 +f 815 838 839 +f 838 444 412 +f 402 444 838 +f 825 830 828 +f 840 832 830 +f 737 828 505 +f 750 840 825 +f 826 837 840 +f 433 425 835 +f 330 433 836 +f 792 603 601 +f 793 601 843 +f 844 669 794 +f 599 843 601 +f 598 844 843 +f 597 845 844 +f 845 675 669 +f 845 596 591 +f 780 783 778 +# 1610 faces, 0 coords texture + +# End of File diff --git a/demos/model3D/files/source.txt b/demos/model3D/files/source.txt new file mode 100644 index 0000000000000000000000000000000000000000..6d164a4f1659327a6cd6faacdf7afbb840457342 --- /dev/null +++ b/demos/model3D/files/source.txt @@ -0,0 +1,9 @@ +Stanford Bunny: +https://graphics.stanford.edu/data/3Dscanrep/ +https://graphics.stanford.edu/~mdfisher/Data/Meshes/bunny.obj + +Duck & Fox: +https://github.com/KhronosGroup/glTF-Sample-Models + +Face: +https://github.com/mikedh/trimesh/tree/main/models \ No newline at end of file diff --git a/demos/model3D/run.py b/demos/model3D/run.py new file mode 100644 index 0000000000000000000000000000000000000000..40438e48d203a9053720e1017c2a620029d743fc --- /dev/null +++ b/demos/model3D/run.py @@ -0,0 +1,29 @@ +import time +import gradio as gr +import os + + +def load_mesh(mesh_file_name): + time.sleep(2) + return mesh_file_name, mesh_file_name + + +demo = gr.Interface( + fn=load_mesh, + inputs=gr.Model3D(), + outputs=[ + gr.Model3D( + clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model"), + gr.File(label="Download 3D Model") + ], + examples=[ + [os.path.join(os.path.dirname(__file__), "files/Bunny.obj")], + [os.path.join(os.path.dirname(__file__), "files/Duck.glb")], + [os.path.join(os.path.dirname(__file__), "files/Fox.gltf")], + [os.path.join(os.path.dirname(__file__), "files/face.obj")], + ], + cache_examples=True, +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/ner_pipeline/requirements.txt b/demos/ner_pipeline/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..39dab0fdd98d55da5ce06ddf1dacbdbda14b1372 --- /dev/null +++ b/demos/ner_pipeline/requirements.txt @@ -0,0 +1,2 @@ +torch +transformers \ No newline at end of file diff --git a/demos/ner_pipeline/run.py b/demos/ner_pipeline/run.py new file mode 100644 index 0000000000000000000000000000000000000000..f131632aec5a38a6e8b3839ac50979d29779fe3b --- /dev/null +++ b/demos/ner_pipeline/run.py @@ -0,0 +1,21 @@ +from transformers import pipeline + +import gradio as gr + +ner_pipeline = pipeline("ner") + +examples = [ + "Does Chicago have any stores and does Joe live here?", +] + +def ner(text): + output = ner_pipeline(text) + return {"text": text, "entities": output} + +demo = gr.Interface(ner, + gr.Textbox(placeholder="Enter sentence here..."), + gr.HighlightedText(), + examples=examples) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/no_input/run.py b/demos/no_input/run.py new file mode 100644 index 0000000000000000000000000000000000000000..c1d9344d7902f7673af289d5f04ab706f924178b --- /dev/null +++ b/demos/no_input/run.py @@ -0,0 +1,18 @@ +import gradio as gr +import random + +sentence_list = [ + "Good morning!", + "Prayers are with you, have a safe day!", + "I love you!" +] + + +def random_sentence(): + return sentence_list[random.randint(0, 2)] + + +demo = gr.Interface(fn=random_sentence, inputs=None, outputs="text") + +if __name__ == "__main__": + demo.launch() diff --git a/demos/outbreak_forecast/config.json b/demos/outbreak_forecast/config.json new file mode 100644 index 0000000000000000000000000000000000000000..64bf6b23213953885e8c4710c55892ba3d667208 --- /dev/null +++ b/demos/outbreak_forecast/config.json @@ -0,0 +1,442 @@ +{ + "version": "3.1.1\n", + "mode": "interface", + "dev_mode": true, + "components": [ + { + "id": 7, + "type": "row", + "props": { + "type": "row", + "visible": true, + "style": { + "equal_height": false, + "mobile_collapse": true + } + } + }, + { + "id": 8, + "type": "column", + "props": { + "type": "column", + "variant": "panel", + "visible": true, + "style": {} + } + }, + { + "id": 9, + "type": "column", + "props": { + "type": "column", + "variant": "default", + "visible": true, + "style": {} + } + }, + { + "id": 0, + "type": "dropdown", + "props": { + "choices": [ + "Matplotlib", + "Plotly", + "Bokeh" + ], + "label": "Plot Type", + "show_label": true, + "name": "dropdown", + "visible": true, + "style": {} + } + }, + { + "id": 1, + "type": "slider", + "props": { + "minimum": 1, + "maximum": 4, + "step": 0.01, + "value": 3.2, + "label": "R", + "show_label": true, + "name": "slider", + "visible": true, + "style": {} + } + }, + { + "id": 2, + "type": "dropdown", + "props": { + "choices": [ + "January", + "February", + "March", + "April", + "May" + ], + "label": "Month", + "show_label": true, + "name": "dropdown", + "visible": true, + "style": {} + } + }, + { + "id": 3, + "type": "checkboxgroup", + "props": { + "choices": [ + "USA", + "Canada", + "Mexico", + "UK" + ], + "value": [ + "USA", + "Canada" + ], + "label": "Countries", + "show_label": true, + "name": "checkboxgroup", + "visible": true, + "style": {} + } + }, + { + "id": 4, + "type": "checkbox", + "props": { + "value": false, + "label": "Social Distancing?", + "show_label": true, + "name": "checkbox", + "visible": true, + "style": {} + } + }, + { + "id": 10, + "type": "row", + "props": { + "type": "row", + "visible": true, + "style": { + "mobile_collapse": false + } + } + }, + { + "id": 11, + "type": "button", + "props": { + "value": "Clear", + "variant": "secondary", + "name": "button", + "visible": true, + "style": {} + } + }, + { + "id": 12, + "type": "button", + "props": { + "value": "Submit", + "variant": "primary", + "name": "button", + "visible": true, + "style": {} + } + }, + { + "id": 13, + "type": "column", + "props": { + "type": "column", + "variant": "panel", + "visible": true, + "style": {} + } + }, + { + "id": 14, + "type": "statustracker", + "props": { + "cover_container": true, + "name": "statustracker", + "visible": true, + "style": {} + } + }, + { + "id": 5, + "type": "plot", + "props": { + "label": "output", + "show_label": true, + "interactive": false, + "name": "plot", + "visible": true, + "style": {} + } + }, + { + "id": 15, + "type": "row", + "props": { + "type": "row", + "visible": true, + "style": { + "mobile_collapse": false + } + } + }, + { + "id": 16, + "type": "button", + "props": { + "value": "Flag", + "variant": "secondary", + "name": "button", + "visible": true, + "style": {} + } + }, + { + "id": 17, + "type": "dataset", + "props": { + "components": [ + "dropdown", + "slider", + "dropdown", + "checkboxgroup", + "checkbox" + ], + "headers": [ + "Plot Type", + "R", + "Month", + "Countries", + "Social Distancing?" + ], + "samples": [ + [ + "Matplotlib", + 2, + "March", + [ + "Mexico", + "UK" + ], + true + ], + [ + "Plotly", + 3.6, + "February", + [ + "Canada", + "Mexico", + "UK" + ], + false + ], + [ + "Bokeh", + 1.2, + "May", + [ + "UK" + ], + true + ] + ], + "type": "index", + "name": "dataset", + "visible": true, + "style": {} + } + } + ], + "theme": "default", + "css": null, + "title": "Gradio", + "enable_queue": false, + "layout": { + "id": 6, + "children": [ + { + "id": 7, + "children": [ + { + "id": 8, + "children": [ + { + "id": 9, + "children": [ + { + "id": 0 + }, + { + "id": 1 + }, + { + "id": 2 + }, + { + "id": 3 + }, + { + "id": 4 + } + ] + }, + { + "id": 10, + "children": [ + { + "id": 11 + }, + { + "id": 12 + } + ] + } + ] + }, + { + "id": 13, + "children": [ + { + "id": 14 + }, + { + "id": 5 + }, + { + "id": 15, + "children": [ + { + "id": 16 + } + ] + } + ] + } + ] + }, + { + "id": 17 + } + ] + }, + "dependencies": [ + { + "targets": [ + 12 + ], + "trigger": "click", + "inputs": [ + 0, + 1, + 2, + 3, + 4 + ], + "outputs": [ + 5 + ], + "backend_fn": true, + "js": null, + "status_tracker": 14, + "queue": null, + "api_name": "predict", + "scroll_to_output": true, + "show_progress": true, + "documentation": [ + [ + null, + null, + null, + null, + null + ], + [ + null + ] + ] + }, + { + "targets": [ + 11 + ], + "trigger": "click", + "inputs": [], + "outputs": [ + 0, + 1, + 2, + 3, + 4, + 5, + 9 + ], + "backend_fn": false, + "js": "() => [null, 3.2, null, [], null, null, {\"variant\": null, \"visible\": true, \"__type__\": \"update\"}]\n ", + "status_tracker": null, + "queue": null, + "api_name": null, + "scroll_to_output": false, + "show_progress": true + }, + { + "targets": [ + 16 + ], + "trigger": "click", + "inputs": [ + 0, + 1, + 2, + 3, + 4, + 5 + ], + "outputs": [], + "backend_fn": true, + "js": null, + "status_tracker": null, + "queue": false, + "api_name": null, + "scroll_to_output": false, + "show_progress": true + }, + { + "targets": [ + 17 + ], + "trigger": "click", + "inputs": [ + 17 + ], + "outputs": [ + 0, + 1, + 2, + 3, + 4, + 5 + ], + "backend_fn": true, + "js": null, + "status_tracker": null, + "queue": false, + "api_name": null, + "scroll_to_output": false, + "show_progress": true + } + ] +} \ No newline at end of file diff --git a/demos/outbreak_forecast/requirements.txt b/demos/outbreak_forecast/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..aad0724c8d9833f6dbd603041b4f9c158411411f --- /dev/null +++ b/demos/outbreak_forecast/requirements.txt @@ -0,0 +1,4 @@ +numpy +matplotlib +bokeh +plotly \ No newline at end of file diff --git a/demos/outbreak_forecast/run.py b/demos/outbreak_forecast/run.py new file mode 100644 index 0000000000000000000000000000000000000000..9d51b21c344ef152a6dfa6ba8759fb7f43f4e8ca --- /dev/null +++ b/demos/outbreak_forecast/run.py @@ -0,0 +1,70 @@ +from math import sqrt + +import matplotlib +matplotlib.use('Agg') +import matplotlib.pyplot as plt +import numpy as np +import plotly.express as px +import pandas as pd +import bokeh.plotting as bk +from bokeh.models import ColumnDataSource +from bokeh.embed import json_item + +import gradio as gr + + +def outbreak(plot_type, r, month, countries, social_distancing): + months = ["January", "February", "March", "April", "May"] + m = months.index(month) + start_day = 30 * m + final_day = 30 * (m + 1) + x = np.arange(start_day, final_day + 1) + pop_count = {"USA": 350, "Canada": 40, "Mexico": 300, "UK": 120} + if social_distancing: + r = sqrt(r) + df = pd.DataFrame({'day': x}) + for country in countries: + df[country] = ( x ** (r) * (pop_count[country] + 1)) + + + if plot_type == "Matplotlib": + fig = plt.figure() + plt.plot(df['day'], df[countries].to_numpy()) + plt.title("Outbreak in " + month) + plt.ylabel("Cases") + plt.xlabel("Days since Day 0") + plt.legend(countries) + return fig + elif plot_type == "Plotly": + fig = px.line(df, x='day', y=countries) + fig.update_layout(title="Outbreak in " + month, + xaxis_title="Cases", + yaxis_title="Days Since Day 0") + return fig + else: + source = ColumnDataSource(df) + p = bk.figure(title="Outbreak in " + month, x_axis_label="Cases", y_axis_label="Days Since Day 0") + for country in countries: + p.line(x='day', y=country, line_width=2, source=source) + item_text = json_item(p, "plotDiv") + return item_text + +inputs = [ + gr.Dropdown(["Matplotlib", "Plotly", "Bokeh"], label="Plot Type"), + gr.Slider(1, 4, 3.2, label="R"), + gr.Dropdown(["January", "February", "March", "April", "May"], label="Month"), + gr.CheckboxGroup(["USA", "Canada", "Mexico", "UK"], label="Countries", + value=["USA", "Canada"]), + gr.Checkbox(label="Social Distancing?"), + ] +outputs = gr.Plot() + +demo = gr.Interface(fn=outbreak, inputs=inputs, outputs=outputs, examples=[ + ["Matplotlib", 2, "March", ["Mexico", "UK"], True], + ["Plotly", 3.6, "February", ["Canada", "Mexico", "UK"], False], + ["Bokeh", 1.2, "May", ["UK"], True] + ], cache_examples=True) + + +if __name__ == "__main__": + demo.launch() diff --git a/demos/question_answer/files/bert.py b/demos/question_answer/files/bert.py new file mode 100644 index 0000000000000000000000000000000000000000..d76611575954b4af5e321e1b7d860711f001a1b3 --- /dev/null +++ b/demos/question_answer/files/bert.py @@ -0,0 +1,105 @@ +from __future__ import absolute_import, division, print_function + +import collections +import logging +import math + +import numpy as np +import torch +from pytorch_transformers import ( + WEIGHTS_NAME, + BertConfig, + BertForQuestionAnswering, + BertTokenizer, +) +from torch.utils.data import DataLoader, SequentialSampler, TensorDataset +from utils import ( + get_answer, + input_to_squad_example, + squad_examples_to_features, + to_list, +) + +RawResult = collections.namedtuple( + "RawResult", ["unique_id", "start_logits", "end_logits"] +) + + +class QA: + def __init__(self, model_path: str): + self.max_seq_length = 384 + self.doc_stride = 128 + self.do_lower_case = True + self.max_query_length = 64 + self.n_best_size = 20 + self.max_answer_length = 30 + self.model, self.tokenizer = self.load_model(model_path) + if torch.cuda.is_available(): + self.device = "cuda" + else: + self.device = "cpu" + self.model.to(self.device) + self.model.eval() + + def load_model(self, model_path: str, do_lower_case=False): + config = BertConfig.from_pretrained(model_path + "/bert_config.json") + tokenizer = BertTokenizer.from_pretrained( + model_path, do_lower_case=do_lower_case + ) + model = BertForQuestionAnswering.from_pretrained( + model_path, from_tf=False, config=config + ) + return model, tokenizer + + def predict(self, passage: str, question: str): + example = input_to_squad_example(passage, question) + features = squad_examples_to_features( + example, + self.tokenizer, + self.max_seq_length, + self.doc_stride, + self.max_query_length, + ) + all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) + all_input_mask = torch.tensor( + [f.input_mask for f in features], dtype=torch.long + ) + all_segment_ids = torch.tensor( + [f.segment_ids for f in features], dtype=torch.long + ) + all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) + dataset = TensorDataset( + all_input_ids, all_input_mask, all_segment_ids, all_example_index + ) + eval_sampler = SequentialSampler(dataset) + eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=1) + all_results = [] + for batch in eval_dataloader: + batch = tuple(t.to(self.device) for t in batch) + with torch.no_grad(): + inputs = { + "input_ids": batch[0], + "attention_mask": batch[1], + "token_type_ids": batch[2], + } + example_indices = batch[3] + outputs = self.model(**inputs) + + for i, example_index in enumerate(example_indices): + eval_feature = features[example_index.item()] + unique_id = int(eval_feature.unique_id) + result = RawResult( + unique_id=unique_id, + start_logits=to_list(outputs[0][i]), + end_logits=to_list(outputs[1][i]), + ) + all_results.append(result) + answer = get_answer( + example, + features, + all_results, + self.n_best_size, + self.max_answer_length, + self.do_lower_case, + ) + return answer diff --git a/demos/question_answer/files/utils.py b/demos/question_answer/files/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..297afcc0caf81b14776ee182d4d289c7ed3eb632 --- /dev/null +++ b/demos/question_answer/files/utils.py @@ -0,0 +1,563 @@ +from __future__ import absolute_import, division, print_function + +import collections +import math + +import numpy as np +import torch +from pytorch_transformers.tokenization_bert import BasicTokenizer, whitespace_tokenize +from torch.utils.data import DataLoader, SequentialSampler, TensorDataset + + +class SquadExample(object): + """ + A single training/test example for the Squad dataset. + For examples without an answer, the start and end position are -1. + """ + + def __init__( + self, + qas_id, + question_text, + doc_tokens, + orig_answer_text=None, + start_position=None, + end_position=None, + ): + self.qas_id = qas_id + self.question_text = question_text + self.doc_tokens = doc_tokens + self.orig_answer_text = orig_answer_text + self.start_position = start_position + self.end_position = end_position + + def __str__(self): + return self.__repr__() + + def __repr__(self): + s = "" + s += "qas_id: %s" % (self.qas_id) + s += ", question_text: %s" % (self.question_text) + s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens)) + if self.start_position: + s += ", start_position: %d" % (self.start_position) + if self.end_position: + s += ", end_position: %d" % (self.end_position) + return s + + +class InputFeatures(object): + """A single set of features of data.""" + + def __init__( + self, + unique_id, + example_index, + doc_span_index, + tokens, + token_to_orig_map, + token_is_max_context, + input_ids, + input_mask, + segment_ids, + paragraph_len, + start_position=None, + end_position=None, + ): + self.unique_id = unique_id + self.example_index = example_index + self.doc_span_index = doc_span_index + self.tokens = tokens + self.token_to_orig_map = token_to_orig_map + self.token_is_max_context = token_is_max_context + self.input_ids = input_ids + self.input_mask = input_mask + self.segment_ids = segment_ids + self.paragraph_len = paragraph_len + self.start_position = start_position + self.end_position = end_position + + +def input_to_squad_example(passage, question): + """Convert input passage and question into a SquadExample.""" + + def is_whitespace(c): + if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: + return True + return False + + paragraph_text = passage + doc_tokens = [] + char_to_word_offset = [] + prev_is_whitespace = True + for c in paragraph_text: + if is_whitespace(c): + prev_is_whitespace = True + else: + if prev_is_whitespace: + doc_tokens.append(c) + else: + doc_tokens[-1] += c + prev_is_whitespace = False + char_to_word_offset.append(len(doc_tokens) - 1) + + qas_id = 0 + question_text = question + start_position = None + end_position = None + orig_answer_text = None + + example = SquadExample( + qas_id=qas_id, + question_text=question_text, + doc_tokens=doc_tokens, + orig_answer_text=orig_answer_text, + start_position=start_position, + end_position=end_position, + ) + + return example + + +def _check_is_max_context(doc_spans, cur_span_index, position): + """Check if this is the 'max context' doc span for the token.""" + + # Because of the sliding window approach taken to scoring documents, a single + # token can appear in multiple documents. E.g. + # Doc: the man went to the store and bought a gallon of milk + # Span A: the man went to the + # Span B: to the store and bought + # Span C: and bought a gallon of + # ... + # + # Now the word 'bought' will have two scores from spans B and C. We only + # want to consider the score with "maximum context", which we define as + # the *minimum* of its left and right context (the *sum* of left and + # right context will always be the same, of course). + # + # In the example the maximum context for 'bought' would be span C since + # it has 1 left context and 3 right context, while span B has 4 left context + # and 0 right context. + best_score = None + best_span_index = None + for (span_index, doc_span) in enumerate(doc_spans): + end = doc_span.start + doc_span.length - 1 + if position < doc_span.start: + continue + if position > end: + continue + num_left_context = position - doc_span.start + num_right_context = end - position + score = min(num_left_context, num_right_context) + 0.01 * doc_span.length + if best_score is None or score > best_score: + best_score = score + best_span_index = span_index + + return cur_span_index == best_span_index + + +def squad_examples_to_features( + example, + tokenizer, + max_seq_length, + doc_stride, + max_query_length, + cls_token_at_end=False, + cls_token="[CLS]", + sep_token="[SEP]", + pad_token=0, + sequence_a_segment_id=0, + sequence_b_segment_id=1, + cls_token_segment_id=0, + pad_token_segment_id=0, + mask_padding_with_zero=True, +): + """Loads a data file into a list of `InputBatch`s.""" + + unique_id = 1000000000 + # cnt_pos, cnt_neg = 0, 0 + # max_N, max_M = 1024, 1024 + # f = np.zeros((max_N, max_M), dtype=np.float32) + example_index = 0 + features = [] + # if example_index % 100 == 0: + # logger.info('Converting %s/%s pos %s neg %s', example_index, len(examples), cnt_pos, cnt_neg) + + query_tokens = tokenizer.tokenize(example.question_text) + + if len(query_tokens) > max_query_length: + query_tokens = query_tokens[0:max_query_length] + + tok_to_orig_index = [] + orig_to_tok_index = [] + all_doc_tokens = [] + for (i, token) in enumerate(example.doc_tokens): + orig_to_tok_index.append(len(all_doc_tokens)) + sub_tokens = tokenizer.tokenize(token) + for sub_token in sub_tokens: + tok_to_orig_index.append(i) + all_doc_tokens.append(sub_token) + + # The -3 accounts for [CLS], [SEP] and [SEP] + max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 + + # We can have documents that are longer than the maximum sequence length. + # To deal with this we do a sliding window approach, where we take chunks + # of the up to our max length with a stride of `doc_stride`. + _DocSpan = collections.namedtuple( # pylint: disable=invalid-name + "DocSpan", ["start", "length"] + ) + doc_spans = [] + start_offset = 0 + while start_offset < len(all_doc_tokens): + length = len(all_doc_tokens) - start_offset + if length > max_tokens_for_doc: + length = max_tokens_for_doc + doc_spans.append(_DocSpan(start=start_offset, length=length)) + if start_offset + length == len(all_doc_tokens): + break + start_offset += min(length, doc_stride) + + for (doc_span_index, doc_span) in enumerate(doc_spans): + tokens = [] + token_to_orig_map = {} + token_is_max_context = {} + segment_ids = [] + + # CLS token at the beginning + if not cls_token_at_end: + tokens.append(cls_token) + segment_ids.append(cls_token_segment_id) + + # Query + for token in query_tokens: + tokens.append(token) + segment_ids.append(sequence_a_segment_id) + + # SEP token + tokens.append(sep_token) + segment_ids.append(sequence_a_segment_id) + + # Paragraph + for i in range(doc_span.length): + split_token_index = doc_span.start + i + token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index] + + is_max_context = _check_is_max_context( + doc_spans, doc_span_index, split_token_index + ) + token_is_max_context[len(tokens)] = is_max_context + tokens.append(all_doc_tokens[split_token_index]) + segment_ids.append(sequence_b_segment_id) + paragraph_len = doc_span.length + + # SEP token + tokens.append(sep_token) + segment_ids.append(sequence_b_segment_id) + + # CLS token at the end + if cls_token_at_end: + tokens.append(cls_token) + segment_ids.append(cls_token_segment_id) + + input_ids = tokenizer.convert_tokens_to_ids(tokens) + + # The mask has 1 for real tokens and 0 for padding tokens. Only real + # tokens are attended to. + input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) + + # Zero-pad up to the sequence length. + while len(input_ids) < max_seq_length: + input_ids.append(pad_token) + input_mask.append(0 if mask_padding_with_zero else 1) + segment_ids.append(pad_token_segment_id) + + assert len(input_ids) == max_seq_length + assert len(input_mask) == max_seq_length + assert len(segment_ids) == max_seq_length + + start_position = None + end_position = None + + features.append( + InputFeatures( + unique_id=unique_id, + example_index=example_index, + doc_span_index=doc_span_index, + tokens=tokens, + token_to_orig_map=token_to_orig_map, + token_is_max_context=token_is_max_context, + input_ids=input_ids, + input_mask=input_mask, + segment_ids=segment_ids, + paragraph_len=paragraph_len, + start_position=start_position, + end_position=end_position, + ) + ) + unique_id += 1 + + return features + + +def to_list(tensor): + return tensor.detach().cpu().tolist() + + +def _get_best_indexes(logits, n_best_size): + """Get the n-best logits from a list.""" + index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) + + best_indexes = [] + for i in range(len(index_and_score)): + if i >= n_best_size: + break + best_indexes.append(index_and_score[i][0]) + return best_indexes + + +RawResult = collections.namedtuple( + "RawResult", ["unique_id", "start_logits", "end_logits"] +) + + +def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False): + """Project the tokenized prediction back to the original text.""" + + # When we created the data, we kept track of the alignment between original + # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So + # now `orig_text` contains the span of our original text corresponding to the + # span that we predicted. + # + # However, `orig_text` may contain extra characters that we don't want in + # our prediction. + # + # For example, let's say: + # pred_text = steve smith + # orig_text = Steve Smith's + # + # We don't want to return `orig_text` because it contains the extra "'s". + # + # We don't want to return `pred_text` because it's already been normalized + # (the SQuAD eval script also does punctuation stripping/lower casing but + # our tokenizer does additional normalization like stripping accent + # characters). + # + # What we really want to return is "Steve Smith". + # + # Therefore, we have to apply a semi-complicated alignment heuristic between + # `pred_text` and `orig_text` to get a character-to-character alignment. This + # can fail in certain cases in which case we just return `orig_text`. + + def _strip_spaces(text): + ns_chars = [] + ns_to_s_map = collections.OrderedDict() + for (i, c) in enumerate(text): + if c == " ": + continue + ns_to_s_map[len(ns_chars)] = i + ns_chars.append(c) + ns_text = "".join(ns_chars) + return (ns_text, ns_to_s_map) + + # We first tokenize `orig_text`, strip whitespace from the result + # and `pred_text`, and check if they are the same length. If they are + # NOT the same length, the heuristic has failed. If they are the same + # length, we assume the characters are one-to-one aligned. + tokenizer = BasicTokenizer(do_lower_case=do_lower_case) + + tok_text = " ".join(tokenizer.tokenize(orig_text)) + + start_position = tok_text.find(pred_text) + if start_position == -1: + return orig_text + end_position = start_position + len(pred_text) - 1 + + (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) + (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) + + if len(orig_ns_text) != len(tok_ns_text): + return orig_text + + # We then project the characters in `pred_text` back to `orig_text` using + # the character-to-character alignment. + tok_s_to_ns_map = {} + for (i, tok_index) in tok_ns_to_s_map.items(): + tok_s_to_ns_map[tok_index] = i + + orig_start_position = None + if start_position in tok_s_to_ns_map: + ns_start_position = tok_s_to_ns_map[start_position] + if ns_start_position in orig_ns_to_s_map: + orig_start_position = orig_ns_to_s_map[ns_start_position] + + if orig_start_position is None: + return orig_text + + orig_end_position = None + if end_position in tok_s_to_ns_map: + ns_end_position = tok_s_to_ns_map[end_position] + if ns_end_position in orig_ns_to_s_map: + orig_end_position = orig_ns_to_s_map[ns_end_position] + + if orig_end_position is None: + return orig_text + + output_text = orig_text[orig_start_position : (orig_end_position + 1)] + return output_text + + +def _compute_softmax(scores): + """Compute softmax probability over raw logits.""" + if not scores: + return [] + + max_score = None + for score in scores: + if max_score is None or score > max_score: + max_score = score + + exp_scores = [] + total_sum = 0.0 + for score in scores: + x = math.exp(score - max_score) + exp_scores.append(x) + total_sum += x + + probs = [] + for score in exp_scores: + probs.append(score / total_sum) + return probs + + +def get_answer( + example, features, all_results, n_best_size, max_answer_length, do_lower_case +): + example_index_to_features = collections.defaultdict(list) + for feature in features: + example_index_to_features[feature.example_index].append(feature) + + unique_id_to_result = {} + for result in all_results: + unique_id_to_result[result.unique_id] = result + + _PrelimPrediction = collections.namedtuple( + "PrelimPrediction", + ["feature_index", "start_index", "end_index", "start_logit", "end_logit"], + ) + + example_index = 0 + features = example_index_to_features[example_index] + + prelim_predictions = [] + + for (feature_index, feature) in enumerate(features): + result = unique_id_to_result[feature.unique_id] + start_indexes = _get_best_indexes(result.start_logits, n_best_size) + end_indexes = _get_best_indexes(result.end_logits, n_best_size) + for start_index in start_indexes: + for end_index in end_indexes: + # We could hypothetically create invalid predictions, e.g., predict + # that the start of the span is in the question. We throw out all + # invalid predictions. + if start_index >= len(feature.tokens): + continue + if end_index >= len(feature.tokens): + continue + if start_index not in feature.token_to_orig_map: + continue + if end_index not in feature.token_to_orig_map: + continue + if not feature.token_is_max_context.get(start_index, False): + continue + if end_index < start_index: + continue + length = end_index - start_index + 1 + if length > max_answer_length: + continue + prelim_predictions.append( + _PrelimPrediction( + feature_index=feature_index, + start_index=start_index, + end_index=end_index, + start_logit=result.start_logits[start_index], + end_logit=result.end_logits[end_index], + ) + ) + prelim_predictions = sorted( + prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True + ) + _NbestPrediction = collections.namedtuple( + "NbestPrediction", + ["text", "start_logit", "end_logit", "start_index", "end_index"], + ) + seen_predictions = {} + nbest = [] + for pred in prelim_predictions: + if len(nbest) >= n_best_size: + break + feature = features[pred.feature_index] + orig_doc_start = -1 + orig_doc_end = -1 + if pred.start_index > 0: # this is a non-null prediction + tok_tokens = feature.tokens[pred.start_index : (pred.end_index + 1)] + orig_doc_start = feature.token_to_orig_map[pred.start_index] + orig_doc_end = feature.token_to_orig_map[pred.end_index] + orig_tokens = example.doc_tokens[orig_doc_start : (orig_doc_end + 1)] + tok_text = " ".join(tok_tokens) + + # De-tokenize WordPieces that have been split off. + tok_text = tok_text.replace(" ##", "") + tok_text = tok_text.replace("##", "") + + # Clean whitespace + tok_text = tok_text.strip() + tok_text = " ".join(tok_text.split()) + orig_text = " ".join(orig_tokens) + + final_text = get_final_text(tok_text, orig_text, do_lower_case) + if final_text in seen_predictions: + continue + + seen_predictions[final_text] = True + else: + final_text = "" + seen_predictions[final_text] = True + + nbest.append( + _NbestPrediction( + text=final_text, + start_logit=pred.start_logit, + end_logit=pred.end_logit, + start_index=orig_doc_start, + end_index=orig_doc_end, + ) + ) + + if not nbest: + nbest.append( + _NbestPrediction( + text="empty", + start_logit=0.0, + end_logit=0.0, + start_index=-1, + end_index=-1, + ) + ) + + assert len(nbest) >= 1 + + total_scores = [] + for entry in nbest: + total_scores.append(entry.start_logit + entry.end_logit) + + probs = _compute_softmax(total_scores) + + answer = { + "answer": nbest[0].text, + "start": nbest[0].start_index, + "end": nbest[0].end_index, + "confidence": probs[0], + "document": example.doc_tokens, + } + return answer diff --git a/demos/question_answer/requirements.txt b/demos/question_answer/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..c91c8d8f3222aaffeb4cc14154c0db3720de2e4f --- /dev/null +++ b/demos/question_answer/requirements.txt @@ -0,0 +1 @@ +pytorch-transformers==1.0.0 diff --git a/demos/question_answer/run.py b/demos/question_answer/run.py new file mode 100644 index 0000000000000000000000000000000000000000..bf6b06cb658ae956a37df2027eed074fbfed7a47 --- /dev/null +++ b/demos/question_answer/run.py @@ -0,0 +1,27 @@ +import gradio as gr + +examples = [ + [ + "The Amazon rainforest is a moist broadleaf forest that covers most of the Amazon basin of South America", + "Which continent is the Amazon rainforest in?", + ] +] + +demo = gr.Interface.load( + "huggingface/deepset/roberta-base-squad2", + inputs=[ + gr.Textbox( + lines=5, label="Context", placeholder="Type a sentence or paragraph here." + ), + gr.Textbox( + lines=2, + label="Question", + placeholder="Ask a question based on the context.", + ), + ], + outputs=[gr.Textbox(label="Answer"), gr.Label(label="Probability")], + examples=examples, +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/reverse_audio/audio/cantina.wav b/demos/reverse_audio/audio/cantina.wav new file mode 100644 index 0000000000000000000000000000000000000000..83651968c382d3c17ad48d84995c9b71753ba694 --- /dev/null +++ b/demos/reverse_audio/audio/cantina.wav @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2e5f73001b324e413bdcf658fca5485057c333f4198e51e7e86bb2e772cd0973 +size 132344 diff --git a/demos/reverse_audio/audio/recording1.wav b/demos/reverse_audio/audio/recording1.wav new file mode 100644 index 0000000000000000000000000000000000000000..305c419a090c2c195531467ecd8a8704438fe9c8 --- /dev/null +++ b/demos/reverse_audio/audio/recording1.wav @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1d087876795ff2bc8b6e1a872eb9a9b2cca44db1866e9c9fa00df5a2556919ff +size 639020 diff --git a/demos/reverse_audio/run.py b/demos/reverse_audio/run.py new file mode 100644 index 0000000000000000000000000000000000000000..f58e82f855e2a39cb38f37870e5322e2bcea1363 --- /dev/null +++ b/demos/reverse_audio/run.py @@ -0,0 +1,22 @@ +import os + +import numpy as np + +import gradio as gr + + +def reverse_audio(audio): + sr, data = audio + return (sr, np.flipud(data)) + + +demo = gr.Interface(fn=reverse_audio, + inputs="microphone", + outputs="audio", + examples=[ + os.path.join(os.path.dirname(__file__), "audio/cantina.wav"), + os.path.join(os.path.dirname(__file__), "audio/recording1.wav") + ], cache_examples=True) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/reverse_audio/screenshot.png b/demos/reverse_audio/screenshot.png new file mode 100644 index 0000000000000000000000000000000000000000..e3dff47937e2698ba4b3dc393bb1f8b900eca60d --- /dev/null +++ b/demos/reverse_audio/screenshot.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dc9ff858f10cc46c59cebff375b36a46c035ab9b60fd2a428c545b5d76583b56 +size 18387 diff --git a/demos/reversible_flow/run.py b/demos/reversible_flow/run.py new file mode 100644 index 0000000000000000000000000000000000000000..c73fce91eed02e082dbb5b4a38348c19c0f769ac --- /dev/null +++ b/demos/reversible_flow/run.py @@ -0,0 +1,15 @@ +import gradio as gr + +def increase(num): + return num + 1 + +with gr.Blocks() as demo: + a = gr.Number(label="a") + b = gr.Number(label="b") + btoa = gr.Button("a > b") + atob = gr.Button("b > a") + atob.click(increase, a, b) + btoa.click(increase, b, a) + +if __name__ == "__main__": + demo.launch() \ No newline at end of file diff --git a/demos/rows_and_columns/images/cheetah.jpg b/demos/rows_and_columns/images/cheetah.jpg new file mode 100644 index 0000000000000000000000000000000000000000..66d3b48fd19cd8cd8d8437b6f33183b3d3d42589 --- /dev/null +++ b/demos/rows_and_columns/images/cheetah.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:35550bfbba996e59c242af00f6a14a9c0d055dfbc52ad069a1a4e8c1c39ca095 +size 20552 diff --git a/demos/rows_and_columns/run.py b/demos/rows_and_columns/run.py new file mode 100644 index 0000000000000000000000000000000000000000..a8403a51051c894bc5334adc2cc96802af97d8ff --- /dev/null +++ b/demos/rows_and_columns/run.py @@ -0,0 +1,12 @@ +import gradio as gr + +with gr.Blocks() as demo: + with gr.Row(): + with gr.Column(): + text1 = gr.Textbox(label="prompt 1") + text2 = gr.Textbox(label="prompt 2") + with gr.Column(): + img1 = gr.Image("images/cheetah.jpg") + btn = gr.Button("Go").style(full_width=True) +if __name__ == "__main__": + demo.launch() \ No newline at end of file diff --git a/demos/sales_projections/requirements.txt b/demos/sales_projections/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..44974cf43c7d87ca1f9cc74aba8d87b4dd23e9b8 --- /dev/null +++ b/demos/sales_projections/requirements.txt @@ -0,0 +1,3 @@ +pandas +numpy +matplotlib \ No newline at end of file diff --git a/demos/sales_projections/run.py b/demos/sales_projections/run.py new file mode 100644 index 0000000000000000000000000000000000000000..4e07c8235a6bf4ecba1273cd28df5ea2ae545f2c --- /dev/null +++ b/demos/sales_projections/run.py @@ -0,0 +1,38 @@ +import matplotlib +matplotlib.use('Agg') +import matplotlib.pyplot as plt +import numpy as np + +import gradio as gr + + +def sales_projections(employee_data): + sales_data = employee_data.iloc[:, 1:4].astype("int").to_numpy() + regression_values = np.apply_along_axis( + lambda row: np.array(np.poly1d(np.polyfit([0, 1, 2], row, 2))), 0, sales_data + ) + projected_months = np.repeat( + np.expand_dims(np.arange(3, 12), 0), len(sales_data), axis=0 + ) + projected_values = np.array( + [ + month * month * regression[0] + month * regression[1] + regression[2] + for month, regression in zip(projected_months, regression_values) + ] + ) + plt.plot(projected_values.T) + plt.legend(employee_data["Name"]) + return employee_data, plt.gcf(), regression_values + + +demo = gr.Interface( + sales_projections, + gr.Dataframe( + headers=["Name", "Jan Sales", "Feb Sales", "Mar Sales"], + value=[["Jon", 12, 14, 18], ["Alice", 14, 17, 2], ["Sana", 8, 9.5, 12]], + ), + ["dataframe", "plot", "numpy"], + description="Enter sales figures for employees to predict sales trajectory over year.", +) +if __name__ == "__main__": + demo.launch() diff --git a/demos/sales_projections/screenshot.gif b/demos/sales_projections/screenshot.gif new file mode 100644 index 0000000000000000000000000000000000000000..2460d235a20e02d6a46e00903f330c80ee873334 --- /dev/null +++ b/demos/sales_projections/screenshot.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:bf5c0ef79446b0cb270d556225ef8866084226bdf79c888f359183c2a19e7245 +size 5872200 diff --git a/demos/score_tracker/run.py b/demos/score_tracker/run.py new file mode 100644 index 0000000000000000000000000000000000000000..b024faf61739119dbcad381e8456ba4cfb97d82d --- /dev/null +++ b/demos/score_tracker/run.py @@ -0,0 +1,16 @@ +import gradio as gr + +scores = [] + +def track_score(score): + scores.append(score) + top_scores = sorted(scores, reverse=True)[:3] + return top_scores + +demo = gr.Interface( + track_score, + gr.Number(label="Score"), + gr.JSON(label="Top Scores") +) +if __name__ == "__main__": + demo.launch() \ No newline at end of file diff --git a/demos/sentence_builder/run.py b/demos/sentence_builder/run.py new file mode 100644 index 0000000000000000000000000000000000000000..2b1385deca619dcffcaa002aa985465cca6fc7c6 --- /dev/null +++ b/demos/sentence_builder/run.py @@ -0,0 +1,27 @@ +import gradio as gr + + +def sentence_builder(quantity, animal, place, activity_list, morning): + return f"""The {quantity} {animal}s went to the {place} where they {" and ".join(activity_list)} until the {"morning" if morning else "night"}""" + + +demo = gr.Interface( + sentence_builder, + [ + gr.Slider(2, 20, value=4), + gr.Dropdown(["cat", "dog", "bird"]), + gr.Radio(["park", "zoo", "road"]), + gr.CheckboxGroup(["ran", "swam", "ate", "slept"]), + gr.Checkbox(label="Is it the morning?"), + ], + "text", + examples=[ + [2, "cat", "park", ["ran", "swam"], True], + [4, "dog", "zoo", ["ate", "swam"], False], + [10, "bird", "road", ["ran"], False], + [8, "cat", "zoo", ["ate"], True], + ], +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/sentence_builder/screenshot.png b/demos/sentence_builder/screenshot.png new file mode 100644 index 0000000000000000000000000000000000000000..8bddd3a47e9208d67e21d3cad17db93e2c342149 --- /dev/null +++ b/demos/sentence_builder/screenshot.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ba7df068296826ffc11d3b0b6f59aa2246de70893724f4d5cd8a1d9f19ea67bb +size 50450 diff --git a/demos/sentiment_analysis/requirements.txt b/demos/sentiment_analysis/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..6fa2de44417ce85838334618e6430c5e1abc6a5d --- /dev/null +++ b/demos/sentiment_analysis/requirements.txt @@ -0,0 +1 @@ +nltk \ No newline at end of file diff --git a/demos/sentiment_analysis/run.py b/demos/sentiment_analysis/run.py new file mode 100644 index 0000000000000000000000000000000000000000..35f6a292d93026e6b5e73b7649902ea7d3121359 --- /dev/null +++ b/demos/sentiment_analysis/run.py @@ -0,0 +1,23 @@ +import nltk +from nltk.sentiment.vader import SentimentIntensityAnalyzer + +import gradio as gr + +nltk.download("vader_lexicon") +sid = SentimentIntensityAnalyzer() + + +def sentiment_analysis(text): + scores = sid.polarity_scores(text) + del scores["compound"] + return scores + + +demo = gr.Interface( + sentiment_analysis, + gr.Textbox(placeholder="Enter a positive or negative sentence here..."), + "label", + interpretation="default") + +if __name__ == "__main__": + demo.launch() diff --git a/demos/sepia_filter/run.py b/demos/sepia_filter/run.py new file mode 100644 index 0000000000000000000000000000000000000000..b48eb6a5e10eae25b25b7ee49364810b54aaf88c --- /dev/null +++ b/demos/sepia_filter/run.py @@ -0,0 +1,16 @@ +import numpy as np +import gradio as gr + +def sepia(input_img): + sepia_filter = np.array([ + [0.393, 0.769, 0.189], + [0.349, 0.686, 0.168], + [0.272, 0.534, 0.131] + ]) + sepia_img = input_img.dot(sepia_filter.T) + sepia_img /= sepia_img.max() + return sepia_img + +demo = gr.Interface(sepia, gr.Image(shape=(200, 200)), "image") +if __name__ == "__main__": + demo.launch() diff --git a/demos/sepia_filter/screenshot.gif b/demos/sepia_filter/screenshot.gif new file mode 100644 index 0000000000000000000000000000000000000000..6169b786aa203bcfab5e8b0da023ff646716a084 --- /dev/null +++ b/demos/sepia_filter/screenshot.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9e7091eff30c08a023ba18c44181e743637afe20b9e2111ba0b657c1c2817648 +size 3726270 diff --git a/demos/spectogram/requirements.txt b/demos/spectogram/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..ca6034584e0ec2dde9b16b581bab6d6a8327a59a --- /dev/null +++ b/demos/spectogram/requirements.txt @@ -0,0 +1,3 @@ +scipy +numpy +matplotlib \ No newline at end of file diff --git a/demos/spectogram/run.py b/demos/spectogram/run.py new file mode 100644 index 0000000000000000000000000000000000000000..599fba4cc2f395acfa1cf47888ffb3443a6176df --- /dev/null +++ b/demos/spectogram/run.py @@ -0,0 +1,22 @@ +import matplotlib.pyplot as plt +import numpy as np +from scipy import signal + +import gradio as gr + + +def spectrogram(audio): + sr, data = audio + if len(data.shape) == 2: + data = np.mean(data, axis=0) + frequencies, times, spectrogram_data = signal.spectrogram( + data, sr, window="hamming" + ) + plt.pcolormesh(times, frequencies, np.log10(spectrogram_data)) + return plt + + +demo = gr.Interface(spectrogram, "audio", "plot") + +if __name__ == "__main__": + demo.launch() diff --git a/demos/spectogram/screenshot.png b/demos/spectogram/screenshot.png new file mode 100644 index 0000000000000000000000000000000000000000..ace2078e536eb4d2ce3e69bf80dde1a88867a9a9 --- /dev/null +++ b/demos/spectogram/screenshot.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:76bce2db2b53227282774fff1bb429e9791a533d2ea83f458b5839fd3b374cd3 +size 309199 diff --git a/demos/sst_or_tts/run.py b/demos/sst_or_tts/run.py new file mode 100644 index 0000000000000000000000000000000000000000..55f86ce01829c1440cd9a3b6f855e9fd227d4314 --- /dev/null +++ b/demos/sst_or_tts/run.py @@ -0,0 +1,27 @@ +import gradio as gr + +title = "GPT-J-6B" + +tts_examples = [ + "I love learning machine learning", + "How do you do?", +] + +tts_demo = gr.Interface.load( + "huggingface/facebook/fastspeech2-en-ljspeech", + title=None, + examples=tts_examples, + description="Give me something to say!", +) + +stt_demo = gr.Interface.load( + "huggingface/facebook/wav2vec2-base-960h", + title=None, + inputs="mic", + description="Let me try to guess what you're saying!", +) + +demo = gr.TabbedInterface([tts_demo, stt_demo], ["Text-to-speech", "Speech-to-text"]) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/stock_forecast/requirements.txt b/demos/stock_forecast/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..806f22116faa6610345f0899927f952ae5dfedcd --- /dev/null +++ b/demos/stock_forecast/requirements.txt @@ -0,0 +1,2 @@ +numpy +matplotlib \ No newline at end of file diff --git a/demos/stock_forecast/run.py b/demos/stock_forecast/run.py new file mode 100644 index 0000000000000000000000000000000000000000..e6758abcfd5067688cb3eb50d2a5e032588bb5e3 --- /dev/null +++ b/demos/stock_forecast/run.py @@ -0,0 +1,39 @@ +import matplotlib +matplotlib.use('Agg') +import matplotlib.pyplot as plt +import numpy as np + +import gradio as gr + + +def plot_forecast(final_year, companies, noise, show_legend, point_style): + start_year = 2020 + x = np.arange(start_year, final_year + 1) + year_count = x.shape[0] + plt_format = ({"cross": "X", "line": "-", "circle": "o--"})[point_style] + fig = plt.figure() + ax = fig.add_subplot(111) + for i, company in enumerate(companies): + series = np.arange(0, year_count, dtype=float) + series = series**2 * (i + 1) + series += np.random.rand(year_count) * noise + ax.plot(x, series, plt_format) + if show_legend: + plt.legend(companies) + return fig + + +demo = gr.Interface( + plot_forecast, + [ + gr.Radio([2025, 2030, 2035, 2040], label="Project to:"), + gr.CheckboxGroup(["Google", "Microsoft", "Gradio"], label="Company Selection"), + gr.Slider(1, 100, label="Noise Level"), + gr.Checkbox(label="Show Legend"), + gr.Dropdown(["cross", "line", "circle"], label="Style"), + ], + gr.Plot(label="forecast"), +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/stock_forecast/screenshot.png b/demos/stock_forecast/screenshot.png new file mode 100644 index 0000000000000000000000000000000000000000..242a60b242bc89d6f71175bfd091553103c8a2ed --- /dev/null +++ b/demos/stock_forecast/screenshot.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:229b2943fef0d16a69a5359709c48c480f9a699d426d20a1f7500c095b024e80 +size 116350 diff --git a/demos/stream_audio/run.py b/demos/stream_audio/run.py new file mode 100644 index 0000000000000000000000000000000000000000..8fcd3c2affc12c6e60c58ac3a9ea56c70c243f3a --- /dev/null +++ b/demos/stream_audio/run.py @@ -0,0 +1,20 @@ +import gradio as gr +import numpy as np + +with gr.Blocks() as demo: + inp = gr.Audio(source="microphone") + out = gr.Audio() + stream = gr.Variable() + + def add_to_stream(audio, instream): + if audio is None: + return gr.update(), instream + if instream is None: + ret = audio + else: + ret = (audio[0], np.concatenate((instream[1], audio[1]))) + return ret, ret + inp.stream(add_to_stream, [inp, stream], [out, stream]) + +if __name__ == "__main__": + demo.launch() \ No newline at end of file diff --git a/demos/stream_frames/run.py b/demos/stream_frames/run.py new file mode 100644 index 0000000000000000000000000000000000000000..f6120d81dd92961e120fb933a1195386fbe04a9c --- /dev/null +++ b/demos/stream_frames/run.py @@ -0,0 +1,14 @@ +import gradio as gr +import numpy as np + +def flip(im): + return np.flipud(im) + +demo = gr.Interface( + flip, + gr.Image(source="webcam", streaming=True), + "image", + live=True +) +if __name__ == "__main__": + demo.launch() \ No newline at end of file diff --git a/demos/streaming_stt/.gitignore b/demos/streaming_stt/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..4a7244336b108f13599567a1d36d54c04f02c488 --- /dev/null +++ b/demos/streaming_stt/.gitignore @@ -0,0 +1,2 @@ +*.pbmm +*.scorer \ No newline at end of file diff --git a/demos/streaming_stt/requirements.txt b/demos/streaming_stt/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..404e2017f909f5552e880697eae0458ec6d912bf --- /dev/null +++ b/demos/streaming_stt/requirements.txt @@ -0,0 +1 @@ +deepspeech==0.9.3 \ No newline at end of file diff --git a/demos/streaming_stt/run.py b/demos/streaming_stt/run.py new file mode 100644 index 0000000000000000000000000000000000000000..ec68e6b1d69cbc5c4f9782df64141c5074dceca1 --- /dev/null +++ b/demos/streaming_stt/run.py @@ -0,0 +1,57 @@ +from deepspeech import Model +import gradio as gr +import numpy as np +import urllib.request + +model_file_path = "deepspeech-0.9.3-models.pbmm" +lm_file_path = "deepspeech-0.9.3-models.scorer" +url = "https://github.com/mozilla/DeepSpeech/releases/download/v0.9.3/" + +urllib.request.urlretrieve(url + model_file_path, filename=model_file_path) +urllib.request.urlretrieve(url + lm_file_path, filename=lm_file_path) + +beam_width = 100 +lm_alpha = 0.93 +lm_beta = 1.18 + +model = Model(model_file_path) +model.enableExternalScorer(lm_file_path) +model.setScorerAlphaBeta(lm_alpha, lm_beta) +model.setBeamWidth(beam_width) + + +def reformat_freq(sr, y): + if sr not in ( + 48000, + 16000, + ): # Deepspeech only supports 16k, (we convert 48k -> 16k) + raise ValueError("Unsupported rate", sr) + if sr == 48000: + y = ( + ((y / max(np.max(y), 1)) * 32767) + .reshape((-1, 3)) + .mean(axis=1) + .astype("int16") + ) + sr = 16000 + return sr, y + + +def transcribe(speech, stream): + _, y = reformat_freq(*speech) + if stream is None: + stream = model.createStream() + stream.feedAudioContent(y) + text = stream.intermediateDecode() + return text, stream + + +demo = gr.Interface( + transcribe, + [gr.Audio(source="microphone", streaming=True), "state"], + ["text", "state"], + live=True, +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/streaming_stt/setup.sh b/demos/streaming_stt/setup.sh new file mode 100644 index 0000000000000000000000000000000000000000..bf8358848e843de3d76bb38278ca1fa30c134506 --- /dev/null +++ b/demos/streaming_stt/setup.sh @@ -0,0 +1,3 @@ +wget https://github.com/mozilla/DeepSpeech/releases/download/v0.8.2/deepspeech-0.8.2-models.pbmm +wget https://github.com/mozilla/DeepSpeech/releases/download/v0.8.2/deepspeech-0.8.2-models.scorer +apt install libasound2-dev portaudio19-dev libportaudio2 libportaudiocpp0 ffmpeg \ No newline at end of file diff --git a/demos/streaming_wav2vec/requirements.txt b/demos/streaming_wav2vec/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..19c989b6cd7cc159d040c41989d460c2338d728d --- /dev/null +++ b/demos/streaming_wav2vec/requirements.txt @@ -0,0 +1 @@ +deepspeech==0.8.2 diff --git a/demos/streaming_wav2vec/run.py b/demos/streaming_wav2vec/run.py new file mode 100644 index 0000000000000000000000000000000000000000..e0a576bb21301e7ac9541f18ffe512aa2abd7db3 --- /dev/null +++ b/demos/streaming_wav2vec/run.py @@ -0,0 +1,47 @@ +from deepspeech import Model +import gradio as gr +import scipy.io.wavfile +import numpy as np + +model_file_path = "deepspeech-0.8.2-models.pbmm" +lm_file_path = "deepspeech-0.8.2-models.scorer" +beam_width = 100 +lm_alpha = 0.93 +lm_beta = 1.18 + +model = Model(model_file_path) +model.enableExternalScorer(lm_file_path) +model.setScorerAlphaBeta(lm_alpha, lm_beta) +model.setBeamWidth(beam_width) + + +def reformat_freq(sr, y): + if sr not in ( + 48000, + 16000, + ): # Deepspeech only supports 16k, (we convert 48k -> 16k) + raise ValueError("Unsupported rate", sr) + if sr == 48000: + y = ( + ((y / max(np.max(y), 1)) * 32767) + .reshape((-1, 3)) + .mean(axis=1) + .astype("int16") + ) + sr = 16000 + return sr, y + + +def transcribe(speech, stream): + _, y = reformat_freq(*speech) + if stream is None: + stream = model.createStream() + stream.feedAudioContent(y) + text = stream.intermediateDecode() + return text, stream + +demo = gr.Interface(transcribe, ["microphone", "state"], ["text", "state"], live=True) + +if __name__ == "__main__": + demo.launch() + diff --git a/demos/tax_calculator/run.py b/demos/tax_calculator/run.py new file mode 100644 index 0000000000000000000000000000000000000000..aebb841b0e84d011df42429eee1592b868acd30d --- /dev/null +++ b/demos/tax_calculator/run.py @@ -0,0 +1,41 @@ +import gradio as gr + + +def tax_calculator(income, marital_status, assets): + tax_brackets = [(10, 0), (25, 8), (60, 12), (120, 20), (250, 30)] + total_deductible = sum(assets["Cost"]) + taxable_income = income - total_deductible + + total_tax = 0 + for bracket, rate in tax_brackets: + if taxable_income > bracket: + total_tax += (taxable_income - bracket) * rate / 100 + + if marital_status == "Married": + total_tax *= 0.75 + elif marital_status == "Divorced": + total_tax *= 0.8 + + return round(total_tax) + + +demo = gr.Interface( + tax_calculator, + [ + "number", + gr.Radio(["Single", "Married", "Divorced"]), + gr.Dataframe( + headers=["Item", "Cost"], + datatype=["str", "number"], + label="Assets Purchased this Year", + ), + ], + "number", + examples=[ + [10000, "Married", [["Suit", 5000], ["Laptop", 800], ["Car", 1800]]], + [80000, "Single", [["Suit", 800], ["Watch", 1800], ["Car", 800]]], + ], +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/tax_calculator/screenshot.png b/demos/tax_calculator/screenshot.png new file mode 100644 index 0000000000000000000000000000000000000000..279a830eedb7e66b8807d228db0c955100bbd428 --- /dev/null +++ b/demos/tax_calculator/screenshot.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1e94d1bcfd484211f1ae8338fbd0bb4ff8fd15c52007908305fd78c03ee5ed24 +size 42004 diff --git a/demos/text_analysis/requirements.txt b/demos/text_analysis/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..33ea94c42fe4087ae42c8b2bf66509e23a68e834 --- /dev/null +++ b/demos/text_analysis/requirements.txt @@ -0,0 +1 @@ +spacy \ No newline at end of file diff --git a/demos/text_analysis/run.py b/demos/text_analysis/run.py new file mode 100644 index 0000000000000000000000000000000000000000..7b499a4d6432d84fdb10083b77a5d36645501b98 --- /dev/null +++ b/demos/text_analysis/run.py @@ -0,0 +1,40 @@ +import spacy +from spacy import displacy + +import gradio as gr + +nlp = spacy.load("en_core_web_sm") + + +def text_analysis(text): + doc = nlp(text) + html = displacy.render(doc, style="dep", page=True) + html = ( + "" + "🎙️ Learn more about UniSpeech-SAT | " + "📚 UniSpeech-SAT paper | " + "📚 X-Vector paper" + "
" +) +examples = [ + ["samples/cate_blanch.mp3", "samples/cate_blanch_2.mp3"], + ["samples/cate_blanch.mp3", "samples/cate_blanch_3.mp3"], + ["samples/cate_blanch_2.mp3", "samples/cate_blanch_3.mp3"], + ["samples/heath_ledger.mp3", "samples/heath_ledger_2.mp3"], + ["samples/cate_blanch.mp3", "samples/kirsten_dunst.wav"], +] + +demo = gr.Interface( + fn=similarity_fn, + inputs=inputs, + outputs=output, + title="Voice Authentication with UniSpeech-SAT + X-Vectors", + description=description, + article=article, + layout="horizontal", + theme="huggingface", + allow_flagging="never", + live=False, + examples=examples, +) + +if __name__ == "__main__": + demo.launch() + diff --git a/demos/unispeech-speaker-verification/samples/cate_blanch.mp3 b/demos/unispeech-speaker-verification/samples/cate_blanch.mp3 new file mode 100644 index 0000000000000000000000000000000000000000..4beee74653732ae01f47089374954d77666d69bc Binary files /dev/null and b/demos/unispeech-speaker-verification/samples/cate_blanch.mp3 differ diff --git a/demos/unispeech-speaker-verification/samples/cate_blanch_2.mp3 b/demos/unispeech-speaker-verification/samples/cate_blanch_2.mp3 new file mode 100644 index 0000000000000000000000000000000000000000..1acc2128c9d480adb4a8618578453041c6afaf6b Binary files /dev/null and b/demos/unispeech-speaker-verification/samples/cate_blanch_2.mp3 differ diff --git a/demos/unispeech-speaker-verification/samples/cate_blanch_3.mp3 b/demos/unispeech-speaker-verification/samples/cate_blanch_3.mp3 new file mode 100644 index 0000000000000000000000000000000000000000..fa0a9f7663aa26173f43a7b416df38a8cedcb79c Binary files /dev/null and b/demos/unispeech-speaker-verification/samples/cate_blanch_3.mp3 differ diff --git a/demos/unispeech-speaker-verification/samples/heath_ledger.mp3 b/demos/unispeech-speaker-verification/samples/heath_ledger.mp3 new file mode 100644 index 0000000000000000000000000000000000000000..eb63071e1b3da9fcd072ec2801eb6165c49b0cb3 Binary files /dev/null and b/demos/unispeech-speaker-verification/samples/heath_ledger.mp3 differ diff --git a/demos/unispeech-speaker-verification/samples/heath_ledger_2.mp3 b/demos/unispeech-speaker-verification/samples/heath_ledger_2.mp3 new file mode 100644 index 0000000000000000000000000000000000000000..d74f1ec3f08cc168b25184e75eeb65dc0550c1ac Binary files /dev/null and b/demos/unispeech-speaker-verification/samples/heath_ledger_2.mp3 differ diff --git a/demos/unispeech-speaker-verification/samples/kirsten_dunst.wav b/demos/unispeech-speaker-verification/samples/kirsten_dunst.wav new file mode 100644 index 0000000000000000000000000000000000000000..62db17ffcacd2d90a18833ca17f2947cc140b300 --- /dev/null +++ b/demos/unispeech-speaker-verification/samples/kirsten_dunst.wav @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7ab77b27959f0f43126c94c4de3baa23b3f92c3c2e26ba322af2d6cd688f3233 +size 1287798 diff --git a/demos/video_identity/run.py b/demos/video_identity/run.py new file mode 100644 index 0000000000000000000000000000000000000000..152dab9b0e8389c69531bb109124160ab03156e1 --- /dev/null +++ b/demos/video_identity/run.py @@ -0,0 +1,18 @@ +import gradio as gr +import os + + +def video_identity(video): + return video + + +demo = gr.Interface(video_identity, + gr.Video(), + "playable_video", + examples=[ + os.path.join(os.path.dirname(__file__), + "video/video_sample.mp4")], + cache_examples=True) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/video_identity/screenshot.png b/demos/video_identity/screenshot.png new file mode 100644 index 0000000000000000000000000000000000000000..9999f8c57f5ab7fb81ff0b892a6fdf3ec6b12371 --- /dev/null +++ b/demos/video_identity/screenshot.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a431f9aacbd4427e007e8c08329743cee71f6cbb793734074c70d7389cab0480 +size 215602 diff --git a/demos/video_identity/video/video_sample.mp4 b/demos/video_identity/video/video_sample.mp4 new file mode 100644 index 0000000000000000000000000000000000000000..b962d7f9787361bfd14cc58ff5c95f3a3db2eefe --- /dev/null +++ b/demos/video_identity/video/video_sample.mp4 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fc7e05ed802c94d74e9005e3bc53d5abfd36ab4b63be1602f6cfe697b789c418 +size 261179 diff --git a/demos/webcam/run.py b/demos/webcam/run.py new file mode 100644 index 0000000000000000000000000000000000000000..4f2a9e06226d9b780c77cb94e32dd38ecc9f6d3e --- /dev/null +++ b/demos/webcam/run.py @@ -0,0 +1,17 @@ +import numpy as np + +import gradio as gr + + +def snap(image, video): + return [image, video] + + +demo = gr.Interface( + snap, + [gr.Image(source="webcam", tool=None), gr.Video(source="webcam")], + ["image", "video"], +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/webcam/screenshot.png b/demos/webcam/screenshot.png new file mode 100644 index 0000000000000000000000000000000000000000..5858bfa75d97125516b2856688e3b1f4ca8cca3d --- /dev/null +++ b/demos/webcam/screenshot.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:17332adea6939c98a363a13c1445499051cfdcab903af7a32d06b414f7765507 +size 589678 diff --git a/demos/zip_to_json/run.py b/demos/zip_to_json/run.py new file mode 100644 index 0000000000000000000000000000000000000000..2500b409d12175e25cc4062696624e85f5f78124 --- /dev/null +++ b/demos/zip_to_json/run.py @@ -0,0 +1,23 @@ +from zipfile import ZipFile + +import gradio as gr + + +def zip_to_json(file_obj): + files = [] + with ZipFile(file_obj.name) as zfile: + for zinfo in zfile.infolist(): + files.append( + { + "name": zinfo.filename, + "file_size": zinfo.file_size, + "compressed_size": zinfo.compress_size, + } + ) + return files + + +demo = gr.Interface(zip_to_json, "file", "json") + +if __name__ == "__main__": + demo.launch() diff --git a/demos/zip_to_json/screenshot.png b/demos/zip_to_json/screenshot.png new file mode 100644 index 0000000000000000000000000000000000000000..85a15137fa5efefc7fc49a6d44637365bf7da690 --- /dev/null +++ b/demos/zip_to_json/screenshot.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:017624b0c837e70b24501ee9c0c1befc5f07fbafc5f01556fc4405d134a9a0c3 +size 37168 diff --git a/demos/zip_two_files/files/titanic.csv b/demos/zip_two_files/files/titanic.csv new file mode 100644 index 0000000000000000000000000000000000000000..63b68ab0ba98c667f515c52f08c0bbd5573d5330 --- /dev/null +++ b/demos/zip_two_files/files/titanic.csv @@ -0,0 +1,892 @@ +PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked +1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S +2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C +3,1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/O2. 3101282,7.925,,S +4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35,1,0,113803,53.1,C123,S +5,0,3,"Allen, Mr. William Henry",male,35,0,0,373450,8.05,,S +6,0,3,"Moran, Mr. James",male,,0,0,330877,8.4583,,Q +7,0,1,"McCarthy, Mr. Timothy J",male,54,0,0,17463,51.8625,E46,S +8,0,3,"Palsson, Master. Gosta Leonard",male,2,3,1,349909,21.075,,S +9,1,3,"Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",female,27,0,2,347742,11.1333,,S +10,1,2,"Nasser, Mrs. Nicholas (Adele Achem)",female,14,1,0,237736,30.0708,,C +11,1,3,"Sandstrom, Miss. Marguerite Rut",female,4,1,1,PP 9549,16.7,G6,S +12,1,1,"Bonnell, Miss. Elizabeth",female,58,0,0,113783,26.55,C103,S +13,0,3,"Saundercock, Mr. William Henry",male,20,0,0,A/5. 2151,8.05,,S +14,0,3,"Andersson, Mr. Anders Johan",male,39,1,5,347082,31.275,,S +15,0,3,"Vestrom, Miss. Hulda Amanda Adolfina",female,14,0,0,350406,7.8542,,S +16,1,2,"Hewlett, Mrs. (Mary D Kingcome) ",female,55,0,0,248706,16,,S +17,0,3,"Rice, Master. Eugene",male,2,4,1,382652,29.125,,Q +18,1,2,"Williams, Mr. Charles Eugene",male,,0,0,244373,13,,S +19,0,3,"Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)",female,31,1,0,345763,18,,S +20,1,3,"Masselmani, Mrs. Fatima",female,,0,0,2649,7.225,,C +21,0,2,"Fynney, Mr. Joseph J",male,35,0,0,239865,26,,S +22,1,2,"Beesley, Mr. Lawrence",male,34,0,0,248698,13,D56,S +23,1,3,"McGowan, Miss. Anna ""Annie""",female,15,0,0,330923,8.0292,,Q +24,1,1,"Sloper, Mr. William Thompson",male,28,0,0,113788,35.5,A6,S +25,0,3,"Palsson, Miss. Torborg Danira",female,8,3,1,349909,21.075,,S +26,1,3,"Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)",female,38,1,5,347077,31.3875,,S +27,0,3,"Emir, Mr. Farred Chehab",male,,0,0,2631,7.225,,C +28,0,1,"Fortune, Mr. Charles Alexander",male,19,3,2,19950,263,C23 C25 C27,S +29,1,3,"O'Dwyer, Miss. Ellen ""Nellie""",female,,0,0,330959,7.8792,,Q +30,0,3,"Todoroff, Mr. Lalio",male,,0,0,349216,7.8958,,S +31,0,1,"Uruchurtu, Don. Manuel E",male,40,0,0,PC 17601,27.7208,,C +32,1,1,"Spencer, Mrs. William Augustus (Marie Eugenie)",female,,1,0,PC 17569,146.5208,B78,C +33,1,3,"Glynn, Miss. Mary Agatha",female,,0,0,335677,7.75,,Q +34,0,2,"Wheadon, Mr. Edward H",male,66,0,0,C.A. 24579,10.5,,S +35,0,1,"Meyer, Mr. Edgar Joseph",male,28,1,0,PC 17604,82.1708,,C +36,0,1,"Holverson, Mr. Alexander Oskar",male,42,1,0,113789,52,,S +37,1,3,"Mamee, Mr. Hanna",male,,0,0,2677,7.2292,,C +38,0,3,"Cann, Mr. Ernest Charles",male,21,0,0,A./5. 2152,8.05,,S +39,0,3,"Vander Planke, Miss. Augusta Maria",female,18,2,0,345764,18,,S +40,1,3,"Nicola-Yarred, Miss. Jamila",female,14,1,0,2651,11.2417,,C +41,0,3,"Ahlin, Mrs. Johan (Johanna Persdotter Larsson)",female,40,1,0,7546,9.475,,S +42,0,2,"Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)",female,27,1,0,11668,21,,S +43,0,3,"Kraeff, Mr. Theodor",male,,0,0,349253,7.8958,,C +44,1,2,"Laroche, Miss. Simonne Marie Anne Andree",female,3,1,2,SC/Paris 2123,41.5792,,C +45,1,3,"Devaney, Miss. Margaret Delia",female,19,0,0,330958,7.8792,,Q +46,0,3,"Rogers, Mr. William John",male,,0,0,S.C./A.4. 23567,8.05,,S +47,0,3,"Lennon, Mr. Denis",male,,1,0,370371,15.5,,Q +48,1,3,"O'Driscoll, Miss. Bridget",female,,0,0,14311,7.75,,Q +49,0,3,"Samaan, Mr. Youssef",male,,2,0,2662,21.6792,,C +50,0,3,"Arnold-Franchi, Mrs. Josef (Josefine Franchi)",female,18,1,0,349237,17.8,,S +51,0,3,"Panula, Master. Juha Niilo",male,7,4,1,3101295,39.6875,,S +52,0,3,"Nosworthy, Mr. Richard Cater",male,21,0,0,A/4. 39886,7.8,,S +53,1,1,"Harper, Mrs. Henry Sleeper (Myna Haxtun)",female,49,1,0,PC 17572,76.7292,D33,C +54,1,2,"Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)",female,29,1,0,2926,26,,S +55,0,1,"Ostby, Mr. Engelhart Cornelius",male,65,0,1,113509,61.9792,B30,C +56,1,1,"Woolner, Mr. Hugh",male,,0,0,19947,35.5,C52,S +57,1,2,"Rugg, Miss. Emily",female,21,0,0,C.A. 31026,10.5,,S +58,0,3,"Novel, Mr. Mansouer",male,28.5,0,0,2697,7.2292,,C +59,1,2,"West, Miss. Constance Mirium",female,5,1,2,C.A. 34651,27.75,,S +60,0,3,"Goodwin, Master. William Frederick",male,11,5,2,CA 2144,46.9,,S +61,0,3,"Sirayanian, Mr. Orsen",male,22,0,0,2669,7.2292,,C +62,1,1,"Icard, Miss. Amelie",female,38,0,0,113572,80,B28, +63,0,1,"Harris, Mr. Henry Birkhardt",male,45,1,0,36973,83.475,C83,S +64,0,3,"Skoog, Master. Harald",male,4,3,2,347088,27.9,,S +65,0,1,"Stewart, Mr. Albert A",male,,0,0,PC 17605,27.7208,,C +66,1,3,"Moubarek, Master. Gerios",male,,1,1,2661,15.2458,,C +67,1,2,"Nye, Mrs. (Elizabeth Ramell)",female,29,0,0,C.A. 29395,10.5,F33,S +68,0,3,"Crease, Mr. Ernest James",male,19,0,0,S.P. 3464,8.1583,,S +69,1,3,"Andersson, Miss. Erna Alexandra",female,17,4,2,3101281,7.925,,S +70,0,3,"Kink, Mr. Vincenz",male,26,2,0,315151,8.6625,,S +71,0,2,"Jenkin, Mr. Stephen Curnow",male,32,0,0,C.A. 33111,10.5,,S +72,0,3,"Goodwin, Miss. Lillian Amy",female,16,5,2,CA 2144,46.9,,S +73,0,2,"Hood, Mr. Ambrose Jr",male,21,0,0,S.O.C. 14879,73.5,,S +74,0,3,"Chronopoulos, Mr. Apostolos",male,26,1,0,2680,14.4542,,C +75,1,3,"Bing, Mr. Lee",male,32,0,0,1601,56.4958,,S +76,0,3,"Moen, Mr. Sigurd Hansen",male,25,0,0,348123,7.65,F G73,S +77,0,3,"Staneff, Mr. Ivan",male,,0,0,349208,7.8958,,S +78,0,3,"Moutal, Mr. Rahamin Haim",male,,0,0,374746,8.05,,S +79,1,2,"Caldwell, Master. Alden Gates",male,0.83,0,2,248738,29,,S +80,1,3,"Dowdell, Miss. Elizabeth",female,30,0,0,364516,12.475,,S +81,0,3,"Waelens, Mr. Achille",male,22,0,0,345767,9,,S +82,1,3,"Sheerlinck, Mr. Jan Baptist",male,29,0,0,345779,9.5,,S +83,1,3,"McDermott, Miss. Brigdet Delia",female,,0,0,330932,7.7875,,Q +84,0,1,"Carrau, Mr. Francisco M",male,28,0,0,113059,47.1,,S +85,1,2,"Ilett, Miss. Bertha",female,17,0,0,SO/C 14885,10.5,,S +86,1,3,"Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson)",female,33,3,0,3101278,15.85,,S +87,0,3,"Ford, Mr. William Neal",male,16,1,3,W./C. 6608,34.375,,S +88,0,3,"Slocovski, Mr. Selman Francis",male,,0,0,SOTON/OQ 392086,8.05,,S +89,1,1,"Fortune, Miss. Mabel Helen",female,23,3,2,19950,263,C23 C25 C27,S +90,0,3,"Celotti, Mr. Francesco",male,24,0,0,343275,8.05,,S +91,0,3,"Christmann, Mr. Emil",male,29,0,0,343276,8.05,,S +92,0,3,"Andreasson, Mr. Paul Edvin",male,20,0,0,347466,7.8542,,S +93,0,1,"Chaffee, Mr. Herbert Fuller",male,46,1,0,W.E.P. 5734,61.175,E31,S +94,0,3,"Dean, Mr. Bertram Frank",male,26,1,2,C.A. 2315,20.575,,S +95,0,3,"Coxon, Mr. Daniel",male,59,0,0,364500,7.25,,S +96,0,3,"Shorney, Mr. Charles Joseph",male,,0,0,374910,8.05,,S +97,0,1,"Goldschmidt, Mr. George B",male,71,0,0,PC 17754,34.6542,A5,C +98,1,1,"Greenfield, Mr. William Bertram",male,23,0,1,PC 17759,63.3583,D10 D12,C +99,1,2,"Doling, Mrs. John T (Ada Julia Bone)",female,34,0,1,231919,23,,S +100,0,2,"Kantor, Mr. Sinai",male,34,1,0,244367,26,,S +101,0,3,"Petranec, Miss. Matilda",female,28,0,0,349245,7.8958,,S +102,0,3,"Petroff, Mr. Pastcho (""Pentcho"")",male,,0,0,349215,7.8958,,S +103,0,1,"White, Mr. Richard Frasar",male,21,0,1,35281,77.2875,D26,S +104,0,3,"Johansson, Mr. Gustaf Joel",male,33,0,0,7540,8.6542,,S +105,0,3,"Gustafsson, Mr. Anders Vilhelm",male,37,2,0,3101276,7.925,,S +106,0,3,"Mionoff, Mr. Stoytcho",male,28,0,0,349207,7.8958,,S +107,1,3,"Salkjelsvik, Miss. Anna Kristine",female,21,0,0,343120,7.65,,S +108,1,3,"Moss, Mr. Albert Johan",male,,0,0,312991,7.775,,S +109,0,3,"Rekic, Mr. Tido",male,38,0,0,349249,7.8958,,S +110,1,3,"Moran, Miss. Bertha",female,,1,0,371110,24.15,,Q +111,0,1,"Porter, Mr. Walter Chamberlain",male,47,0,0,110465,52,C110,S +112,0,3,"Zabour, Miss. Hileni",female,14.5,1,0,2665,14.4542,,C +113,0,3,"Barton, Mr. David John",male,22,0,0,324669,8.05,,S +114,0,3,"Jussila, Miss. Katriina",female,20,1,0,4136,9.825,,S +115,0,3,"Attalah, Miss. Malake",female,17,0,0,2627,14.4583,,C +116,0,3,"Pekoniemi, Mr. Edvard",male,21,0,0,STON/O 2. 3101294,7.925,,S +117,0,3,"Connors, Mr. Patrick",male,70.5,0,0,370369,7.75,,Q +118,0,2,"Turpin, Mr. William John Robert",male,29,1,0,11668,21,,S +119,0,1,"Baxter, Mr. Quigg Edmond",male,24,0,1,PC 17558,247.5208,B58 B60,C +120,0,3,"Andersson, Miss. Ellis Anna Maria",female,2,4,2,347082,31.275,,S +121,0,2,"Hickman, Mr. Stanley George",male,21,2,0,S.O.C. 14879,73.5,,S +122,0,3,"Moore, Mr. Leonard Charles",male,,0,0,A4. 54510,8.05,,S +123,0,2,"Nasser, Mr. Nicholas",male,32.5,1,0,237736,30.0708,,C +124,1,2,"Webber, Miss. Susan",female,32.5,0,0,27267,13,E101,S +125,0,1,"White, Mr. Percival Wayland",male,54,0,1,35281,77.2875,D26,S +126,1,3,"Nicola-Yarred, Master. Elias",male,12,1,0,2651,11.2417,,C +127,0,3,"McMahon, Mr. Martin",male,,0,0,370372,7.75,,Q +128,1,3,"Madsen, Mr. Fridtjof Arne",male,24,0,0,C 17369,7.1417,,S +129,1,3,"Peter, Miss. Anna",female,,1,1,2668,22.3583,F E69,C +130,0,3,"Ekstrom, Mr. Johan",male,45,0,0,347061,6.975,,S +131,0,3,"Drazenoic, Mr. Jozef",male,33,0,0,349241,7.8958,,C +132,0,3,"Coelho, Mr. Domingos Fernandeo",male,20,0,0,SOTON/O.Q. 3101307,7.05,,S +133,0,3,"Robins, Mrs. Alexander A (Grace Charity Laury)",female,47,1,0,A/5. 3337,14.5,,S +134,1,2,"Weisz, Mrs. Leopold (Mathilde Francoise Pede)",female,29,1,0,228414,26,,S +135,0,2,"Sobey, Mr. Samuel James Hayden",male,25,0,0,C.A. 29178,13,,S +136,0,2,"Richard, Mr. Emile",male,23,0,0,SC/PARIS 2133,15.0458,,C +137,1,1,"Newsom, Miss. Helen Monypeny",female,19,0,2,11752,26.2833,D47,S +138,0,1,"Futrelle, Mr. Jacques Heath",male,37,1,0,113803,53.1,C123,S +139,0,3,"Osen, Mr. Olaf Elon",male,16,0,0,7534,9.2167,,S +140,0,1,"Giglio, Mr. Victor",male,24,0,0,PC 17593,79.2,B86,C +141,0,3,"Boulos, Mrs. Joseph (Sultana)",female,,0,2,2678,15.2458,,C +142,1,3,"Nysten, Miss. Anna Sofia",female,22,0,0,347081,7.75,,S +143,1,3,"Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck)",female,24,1,0,STON/O2. 3101279,15.85,,S +144,0,3,"Burke, Mr. Jeremiah",male,19,0,0,365222,6.75,,Q +145,0,2,"Andrew, Mr. Edgardo Samuel",male,18,0,0,231945,11.5,,S +146,0,2,"Nicholls, Mr. Joseph Charles",male,19,1,1,C.A. 33112,36.75,,S +147,1,3,"Andersson, Mr. August Edvard (""Wennerstrom"")",male,27,0,0,350043,7.7958,,S +148,0,3,"Ford, Miss. Robina Maggie ""Ruby""",female,9,2,2,W./C. 6608,34.375,,S +149,0,2,"Navratil, Mr. Michel (""Louis M Hoffman"")",male,36.5,0,2,230080,26,F2,S +150,0,2,"Byles, Rev. Thomas Roussel Davids",male,42,0,0,244310,13,,S +151,0,2,"Bateman, Rev. Robert James",male,51,0,0,S.O.P. 1166,12.525,,S +152,1,1,"Pears, Mrs. Thomas (Edith Wearne)",female,22,1,0,113776,66.6,C2,S +153,0,3,"Meo, Mr. Alfonzo",male,55.5,0,0,A.5. 11206,8.05,,S +154,0,3,"van Billiard, Mr. Austin Blyler",male,40.5,0,2,A/5. 851,14.5,,S +155,0,3,"Olsen, Mr. Ole Martin",male,,0,0,Fa 265302,7.3125,,S +156,0,1,"Williams, Mr. Charles Duane",male,51,0,1,PC 17597,61.3792,,C +157,1,3,"Gilnagh, Miss. Katherine ""Katie""",female,16,0,0,35851,7.7333,,Q +158,0,3,"Corn, Mr. Harry",male,30,0,0,SOTON/OQ 392090,8.05,,S +159,0,3,"Smiljanic, Mr. Mile",male,,0,0,315037,8.6625,,S +160,0,3,"Sage, Master. Thomas Henry",male,,8,2,CA. 2343,69.55,,S +161,0,3,"Cribb, Mr. John Hatfield",male,44,0,1,371362,16.1,,S +162,1,2,"Watt, Mrs. James (Elizabeth ""Bessie"" Inglis Milne)",female,40,0,0,C.A. 33595,15.75,,S +163,0,3,"Bengtsson, Mr. John Viktor",male,26,0,0,347068,7.775,,S +164,0,3,"Calic, Mr. Jovo",male,17,0,0,315093,8.6625,,S +165,0,3,"Panula, Master. Eino Viljami",male,1,4,1,3101295,39.6875,,S +166,1,3,"Goldsmith, Master. Frank John William ""Frankie""",male,9,0,2,363291,20.525,,S +167,1,1,"Chibnall, Mrs. (Edith Martha Bowerman)",female,,0,1,113505,55,E33,S +168,0,3,"Skoog, Mrs. William (Anna Bernhardina Karlsson)",female,45,1,4,347088,27.9,,S +169,0,1,"Baumann, Mr. John D",male,,0,0,PC 17318,25.925,,S +170,0,3,"Ling, Mr. Lee",male,28,0,0,1601,56.4958,,S +171,0,1,"Van der hoef, Mr. Wyckoff",male,61,0,0,111240,33.5,B19,S +172,0,3,"Rice, Master. Arthur",male,4,4,1,382652,29.125,,Q +173,1,3,"Johnson, Miss. Eleanor Ileen",female,1,1,1,347742,11.1333,,S +174,0,3,"Sivola, Mr. Antti Wilhelm",male,21,0,0,STON/O 2. 3101280,7.925,,S +175,0,1,"Smith, Mr. James Clinch",male,56,0,0,17764,30.6958,A7,C +176,0,3,"Klasen, Mr. Klas Albin",male,18,1,1,350404,7.8542,,S +177,0,3,"Lefebre, Master. Henry Forbes",male,,3,1,4133,25.4667,,S +178,0,1,"Isham, Miss. Ann Elizabeth",female,50,0,0,PC 17595,28.7125,C49,C +179,0,2,"Hale, Mr. Reginald",male,30,0,0,250653,13,,S +180,0,3,"Leonard, Mr. Lionel",male,36,0,0,LINE,0,,S +181,0,3,"Sage, Miss. Constance Gladys",female,,8,2,CA. 2343,69.55,,S +182,0,2,"Pernot, Mr. Rene",male,,0,0,SC/PARIS 2131,15.05,,C +183,0,3,"Asplund, Master. Clarence Gustaf Hugo",male,9,4,2,347077,31.3875,,S +184,1,2,"Becker, Master. Richard F",male,1,2,1,230136,39,F4,S +185,1,3,"Kink-Heilmann, Miss. Luise Gretchen",female,4,0,2,315153,22.025,,S +186,0,1,"Rood, Mr. Hugh Roscoe",male,,0,0,113767,50,A32,S +187,1,3,"O'Brien, Mrs. Thomas (Johanna ""Hannah"" Godfrey)",female,,1,0,370365,15.5,,Q +188,1,1,"Romaine, Mr. Charles Hallace (""Mr C Rolmane"")",male,45,0,0,111428,26.55,,S +189,0,3,"Bourke, Mr. John",male,40,1,1,364849,15.5,,Q +190,0,3,"Turcin, Mr. Stjepan",male,36,0,0,349247,7.8958,,S +191,1,2,"Pinsky, Mrs. (Rosa)",female,32,0,0,234604,13,,S +192,0,2,"Carbines, Mr. William",male,19,0,0,28424,13,,S +193,1,3,"Andersen-Jensen, Miss. Carla Christine Nielsine",female,19,1,0,350046,7.8542,,S +194,1,2,"Navratil, Master. Michel M",male,3,1,1,230080,26,F2,S +195,1,1,"Brown, Mrs. James Joseph (Margaret Tobin)",female,44,0,0,PC 17610,27.7208,B4,C +196,1,1,"Lurette, Miss. Elise",female,58,0,0,PC 17569,146.5208,B80,C +197,0,3,"Mernagh, Mr. Robert",male,,0,0,368703,7.75,,Q +198,0,3,"Olsen, Mr. Karl Siegwart Andreas",male,42,0,1,4579,8.4042,,S +199,1,3,"Madigan, Miss. Margaret ""Maggie""",female,,0,0,370370,7.75,,Q +200,0,2,"Yrois, Miss. Henriette (""Mrs Harbeck"")",female,24,0,0,248747,13,,S +201,0,3,"Vande Walle, Mr. Nestor Cyriel",male,28,0,0,345770,9.5,,S +202,0,3,"Sage, Mr. Frederick",male,,8,2,CA. 2343,69.55,,S +203,0,3,"Johanson, Mr. Jakob Alfred",male,34,0,0,3101264,6.4958,,S +204,0,3,"Youseff, Mr. Gerious",male,45.5,0,0,2628,7.225,,C +205,1,3,"Cohen, Mr. Gurshon ""Gus""",male,18,0,0,A/5 3540,8.05,,S +206,0,3,"Strom, Miss. Telma Matilda",female,2,0,1,347054,10.4625,G6,S +207,0,3,"Backstrom, Mr. Karl Alfred",male,32,1,0,3101278,15.85,,S +208,1,3,"Albimona, Mr. Nassef Cassem",male,26,0,0,2699,18.7875,,C +209,1,3,"Carr, Miss. Helen ""Ellen""",female,16,0,0,367231,7.75,,Q +210,1,1,"Blank, Mr. Henry",male,40,0,0,112277,31,A31,C +211,0,3,"Ali, Mr. Ahmed",male,24,0,0,SOTON/O.Q. 3101311,7.05,,S +212,1,2,"Cameron, Miss. Clear Annie",female,35,0,0,F.C.C. 13528,21,,S +213,0,3,"Perkin, Mr. John Henry",male,22,0,0,A/5 21174,7.25,,S +214,0,2,"Givard, Mr. Hans Kristensen",male,30,0,0,250646,13,,S +215,0,3,"Kiernan, Mr. Philip",male,,1,0,367229,7.75,,Q +216,1,1,"Newell, Miss. Madeleine",female,31,1,0,35273,113.275,D36,C +217,1,3,"Honkanen, Miss. Eliina",female,27,0,0,STON/O2. 3101283,7.925,,S +218,0,2,"Jacobsohn, Mr. Sidney Samuel",male,42,1,0,243847,27,,S +219,1,1,"Bazzani, Miss. Albina",female,32,0,0,11813,76.2917,D15,C +220,0,2,"Harris, Mr. Walter",male,30,0,0,W/C 14208,10.5,,S +221,1,3,"Sunderland, Mr. Victor Francis",male,16,0,0,SOTON/OQ 392089,8.05,,S +222,0,2,"Bracken, Mr. James H",male,27,0,0,220367,13,,S +223,0,3,"Green, Mr. George Henry",male,51,0,0,21440,8.05,,S +224,0,3,"Nenkoff, Mr. Christo",male,,0,0,349234,7.8958,,S +225,1,1,"Hoyt, Mr. Frederick Maxfield",male,38,1,0,19943,90,C93,S +226,0,3,"Berglund, Mr. Karl Ivar Sven",male,22,0,0,PP 4348,9.35,,S +227,1,2,"Mellors, Mr. William John",male,19,0,0,SW/PP 751,10.5,,S +228,0,3,"Lovell, Mr. John Hall (""Henry"")",male,20.5,0,0,A/5 21173,7.25,,S +229,0,2,"Fahlstrom, Mr. Arne Jonas",male,18,0,0,236171,13,,S +230,0,3,"Lefebre, Miss. Mathilde",female,,3,1,4133,25.4667,,S +231,1,1,"Harris, Mrs. Henry Birkhardt (Irene Wallach)",female,35,1,0,36973,83.475,C83,S +232,0,3,"Larsson, Mr. Bengt Edvin",male,29,0,0,347067,7.775,,S +233,0,2,"Sjostedt, Mr. Ernst Adolf",male,59,0,0,237442,13.5,,S +234,1,3,"Asplund, Miss. Lillian Gertrud",female,5,4,2,347077,31.3875,,S +235,0,2,"Leyson, Mr. Robert William Norman",male,24,0,0,C.A. 29566,10.5,,S +236,0,3,"Harknett, Miss. Alice Phoebe",female,,0,0,W./C. 6609,7.55,,S +237,0,2,"Hold, Mr. Stephen",male,44,1,0,26707,26,,S +238,1,2,"Collyer, Miss. Marjorie ""Lottie""",female,8,0,2,C.A. 31921,26.25,,S +239,0,2,"Pengelly, Mr. Frederick William",male,19,0,0,28665,10.5,,S +240,0,2,"Hunt, Mr. George Henry",male,33,0,0,SCO/W 1585,12.275,,S +241,0,3,"Zabour, Miss. Thamine",female,,1,0,2665,14.4542,,C +242,1,3,"Murphy, Miss. Katherine ""Kate""",female,,1,0,367230,15.5,,Q +243,0,2,"Coleridge, Mr. Reginald Charles",male,29,0,0,W./C. 14263,10.5,,S +244,0,3,"Maenpaa, Mr. Matti Alexanteri",male,22,0,0,STON/O 2. 3101275,7.125,,S +245,0,3,"Attalah, Mr. Sleiman",male,30,0,0,2694,7.225,,C +246,0,1,"Minahan, Dr. William Edward",male,44,2,0,19928,90,C78,Q +247,0,3,"Lindahl, Miss. Agda Thorilda Viktoria",female,25,0,0,347071,7.775,,S +248,1,2,"Hamalainen, Mrs. William (Anna)",female,24,0,2,250649,14.5,,S +249,1,1,"Beckwith, Mr. Richard Leonard",male,37,1,1,11751,52.5542,D35,S +250,0,2,"Carter, Rev. Ernest Courtenay",male,54,1,0,244252,26,,S +251,0,3,"Reed, Mr. James George",male,,0,0,362316,7.25,,S +252,0,3,"Strom, Mrs. Wilhelm (Elna Matilda Persson)",female,29,1,1,347054,10.4625,G6,S +253,0,1,"Stead, Mr. William Thomas",male,62,0,0,113514,26.55,C87,S +254,0,3,"Lobb, Mr. William Arthur",male,30,1,0,A/5. 3336,16.1,,S +255,0,3,"Rosblom, Mrs. Viktor (Helena Wilhelmina)",female,41,0,2,370129,20.2125,,S +256,1,3,"Touma, Mrs. Darwis (Hanne Youssef Razi)",female,29,0,2,2650,15.2458,,C +257,1,1,"Thorne, Mrs. Gertrude Maybelle",female,,0,0,PC 17585,79.2,,C +258,1,1,"Cherry, Miss. Gladys",female,30,0,0,110152,86.5,B77,S +259,1,1,"Ward, Miss. Anna",female,35,0,0,PC 17755,512.3292,,C +260,1,2,"Parrish, Mrs. (Lutie Davis)",female,50,0,1,230433,26,,S +261,0,3,"Smith, Mr. Thomas",male,,0,0,384461,7.75,,Q +262,1,3,"Asplund, Master. Edvin Rojj Felix",male,3,4,2,347077,31.3875,,S +263,0,1,"Taussig, Mr. Emil",male,52,1,1,110413,79.65,E67,S +264,0,1,"Harrison, Mr. William",male,40,0,0,112059,0,B94,S +265,0,3,"Henry, Miss. Delia",female,,0,0,382649,7.75,,Q +266,0,2,"Reeves, Mr. David",male,36,0,0,C.A. 17248,10.5,,S +267,0,3,"Panula, Mr. Ernesti Arvid",male,16,4,1,3101295,39.6875,,S +268,1,3,"Persson, Mr. Ernst Ulrik",male,25,1,0,347083,7.775,,S +269,1,1,"Graham, Mrs. William Thompson (Edith Junkins)",female,58,0,1,PC 17582,153.4625,C125,S +270,1,1,"Bissette, Miss. Amelia",female,35,0,0,PC 17760,135.6333,C99,S +271,0,1,"Cairns, Mr. Alexander",male,,0,0,113798,31,,S +272,1,3,"Tornquist, Mr. William Henry",male,25,0,0,LINE,0,,S +273,1,2,"Mellinger, Mrs. (Elizabeth Anne Maidment)",female,41,0,1,250644,19.5,,S +274,0,1,"Natsch, Mr. Charles H",male,37,0,1,PC 17596,29.7,C118,C +275,1,3,"Healy, Miss. Hanora ""Nora""",female,,0,0,370375,7.75,,Q +276,1,1,"Andrews, Miss. Kornelia Theodosia",female,63,1,0,13502,77.9583,D7,S +277,0,3,"Lindblom, Miss. Augusta Charlotta",female,45,0,0,347073,7.75,,S +278,0,2,"Parkes, Mr. Francis ""Frank""",male,,0,0,239853,0,,S +279,0,3,"Rice, Master. Eric",male,7,4,1,382652,29.125,,Q +280,1,3,"Abbott, Mrs. Stanton (Rosa Hunt)",female,35,1,1,C.A. 2673,20.25,,S +281,0,3,"Duane, Mr. Frank",male,65,0,0,336439,7.75,,Q +282,0,3,"Olsson, Mr. Nils Johan Goransson",male,28,0,0,347464,7.8542,,S +283,0,3,"de Pelsmaeker, Mr. Alfons",male,16,0,0,345778,9.5,,S +284,1,3,"Dorking, Mr. Edward Arthur",male,19,0,0,A/5. 10482,8.05,,S +285,0,1,"Smith, Mr. Richard William",male,,0,0,113056,26,A19,S +286,0,3,"Stankovic, Mr. Ivan",male,33,0,0,349239,8.6625,,C +287,1,3,"de Mulder, Mr. Theodore",male,30,0,0,345774,9.5,,S +288,0,3,"Naidenoff, Mr. Penko",male,22,0,0,349206,7.8958,,S +289,1,2,"Hosono, Mr. Masabumi",male,42,0,0,237798,13,,S +290,1,3,"Connolly, Miss. Kate",female,22,0,0,370373,7.75,,Q +291,1,1,"Barber, Miss. Ellen ""Nellie""",female,26,0,0,19877,78.85,,S +292,1,1,"Bishop, Mrs. Dickinson H (Helen Walton)",female,19,1,0,11967,91.0792,B49,C +293,0,2,"Levy, Mr. Rene Jacques",male,36,0,0,SC/Paris 2163,12.875,D,C +294,0,3,"Haas, Miss. Aloisia",female,24,0,0,349236,8.85,,S +295,0,3,"Mineff, Mr. Ivan",male,24,0,0,349233,7.8958,,S +296,0,1,"Lewy, Mr. Ervin G",male,,0,0,PC 17612,27.7208,,C +297,0,3,"Hanna, Mr. Mansour",male,23.5,0,0,2693,7.2292,,C +298,0,1,"Allison, Miss. Helen Loraine",female,2,1,2,113781,151.55,C22 C26,S +299,1,1,"Saalfeld, Mr. Adolphe",male,,0,0,19988,30.5,C106,S +300,1,1,"Baxter, Mrs. James (Helene DeLaudeniere Chaput)",female,50,0,1,PC 17558,247.5208,B58 B60,C +301,1,3,"Kelly, Miss. Anna Katherine ""Annie Kate""",female,,0,0,9234,7.75,,Q +302,1,3,"McCoy, Mr. Bernard",male,,2,0,367226,23.25,,Q +303,0,3,"Johnson, Mr. William Cahoone Jr",male,19,0,0,LINE,0,,S +304,1,2,"Keane, Miss. Nora A",female,,0,0,226593,12.35,E101,Q +305,0,3,"Williams, Mr. Howard Hugh ""Harry""",male,,0,0,A/5 2466,8.05,,S +306,1,1,"Allison, Master. Hudson Trevor",male,0.92,1,2,113781,151.55,C22 C26,S +307,1,1,"Fleming, Miss. Margaret",female,,0,0,17421,110.8833,,C +308,1,1,"Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)",female,17,1,0,PC 17758,108.9,C65,C +309,0,2,"Abelson, Mr. Samuel",male,30,1,0,P/PP 3381,24,,C +310,1,1,"Francatelli, Miss. Laura Mabel",female,30,0,0,PC 17485,56.9292,E36,C +311,1,1,"Hays, Miss. Margaret Bechstein",female,24,0,0,11767,83.1583,C54,C +312,1,1,"Ryerson, Miss. Emily Borie",female,18,2,2,PC 17608,262.375,B57 B59 B63 B66,C +313,0,2,"Lahtinen, Mrs. William (Anna Sylfven)",female,26,1,1,250651,26,,S +314,0,3,"Hendekovic, Mr. Ignjac",male,28,0,0,349243,7.8958,,S +315,0,2,"Hart, Mr. Benjamin",male,43,1,1,F.C.C. 13529,26.25,,S +316,1,3,"Nilsson, Miss. Helmina Josefina",female,26,0,0,347470,7.8542,,S +317,1,2,"Kantor, Mrs. Sinai (Miriam Sternin)",female,24,1,0,244367,26,,S +318,0,2,"Moraweck, Dr. Ernest",male,54,0,0,29011,14,,S +319,1,1,"Wick, Miss. Mary Natalie",female,31,0,2,36928,164.8667,C7,S +320,1,1,"Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone)",female,40,1,1,16966,134.5,E34,C +321,0,3,"Dennis, Mr. Samuel",male,22,0,0,A/5 21172,7.25,,S +322,0,3,"Danoff, Mr. Yoto",male,27,0,0,349219,7.8958,,S +323,1,2,"Slayter, Miss. Hilda Mary",female,30,0,0,234818,12.35,,Q +324,1,2,"Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh)",female,22,1,1,248738,29,,S +325,0,3,"Sage, Mr. George John Jr",male,,8,2,CA. 2343,69.55,,S +326,1,1,"Young, Miss. Marie Grice",female,36,0,0,PC 17760,135.6333,C32,C +327,0,3,"Nysveen, Mr. Johan Hansen",male,61,0,0,345364,6.2375,,S +328,1,2,"Ball, Mrs. (Ada E Hall)",female,36,0,0,28551,13,D,S +329,1,3,"Goldsmith, Mrs. Frank John (Emily Alice Brown)",female,31,1,1,363291,20.525,,S +330,1,1,"Hippach, Miss. Jean Gertrude",female,16,0,1,111361,57.9792,B18,C +331,1,3,"McCoy, Miss. Agnes",female,,2,0,367226,23.25,,Q +332,0,1,"Partner, Mr. Austen",male,45.5,0,0,113043,28.5,C124,S +333,0,1,"Graham, Mr. George Edward",male,38,0,1,PC 17582,153.4625,C91,S +334,0,3,"Vander Planke, Mr. Leo Edmondus",male,16,2,0,345764,18,,S +335,1,1,"Frauenthal, Mrs. Henry William (Clara Heinsheimer)",female,,1,0,PC 17611,133.65,,S +336,0,3,"Denkoff, Mr. Mitto",male,,0,0,349225,7.8958,,S +337,0,1,"Pears, Mr. Thomas Clinton",male,29,1,0,113776,66.6,C2,S +338,1,1,"Burns, Miss. Elizabeth Margaret",female,41,0,0,16966,134.5,E40,C +339,1,3,"Dahl, Mr. Karl Edwart",male,45,0,0,7598,8.05,,S +340,0,1,"Blackwell, Mr. Stephen Weart",male,45,0,0,113784,35.5,T,S +341,1,2,"Navratil, Master. Edmond Roger",male,2,1,1,230080,26,F2,S +342,1,1,"Fortune, Miss. Alice Elizabeth",female,24,3,2,19950,263,C23 C25 C27,S +343,0,2,"Collander, Mr. Erik Gustaf",male,28,0,0,248740,13,,S +344,0,2,"Sedgwick, Mr. Charles Frederick Waddington",male,25,0,0,244361,13,,S +345,0,2,"Fox, Mr. Stanley Hubert",male,36,0,0,229236,13,,S +346,1,2,"Brown, Miss. Amelia ""Mildred""",female,24,0,0,248733,13,F33,S +347,1,2,"Smith, Miss. Marion Elsie",female,40,0,0,31418,13,,S +348,1,3,"Davison, Mrs. Thomas Henry (Mary E Finck)",female,,1,0,386525,16.1,,S +349,1,3,"Coutts, Master. William Loch ""William""",male,3,1,1,C.A. 37671,15.9,,S +350,0,3,"Dimic, Mr. Jovan",male,42,0,0,315088,8.6625,,S +351,0,3,"Odahl, Mr. Nils Martin",male,23,0,0,7267,9.225,,S +352,0,1,"Williams-Lambert, Mr. Fletcher Fellows",male,,0,0,113510,35,C128,S +353,0,3,"Elias, Mr. Tannous",male,15,1,1,2695,7.2292,,C +354,0,3,"Arnold-Franchi, Mr. Josef",male,25,1,0,349237,17.8,,S +355,0,3,"Yousif, Mr. Wazli",male,,0,0,2647,7.225,,C +356,0,3,"Vanden Steen, Mr. Leo Peter",male,28,0,0,345783,9.5,,S +357,1,1,"Bowerman, Miss. Elsie Edith",female,22,0,1,113505,55,E33,S +358,0,2,"Funk, Miss. Annie Clemmer",female,38,0,0,237671,13,,S +359,1,3,"McGovern, Miss. Mary",female,,0,0,330931,7.8792,,Q +360,1,3,"Mockler, Miss. Helen Mary ""Ellie""",female,,0,0,330980,7.8792,,Q +361,0,3,"Skoog, Mr. Wilhelm",male,40,1,4,347088,27.9,,S +362,0,2,"del Carlo, Mr. Sebastiano",male,29,1,0,SC/PARIS 2167,27.7208,,C +363,0,3,"Barbara, Mrs. (Catherine David)",female,45,0,1,2691,14.4542,,C +364,0,3,"Asim, Mr. Adola",male,35,0,0,SOTON/O.Q. 3101310,7.05,,S +365,0,3,"O'Brien, Mr. Thomas",male,,1,0,370365,15.5,,Q +366,0,3,"Adahl, Mr. Mauritz Nils Martin",male,30,0,0,C 7076,7.25,,S +367,1,1,"Warren, Mrs. Frank Manley (Anna Sophia Atkinson)",female,60,1,0,110813,75.25,D37,C +368,1,3,"Moussa, Mrs. (Mantoura Boulos)",female,,0,0,2626,7.2292,,C +369,1,3,"Jermyn, Miss. Annie",female,,0,0,14313,7.75,,Q +370,1,1,"Aubart, Mme. Leontine Pauline",female,24,0,0,PC 17477,69.3,B35,C +371,1,1,"Harder, Mr. George Achilles",male,25,1,0,11765,55.4417,E50,C +372,0,3,"Wiklund, Mr. Jakob Alfred",male,18,1,0,3101267,6.4958,,S +373,0,3,"Beavan, Mr. William Thomas",male,19,0,0,323951,8.05,,S +374,0,1,"Ringhini, Mr. Sante",male,22,0,0,PC 17760,135.6333,,C +375,0,3,"Palsson, Miss. Stina Viola",female,3,3,1,349909,21.075,,S +376,1,1,"Meyer, Mrs. Edgar Joseph (Leila Saks)",female,,1,0,PC 17604,82.1708,,C +377,1,3,"Landergren, Miss. Aurora Adelia",female,22,0,0,C 7077,7.25,,S +378,0,1,"Widener, Mr. Harry Elkins",male,27,0,2,113503,211.5,C82,C +379,0,3,"Betros, Mr. Tannous",male,20,0,0,2648,4.0125,,C +380,0,3,"Gustafsson, Mr. Karl Gideon",male,19,0,0,347069,7.775,,S +381,1,1,"Bidois, Miss. Rosalie",female,42,0,0,PC 17757,227.525,,C +382,1,3,"Nakid, Miss. Maria (""Mary"")",female,1,0,2,2653,15.7417,,C +383,0,3,"Tikkanen, Mr. Juho",male,32,0,0,STON/O 2. 3101293,7.925,,S +384,1,1,"Holverson, Mrs. Alexander Oskar (Mary Aline Towner)",female,35,1,0,113789,52,,S +385,0,3,"Plotcharsky, Mr. Vasil",male,,0,0,349227,7.8958,,S +386,0,2,"Davies, Mr. Charles Henry",male,18,0,0,S.O.C. 14879,73.5,,S +387,0,3,"Goodwin, Master. Sidney Leonard",male,1,5,2,CA 2144,46.9,,S +388,1,2,"Buss, Miss. Kate",female,36,0,0,27849,13,,S +389,0,3,"Sadlier, Mr. Matthew",male,,0,0,367655,7.7292,,Q +390,1,2,"Lehmann, Miss. Bertha",female,17,0,0,SC 1748,12,,C +391,1,1,"Carter, Mr. William Ernest",male,36,1,2,113760,120,B96 B98,S +392,1,3,"Jansson, Mr. Carl Olof",male,21,0,0,350034,7.7958,,S +393,0,3,"Gustafsson, Mr. Johan Birger",male,28,2,0,3101277,7.925,,S +394,1,1,"Newell, Miss. Marjorie",female,23,1,0,35273,113.275,D36,C +395,1,3,"Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson)",female,24,0,2,PP 9549,16.7,G6,S +396,0,3,"Johansson, Mr. Erik",male,22,0,0,350052,7.7958,,S +397,0,3,"Olsson, Miss. Elina",female,31,0,0,350407,7.8542,,S +398,0,2,"McKane, Mr. Peter David",male,46,0,0,28403,26,,S +399,0,2,"Pain, Dr. Alfred",male,23,0,0,244278,10.5,,S +400,1,2,"Trout, Mrs. William H (Jessie L)",female,28,0,0,240929,12.65,,S +401,1,3,"Niskanen, Mr. Juha",male,39,0,0,STON/O 2. 3101289,7.925,,S +402,0,3,"Adams, Mr. John",male,26,0,0,341826,8.05,,S +403,0,3,"Jussila, Miss. Mari Aina",female,21,1,0,4137,9.825,,S +404,0,3,"Hakkarainen, Mr. Pekka Pietari",male,28,1,0,STON/O2. 3101279,15.85,,S +405,0,3,"Oreskovic, Miss. Marija",female,20,0,0,315096,8.6625,,S +406,0,2,"Gale, Mr. Shadrach",male,34,1,0,28664,21,,S +407,0,3,"Widegren, Mr. Carl/Charles Peter",male,51,0,0,347064,7.75,,S +408,1,2,"Richards, Master. William Rowe",male,3,1,1,29106,18.75,,S +409,0,3,"Birkeland, Mr. Hans Martin Monsen",male,21,0,0,312992,7.775,,S +410,0,3,"Lefebre, Miss. Ida",female,,3,1,4133,25.4667,,S +411,0,3,"Sdycoff, Mr. Todor",male,,0,0,349222,7.8958,,S +412,0,3,"Hart, Mr. Henry",male,,0,0,394140,6.8583,,Q +413,1,1,"Minahan, Miss. Daisy E",female,33,1,0,19928,90,C78,Q +414,0,2,"Cunningham, Mr. Alfred Fleming",male,,0,0,239853,0,,S +415,1,3,"Sundman, Mr. Johan Julian",male,44,0,0,STON/O 2. 3101269,7.925,,S +416,0,3,"Meek, Mrs. Thomas (Annie Louise Rowley)",female,,0,0,343095,8.05,,S +417,1,2,"Drew, Mrs. James Vivian (Lulu Thorne Christian)",female,34,1,1,28220,32.5,,S +418,1,2,"Silven, Miss. Lyyli Karoliina",female,18,0,2,250652,13,,S +419,0,2,"Matthews, Mr. William John",male,30,0,0,28228,13,,S +420,0,3,"Van Impe, Miss. Catharina",female,10,0,2,345773,24.15,,S +421,0,3,"Gheorgheff, Mr. Stanio",male,,0,0,349254,7.8958,,C +422,0,3,"Charters, Mr. David",male,21,0,0,A/5. 13032,7.7333,,Q +423,0,3,"Zimmerman, Mr. Leo",male,29,0,0,315082,7.875,,S +424,0,3,"Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren)",female,28,1,1,347080,14.4,,S +425,0,3,"Rosblom, Mr. Viktor Richard",male,18,1,1,370129,20.2125,,S +426,0,3,"Wiseman, Mr. Phillippe",male,,0,0,A/4. 34244,7.25,,S +427,1,2,"Clarke, Mrs. Charles V (Ada Maria Winfield)",female,28,1,0,2003,26,,S +428,1,2,"Phillips, Miss. Kate Florence (""Mrs Kate Louise Phillips Marshall"")",female,19,0,0,250655,26,,S +429,0,3,"Flynn, Mr. James",male,,0,0,364851,7.75,,Q +430,1,3,"Pickard, Mr. Berk (Berk Trembisky)",male,32,0,0,SOTON/O.Q. 392078,8.05,E10,S +431,1,1,"Bjornstrom-Steffansson, Mr. Mauritz Hakan",male,28,0,0,110564,26.55,C52,S +432,1,3,"Thorneycroft, Mrs. Percival (Florence Kate White)",female,,1,0,376564,16.1,,S +433,1,2,"Louch, Mrs. Charles Alexander (Alice Adelaide Slow)",female,42,1,0,SC/AH 3085,26,,S +434,0,3,"Kallio, Mr. Nikolai Erland",male,17,0,0,STON/O 2. 3101274,7.125,,S +435,0,1,"Silvey, Mr. William Baird",male,50,1,0,13507,55.9,E44,S +436,1,1,"Carter, Miss. Lucile Polk",female,14,1,2,113760,120,B96 B98,S +437,0,3,"Ford, Miss. Doolina Margaret ""Daisy""",female,21,2,2,W./C. 6608,34.375,,S +438,1,2,"Richards, Mrs. Sidney (Emily Hocking)",female,24,2,3,29106,18.75,,S +439,0,1,"Fortune, Mr. Mark",male,64,1,4,19950,263,C23 C25 C27,S +440,0,2,"Kvillner, Mr. Johan Henrik Johannesson",male,31,0,0,C.A. 18723,10.5,,S +441,1,2,"Hart, Mrs. Benjamin (Esther Ada Bloomfield)",female,45,1,1,F.C.C. 13529,26.25,,S +442,0,3,"Hampe, Mr. Leon",male,20,0,0,345769,9.5,,S +443,0,3,"Petterson, Mr. Johan Emil",male,25,1,0,347076,7.775,,S +444,1,2,"Reynaldo, Ms. Encarnacion",female,28,0,0,230434,13,,S +445,1,3,"Johannesen-Bratthammer, Mr. Bernt",male,,0,0,65306,8.1125,,S +446,1,1,"Dodge, Master. Washington",male,4,0,2,33638,81.8583,A34,S +447,1,2,"Mellinger, Miss. Madeleine Violet",female,13,0,1,250644,19.5,,S +448,1,1,"Seward, Mr. Frederic Kimber",male,34,0,0,113794,26.55,,S +449,1,3,"Baclini, Miss. Marie Catherine",female,5,2,1,2666,19.2583,,C +450,1,1,"Peuchen, Major. Arthur Godfrey",male,52,0,0,113786,30.5,C104,S +451,0,2,"West, Mr. Edwy Arthur",male,36,1,2,C.A. 34651,27.75,,S +452,0,3,"Hagland, Mr. Ingvald Olai Olsen",male,,1,0,65303,19.9667,,S +453,0,1,"Foreman, Mr. Benjamin Laventall",male,30,0,0,113051,27.75,C111,C +454,1,1,"Goldenberg, Mr. Samuel L",male,49,1,0,17453,89.1042,C92,C +455,0,3,"Peduzzi, Mr. Joseph",male,,0,0,A/5 2817,8.05,,S +456,1,3,"Jalsevac, Mr. Ivan",male,29,0,0,349240,7.8958,,C +457,0,1,"Millet, Mr. Francis Davis",male,65,0,0,13509,26.55,E38,S +458,1,1,"Kenyon, Mrs. Frederick R (Marion)",female,,1,0,17464,51.8625,D21,S +459,1,2,"Toomey, Miss. Ellen",female,50,0,0,F.C.C. 13531,10.5,,S +460,0,3,"O'Connor, Mr. Maurice",male,,0,0,371060,7.75,,Q +461,1,1,"Anderson, Mr. Harry",male,48,0,0,19952,26.55,E12,S +462,0,3,"Morley, Mr. William",male,34,0,0,364506,8.05,,S +463,0,1,"Gee, Mr. Arthur H",male,47,0,0,111320,38.5,E63,S +464,0,2,"Milling, Mr. Jacob Christian",male,48,0,0,234360,13,,S +465,0,3,"Maisner, Mr. Simon",male,,0,0,A/S 2816,8.05,,S +466,0,3,"Goncalves, Mr. Manuel Estanslas",male,38,0,0,SOTON/O.Q. 3101306,7.05,,S +467,0,2,"Campbell, Mr. William",male,,0,0,239853,0,,S +468,0,1,"Smart, Mr. John Montgomery",male,56,0,0,113792,26.55,,S +469,0,3,"Scanlan, Mr. James",male,,0,0,36209,7.725,,Q +470,1,3,"Baclini, Miss. Helene Barbara",female,0.75,2,1,2666,19.2583,,C +471,0,3,"Keefe, Mr. Arthur",male,,0,0,323592,7.25,,S +472,0,3,"Cacic, Mr. Luka",male,38,0,0,315089,8.6625,,S +473,1,2,"West, Mrs. Edwy Arthur (Ada Mary Worth)",female,33,1,2,C.A. 34651,27.75,,S +474,1,2,"Jerwan, Mrs. Amin S (Marie Marthe Thuillard)",female,23,0,0,SC/AH Basle 541,13.7917,D,C +475,0,3,"Strandberg, Miss. Ida Sofia",female,22,0,0,7553,9.8375,,S +476,0,1,"Clifford, Mr. George Quincy",male,,0,0,110465,52,A14,S +477,0,2,"Renouf, Mr. Peter Henry",male,34,1,0,31027,21,,S +478,0,3,"Braund, Mr. Lewis Richard",male,29,1,0,3460,7.0458,,S +479,0,3,"Karlsson, Mr. Nils August",male,22,0,0,350060,7.5208,,S +480,1,3,"Hirvonen, Miss. Hildur E",female,2,0,1,3101298,12.2875,,S +481,0,3,"Goodwin, Master. Harold Victor",male,9,5,2,CA 2144,46.9,,S +482,0,2,"Frost, Mr. Anthony Wood ""Archie""",male,,0,0,239854,0,,S +483,0,3,"Rouse, Mr. Richard Henry",male,50,0,0,A/5 3594,8.05,,S +484,1,3,"Turkula, Mrs. (Hedwig)",female,63,0,0,4134,9.5875,,S +485,1,1,"Bishop, Mr. Dickinson H",male,25,1,0,11967,91.0792,B49,C +486,0,3,"Lefebre, Miss. Jeannie",female,,3,1,4133,25.4667,,S +487,1,1,"Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby)",female,35,1,0,19943,90,C93,S +488,0,1,"Kent, Mr. Edward Austin",male,58,0,0,11771,29.7,B37,C +489,0,3,"Somerton, Mr. Francis William",male,30,0,0,A.5. 18509,8.05,,S +490,1,3,"Coutts, Master. Eden Leslie ""Neville""",male,9,1,1,C.A. 37671,15.9,,S +491,0,3,"Hagland, Mr. Konrad Mathias Reiersen",male,,1,0,65304,19.9667,,S +492,0,3,"Windelov, Mr. Einar",male,21,0,0,SOTON/OQ 3101317,7.25,,S +493,0,1,"Molson, Mr. Harry Markland",male,55,0,0,113787,30.5,C30,S +494,0,1,"Artagaveytia, Mr. Ramon",male,71,0,0,PC 17609,49.5042,,C +495,0,3,"Stanley, Mr. Edward Roland",male,21,0,0,A/4 45380,8.05,,S +496,0,3,"Yousseff, Mr. Gerious",male,,0,0,2627,14.4583,,C +497,1,1,"Eustis, Miss. Elizabeth Mussey",female,54,1,0,36947,78.2667,D20,C +498,0,3,"Shellard, Mr. Frederick William",male,,0,0,C.A. 6212,15.1,,S +499,0,1,"Allison, Mrs. Hudson J C (Bessie Waldo Daniels)",female,25,1,2,113781,151.55,C22 C26,S +500,0,3,"Svensson, Mr. Olof",male,24,0,0,350035,7.7958,,S +501,0,3,"Calic, Mr. Petar",male,17,0,0,315086,8.6625,,S +502,0,3,"Canavan, Miss. Mary",female,21,0,0,364846,7.75,,Q +503,0,3,"O'Sullivan, Miss. Bridget Mary",female,,0,0,330909,7.6292,,Q +504,0,3,"Laitinen, Miss. Kristina Sofia",female,37,0,0,4135,9.5875,,S +505,1,1,"Maioni, Miss. Roberta",female,16,0,0,110152,86.5,B79,S +506,0,1,"Penasco y Castellana, Mr. Victor de Satode",male,18,1,0,PC 17758,108.9,C65,C +507,1,2,"Quick, Mrs. Frederick Charles (Jane Richards)",female,33,0,2,26360,26,,S +508,1,1,"Bradley, Mr. George (""George Arthur Brayton"")",male,,0,0,111427,26.55,,S +509,0,3,"Olsen, Mr. Henry Margido",male,28,0,0,C 4001,22.525,,S +510,1,3,"Lang, Mr. Fang",male,26,0,0,1601,56.4958,,S +511,1,3,"Daly, Mr. Eugene Patrick",male,29,0,0,382651,7.75,,Q +512,0,3,"Webber, Mr. James",male,,0,0,SOTON/OQ 3101316,8.05,,S +513,1,1,"McGough, Mr. James Robert",male,36,0,0,PC 17473,26.2875,E25,S +514,1,1,"Rothschild, Mrs. Martin (Elizabeth L. Barrett)",female,54,1,0,PC 17603,59.4,,C +515,0,3,"Coleff, Mr. Satio",male,24,0,0,349209,7.4958,,S +516,0,1,"Walker, Mr. William Anderson",male,47,0,0,36967,34.0208,D46,S +517,1,2,"Lemore, Mrs. (Amelia Milley)",female,34,0,0,C.A. 34260,10.5,F33,S +518,0,3,"Ryan, Mr. Patrick",male,,0,0,371110,24.15,,Q +519,1,2,"Angle, Mrs. William A (Florence ""Mary"" Agnes Hughes)",female,36,1,0,226875,26,,S +520,0,3,"Pavlovic, Mr. Stefo",male,32,0,0,349242,7.8958,,S +521,1,1,"Perreault, Miss. Anne",female,30,0,0,12749,93.5,B73,S +522,0,3,"Vovk, Mr. Janko",male,22,0,0,349252,7.8958,,S +523,0,3,"Lahoud, Mr. Sarkis",male,,0,0,2624,7.225,,C +524,1,1,"Hippach, Mrs. Louis Albert (Ida Sophia Fischer)",female,44,0,1,111361,57.9792,B18,C +525,0,3,"Kassem, Mr. Fared",male,,0,0,2700,7.2292,,C +526,0,3,"Farrell, Mr. James",male,40.5,0,0,367232,7.75,,Q +527,1,2,"Ridsdale, Miss. Lucy",female,50,0,0,W./C. 14258,10.5,,S +528,0,1,"Farthing, Mr. John",male,,0,0,PC 17483,221.7792,C95,S +529,0,3,"Salonen, Mr. Johan Werner",male,39,0,0,3101296,7.925,,S +530,0,2,"Hocking, Mr. Richard George",male,23,2,1,29104,11.5,,S +531,1,2,"Quick, Miss. Phyllis May",female,2,1,1,26360,26,,S +532,0,3,"Toufik, Mr. Nakli",male,,0,0,2641,7.2292,,C +533,0,3,"Elias, Mr. Joseph Jr",male,17,1,1,2690,7.2292,,C +534,1,3,"Peter, Mrs. Catherine (Catherine Rizk)",female,,0,2,2668,22.3583,,C +535,0,3,"Cacic, Miss. Marija",female,30,0,0,315084,8.6625,,S +536,1,2,"Hart, Miss. Eva Miriam",female,7,0,2,F.C.C. 13529,26.25,,S +537,0,1,"Butt, Major. Archibald Willingham",male,45,0,0,113050,26.55,B38,S +538,1,1,"LeRoy, Miss. Bertha",female,30,0,0,PC 17761,106.425,,C +539,0,3,"Risien, Mr. Samuel Beard",male,,0,0,364498,14.5,,S +540,1,1,"Frolicher, Miss. Hedwig Margaritha",female,22,0,2,13568,49.5,B39,C +541,1,1,"Crosby, Miss. Harriet R",female,36,0,2,WE/P 5735,71,B22,S +542,0,3,"Andersson, Miss. Ingeborg Constanzia",female,9,4,2,347082,31.275,,S +543,0,3,"Andersson, Miss. Sigrid Elisabeth",female,11,4,2,347082,31.275,,S +544,1,2,"Beane, Mr. Edward",male,32,1,0,2908,26,,S +545,0,1,"Douglas, Mr. Walter Donald",male,50,1,0,PC 17761,106.425,C86,C +546,0,1,"Nicholson, Mr. Arthur Ernest",male,64,0,0,693,26,,S +547,1,2,"Beane, Mrs. Edward (Ethel Clarke)",female,19,1,0,2908,26,,S +548,1,2,"Padro y Manent, Mr. Julian",male,,0,0,SC/PARIS 2146,13.8625,,C +549,0,3,"Goldsmith, Mr. Frank John",male,33,1,1,363291,20.525,,S +550,1,2,"Davies, Master. John Morgan Jr",male,8,1,1,C.A. 33112,36.75,,S +551,1,1,"Thayer, Mr. John Borland Jr",male,17,0,2,17421,110.8833,C70,C +552,0,2,"Sharp, Mr. Percival James R",male,27,0,0,244358,26,,S +553,0,3,"O'Brien, Mr. Timothy",male,,0,0,330979,7.8292,,Q +554,1,3,"Leeni, Mr. Fahim (""Philip Zenni"")",male,22,0,0,2620,7.225,,C +555,1,3,"Ohman, Miss. Velin",female,22,0,0,347085,7.775,,S +556,0,1,"Wright, Mr. George",male,62,0,0,113807,26.55,,S +557,1,1,"Duff Gordon, Lady. (Lucille Christiana Sutherland) (""Mrs Morgan"")",female,48,1,0,11755,39.6,A16,C +558,0,1,"Robbins, Mr. Victor",male,,0,0,PC 17757,227.525,,C +559,1,1,"Taussig, Mrs. Emil (Tillie Mandelbaum)",female,39,1,1,110413,79.65,E67,S +560,1,3,"de Messemaeker, Mrs. Guillaume Joseph (Emma)",female,36,1,0,345572,17.4,,S +561,0,3,"Morrow, Mr. Thomas Rowan",male,,0,0,372622,7.75,,Q +562,0,3,"Sivic, Mr. Husein",male,40,0,0,349251,7.8958,,S +563,0,2,"Norman, Mr. Robert Douglas",male,28,0,0,218629,13.5,,S +564,0,3,"Simmons, Mr. John",male,,0,0,SOTON/OQ 392082,8.05,,S +565,0,3,"Meanwell, Miss. (Marion Ogden)",female,,0,0,SOTON/O.Q. 392087,8.05,,S +566,0,3,"Davies, Mr. Alfred J",male,24,2,0,A/4 48871,24.15,,S +567,0,3,"Stoytcheff, Mr. Ilia",male,19,0,0,349205,7.8958,,S +568,0,3,"Palsson, Mrs. Nils (Alma Cornelia Berglund)",female,29,0,4,349909,21.075,,S +569,0,3,"Doharr, Mr. Tannous",male,,0,0,2686,7.2292,,C +570,1,3,"Jonsson, Mr. Carl",male,32,0,0,350417,7.8542,,S +571,1,2,"Harris, Mr. George",male,62,0,0,S.W./PP 752,10.5,,S +572,1,1,"Appleton, Mrs. Edward Dale (Charlotte Lamson)",female,53,2,0,11769,51.4792,C101,S +573,1,1,"Flynn, Mr. John Irwin (""Irving"")",male,36,0,0,PC 17474,26.3875,E25,S +574,1,3,"Kelly, Miss. Mary",female,,0,0,14312,7.75,,Q +575,0,3,"Rush, Mr. Alfred George John",male,16,0,0,A/4. 20589,8.05,,S +576,0,3,"Patchett, Mr. George",male,19,0,0,358585,14.5,,S +577,1,2,"Garside, Miss. Ethel",female,34,0,0,243880,13,,S +578,1,1,"Silvey, Mrs. William Baird (Alice Munger)",female,39,1,0,13507,55.9,E44,S +579,0,3,"Caram, Mrs. Joseph (Maria Elias)",female,,1,0,2689,14.4583,,C +580,1,3,"Jussila, Mr. Eiriik",male,32,0,0,STON/O 2. 3101286,7.925,,S +581,1,2,"Christy, Miss. Julie Rachel",female,25,1,1,237789,30,,S +582,1,1,"Thayer, Mrs. John Borland (Marian Longstreth Morris)",female,39,1,1,17421,110.8833,C68,C +583,0,2,"Downton, Mr. William James",male,54,0,0,28403,26,,S +584,0,1,"Ross, Mr. John Hugo",male,36,0,0,13049,40.125,A10,C +585,0,3,"Paulner, Mr. Uscher",male,,0,0,3411,8.7125,,C +586,1,1,"Taussig, Miss. Ruth",female,18,0,2,110413,79.65,E68,S +587,0,2,"Jarvis, Mr. John Denzil",male,47,0,0,237565,15,,S +588,1,1,"Frolicher-Stehli, Mr. Maxmillian",male,60,1,1,13567,79.2,B41,C +589,0,3,"Gilinski, Mr. Eliezer",male,22,0,0,14973,8.05,,S +590,0,3,"Murdlin, Mr. Joseph",male,,0,0,A./5. 3235,8.05,,S +591,0,3,"Rintamaki, Mr. Matti",male,35,0,0,STON/O 2. 3101273,7.125,,S +592,1,1,"Stephenson, Mrs. Walter Bertram (Martha Eustis)",female,52,1,0,36947,78.2667,D20,C +593,0,3,"Elsbury, Mr. William James",male,47,0,0,A/5 3902,7.25,,S +594,0,3,"Bourke, Miss. Mary",female,,0,2,364848,7.75,,Q +595,0,2,"Chapman, Mr. John Henry",male,37,1,0,SC/AH 29037,26,,S +596,0,3,"Van Impe, Mr. Jean Baptiste",male,36,1,1,345773,24.15,,S +597,1,2,"Leitch, Miss. Jessie Wills",female,,0,0,248727,33,,S +598,0,3,"Johnson, Mr. Alfred",male,49,0,0,LINE,0,,S +599,0,3,"Boulos, Mr. Hanna",male,,0,0,2664,7.225,,C +600,1,1,"Duff Gordon, Sir. Cosmo Edmund (""Mr Morgan"")",male,49,1,0,PC 17485,56.9292,A20,C +601,1,2,"Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy)",female,24,2,1,243847,27,,S +602,0,3,"Slabenoff, Mr. Petco",male,,0,0,349214,7.8958,,S +603,0,1,"Harrington, Mr. Charles H",male,,0,0,113796,42.4,,S +604,0,3,"Torber, Mr. Ernst William",male,44,0,0,364511,8.05,,S +605,1,1,"Homer, Mr. Harry (""Mr E Haven"")",male,35,0,0,111426,26.55,,C +606,0,3,"Lindell, Mr. Edvard Bengtsson",male,36,1,0,349910,15.55,,S +607,0,3,"Karaic, Mr. Milan",male,30,0,0,349246,7.8958,,S +608,1,1,"Daniel, Mr. Robert Williams",male,27,0,0,113804,30.5,,S +609,1,2,"Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue)",female,22,1,2,SC/Paris 2123,41.5792,,C +610,1,1,"Shutes, Miss. Elizabeth W",female,40,0,0,PC 17582,153.4625,C125,S +611,0,3,"Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren)",female,39,1,5,347082,31.275,,S +612,0,3,"Jardin, Mr. Jose Neto",male,,0,0,SOTON/O.Q. 3101305,7.05,,S +613,1,3,"Murphy, Miss. Margaret Jane",female,,1,0,367230,15.5,,Q +614,0,3,"Horgan, Mr. John",male,,0,0,370377,7.75,,Q +615,0,3,"Brocklebank, Mr. William Alfred",male,35,0,0,364512,8.05,,S +616,1,2,"Herman, Miss. Alice",female,24,1,2,220845,65,,S +617,0,3,"Danbom, Mr. Ernst Gilbert",male,34,1,1,347080,14.4,,S +618,0,3,"Lobb, Mrs. William Arthur (Cordelia K Stanlick)",female,26,1,0,A/5. 3336,16.1,,S +619,1,2,"Becker, Miss. Marion Louise",female,4,2,1,230136,39,F4,S +620,0,2,"Gavey, Mr. Lawrence",male,26,0,0,31028,10.5,,S +621,0,3,"Yasbeck, Mr. Antoni",male,27,1,0,2659,14.4542,,C +622,1,1,"Kimball, Mr. Edwin Nelson Jr",male,42,1,0,11753,52.5542,D19,S +623,1,3,"Nakid, Mr. Sahid",male,20,1,1,2653,15.7417,,C +624,0,3,"Hansen, Mr. Henry Damsgaard",male,21,0,0,350029,7.8542,,S +625,0,3,"Bowen, Mr. David John ""Dai""",male,21,0,0,54636,16.1,,S +626,0,1,"Sutton, Mr. Frederick",male,61,0,0,36963,32.3208,D50,S +627,0,2,"Kirkland, Rev. Charles Leonard",male,57,0,0,219533,12.35,,Q +628,1,1,"Longley, Miss. Gretchen Fiske",female,21,0,0,13502,77.9583,D9,S +629,0,3,"Bostandyeff, Mr. Guentcho",male,26,0,0,349224,7.8958,,S +630,0,3,"O'Connell, Mr. Patrick D",male,,0,0,334912,7.7333,,Q +631,1,1,"Barkworth, Mr. Algernon Henry Wilson",male,80,0,0,27042,30,A23,S +632,0,3,"Lundahl, Mr. Johan Svensson",male,51,0,0,347743,7.0542,,S +633,1,1,"Stahelin-Maeglin, Dr. Max",male,32,0,0,13214,30.5,B50,C +634,0,1,"Parr, Mr. William Henry Marsh",male,,0,0,112052,0,,S +635,0,3,"Skoog, Miss. Mabel",female,9,3,2,347088,27.9,,S +636,1,2,"Davis, Miss. Mary",female,28,0,0,237668,13,,S +637,0,3,"Leinonen, Mr. Antti Gustaf",male,32,0,0,STON/O 2. 3101292,7.925,,S +638,0,2,"Collyer, Mr. Harvey",male,31,1,1,C.A. 31921,26.25,,S +639,0,3,"Panula, Mrs. Juha (Maria Emilia Ojala)",female,41,0,5,3101295,39.6875,,S +640,0,3,"Thorneycroft, Mr. Percival",male,,1,0,376564,16.1,,S +641,0,3,"Jensen, Mr. Hans Peder",male,20,0,0,350050,7.8542,,S +642,1,1,"Sagesser, Mlle. Emma",female,24,0,0,PC 17477,69.3,B35,C +643,0,3,"Skoog, Miss. Margit Elizabeth",female,2,3,2,347088,27.9,,S +644,1,3,"Foo, Mr. Choong",male,,0,0,1601,56.4958,,S +645,1,3,"Baclini, Miss. Eugenie",female,0.75,2,1,2666,19.2583,,C +646,1,1,"Harper, Mr. Henry Sleeper",male,48,1,0,PC 17572,76.7292,D33,C +647,0,3,"Cor, Mr. Liudevit",male,19,0,0,349231,7.8958,,S +648,1,1,"Simonius-Blumer, Col. Oberst Alfons",male,56,0,0,13213,35.5,A26,C +649,0,3,"Willey, Mr. Edward",male,,0,0,S.O./P.P. 751,7.55,,S +650,1,3,"Stanley, Miss. Amy Zillah Elsie",female,23,0,0,CA. 2314,7.55,,S +651,0,3,"Mitkoff, Mr. Mito",male,,0,0,349221,7.8958,,S +652,1,2,"Doling, Miss. Elsie",female,18,0,1,231919,23,,S +653,0,3,"Kalvik, Mr. Johannes Halvorsen",male,21,0,0,8475,8.4333,,S +654,1,3,"O'Leary, Miss. Hanora ""Norah""",female,,0,0,330919,7.8292,,Q +655,0,3,"Hegarty, Miss. Hanora ""Nora""",female,18,0,0,365226,6.75,,Q +656,0,2,"Hickman, Mr. Leonard Mark",male,24,2,0,S.O.C. 14879,73.5,,S +657,0,3,"Radeff, Mr. Alexander",male,,0,0,349223,7.8958,,S +658,0,3,"Bourke, Mrs. John (Catherine)",female,32,1,1,364849,15.5,,Q +659,0,2,"Eitemiller, Mr. George Floyd",male,23,0,0,29751,13,,S +660,0,1,"Newell, Mr. Arthur Webster",male,58,0,2,35273,113.275,D48,C +661,1,1,"Frauenthal, Dr. Henry William",male,50,2,0,PC 17611,133.65,,S +662,0,3,"Badt, Mr. Mohamed",male,40,0,0,2623,7.225,,C +663,0,1,"Colley, Mr. Edward Pomeroy",male,47,0,0,5727,25.5875,E58,S +664,0,3,"Coleff, Mr. Peju",male,36,0,0,349210,7.4958,,S +665,1,3,"Lindqvist, Mr. Eino William",male,20,1,0,STON/O 2. 3101285,7.925,,S +666,0,2,"Hickman, Mr. Lewis",male,32,2,0,S.O.C. 14879,73.5,,S +667,0,2,"Butler, Mr. Reginald Fenton",male,25,0,0,234686,13,,S +668,0,3,"Rommetvedt, Mr. Knud Paust",male,,0,0,312993,7.775,,S +669,0,3,"Cook, Mr. Jacob",male,43,0,0,A/5 3536,8.05,,S +670,1,1,"Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)",female,,1,0,19996,52,C126,S +671,1,2,"Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford)",female,40,1,1,29750,39,,S +672,0,1,"Davidson, Mr. Thornton",male,31,1,0,F.C. 12750,52,B71,S +673,0,2,"Mitchell, Mr. Henry Michael",male,70,0,0,C.A. 24580,10.5,,S +674,1,2,"Wilhelms, Mr. Charles",male,31,0,0,244270,13,,S +675,0,2,"Watson, Mr. Ennis Hastings",male,,0,0,239856,0,,S +676,0,3,"Edvardsson, Mr. Gustaf Hjalmar",male,18,0,0,349912,7.775,,S +677,0,3,"Sawyer, Mr. Frederick Charles",male,24.5,0,0,342826,8.05,,S +678,1,3,"Turja, Miss. Anna Sofia",female,18,0,0,4138,9.8417,,S +679,0,3,"Goodwin, Mrs. Frederick (Augusta Tyler)",female,43,1,6,CA 2144,46.9,,S +680,1,1,"Cardeza, Mr. Thomas Drake Martinez",male,36,0,1,PC 17755,512.3292,B51 B53 B55,C +681,0,3,"Peters, Miss. Katie",female,,0,0,330935,8.1375,,Q +682,1,1,"Hassab, Mr. Hammad",male,27,0,0,PC 17572,76.7292,D49,C +683,0,3,"Olsvigen, Mr. Thor Anderson",male,20,0,0,6563,9.225,,S +684,0,3,"Goodwin, Mr. Charles Edward",male,14,5,2,CA 2144,46.9,,S +685,0,2,"Brown, Mr. Thomas William Solomon",male,60,1,1,29750,39,,S +686,0,2,"Laroche, Mr. Joseph Philippe Lemercier",male,25,1,2,SC/Paris 2123,41.5792,,C +687,0,3,"Panula, Mr. Jaako Arnold",male,14,4,1,3101295,39.6875,,S +688,0,3,"Dakic, Mr. Branko",male,19,0,0,349228,10.1708,,S +689,0,3,"Fischer, Mr. Eberhard Thelander",male,18,0,0,350036,7.7958,,S +690,1,1,"Madill, Miss. Georgette Alexandra",female,15,0,1,24160,211.3375,B5,S +691,1,1,"Dick, Mr. Albert Adrian",male,31,1,0,17474,57,B20,S +692,1,3,"Karun, Miss. Manca",female,4,0,1,349256,13.4167,,C +693,1,3,"Lam, Mr. Ali",male,,0,0,1601,56.4958,,S +694,0,3,"Saad, Mr. Khalil",male,25,0,0,2672,7.225,,C +695,0,1,"Weir, Col. John",male,60,0,0,113800,26.55,,S +696,0,2,"Chapman, Mr. Charles Henry",male,52,0,0,248731,13.5,,S +697,0,3,"Kelly, Mr. James",male,44,0,0,363592,8.05,,S +698,1,3,"Mullens, Miss. Katherine ""Katie""",female,,0,0,35852,7.7333,,Q +699,0,1,"Thayer, Mr. John Borland",male,49,1,1,17421,110.8833,C68,C +700,0,3,"Humblen, Mr. Adolf Mathias Nicolai Olsen",male,42,0,0,348121,7.65,F G63,S +701,1,1,"Astor, Mrs. John Jacob (Madeleine Talmadge Force)",female,18,1,0,PC 17757,227.525,C62 C64,C +702,1,1,"Silverthorne, Mr. Spencer Victor",male,35,0,0,PC 17475,26.2875,E24,S +703,0,3,"Barbara, Miss. Saiide",female,18,0,1,2691,14.4542,,C +704,0,3,"Gallagher, Mr. Martin",male,25,0,0,36864,7.7417,,Q +705,0,3,"Hansen, Mr. Henrik Juul",male,26,1,0,350025,7.8542,,S +706,0,2,"Morley, Mr. Henry Samuel (""Mr Henry Marshall"")",male,39,0,0,250655,26,,S +707,1,2,"Kelly, Mrs. Florence ""Fannie""",female,45,0,0,223596,13.5,,S +708,1,1,"Calderhead, Mr. Edward Pennington",male,42,0,0,PC 17476,26.2875,E24,S +709,1,1,"Cleaver, Miss. Alice",female,22,0,0,113781,151.55,,S +710,1,3,"Moubarek, Master. Halim Gonios (""William George"")",male,,1,1,2661,15.2458,,C +711,1,1,"Mayne, Mlle. Berthe Antonine (""Mrs de Villiers"")",female,24,0,0,PC 17482,49.5042,C90,C +712,0,1,"Klaber, Mr. Herman",male,,0,0,113028,26.55,C124,S +713,1,1,"Taylor, Mr. Elmer Zebley",male,48,1,0,19996,52,C126,S +714,0,3,"Larsson, Mr. August Viktor",male,29,0,0,7545,9.4833,,S +715,0,2,"Greenberg, Mr. Samuel",male,52,0,0,250647,13,,S +716,0,3,"Soholt, Mr. Peter Andreas Lauritz Andersen",male,19,0,0,348124,7.65,F G73,S +717,1,1,"Endres, Miss. Caroline Louise",female,38,0,0,PC 17757,227.525,C45,C +718,1,2,"Troutt, Miss. Edwina Celia ""Winnie""",female,27,0,0,34218,10.5,E101,S +719,0,3,"McEvoy, Mr. Michael",male,,0,0,36568,15.5,,Q +720,0,3,"Johnson, Mr. Malkolm Joackim",male,33,0,0,347062,7.775,,S +721,1,2,"Harper, Miss. Annie Jessie ""Nina""",female,6,0,1,248727,33,,S +722,0,3,"Jensen, Mr. Svend Lauritz",male,17,1,0,350048,7.0542,,S +723,0,2,"Gillespie, Mr. William Henry",male,34,0,0,12233,13,,S +724,0,2,"Hodges, Mr. Henry Price",male,50,0,0,250643,13,,S +725,1,1,"Chambers, Mr. Norman Campbell",male,27,1,0,113806,53.1,E8,S +726,0,3,"Oreskovic, Mr. Luka",male,20,0,0,315094,8.6625,,S +727,1,2,"Renouf, Mrs. Peter Henry (Lillian Jefferys)",female,30,3,0,31027,21,,S +728,1,3,"Mannion, Miss. Margareth",female,,0,0,36866,7.7375,,Q +729,0,2,"Bryhl, Mr. Kurt Arnold Gottfrid",male,25,1,0,236853,26,,S +730,0,3,"Ilmakangas, Miss. Pieta Sofia",female,25,1,0,STON/O2. 3101271,7.925,,S +731,1,1,"Allen, Miss. Elisabeth Walton",female,29,0,0,24160,211.3375,B5,S +732,0,3,"Hassan, Mr. Houssein G N",male,11,0,0,2699,18.7875,,C +733,0,2,"Knight, Mr. Robert J",male,,0,0,239855,0,,S +734,0,2,"Berriman, Mr. William John",male,23,0,0,28425,13,,S +735,0,2,"Troupiansky, Mr. Moses Aaron",male,23,0,0,233639,13,,S +736,0,3,"Williams, Mr. Leslie",male,28.5,0,0,54636,16.1,,S +737,0,3,"Ford, Mrs. Edward (Margaret Ann Watson)",female,48,1,3,W./C. 6608,34.375,,S +738,1,1,"Lesurer, Mr. Gustave J",male,35,0,0,PC 17755,512.3292,B101,C +739,0,3,"Ivanoff, Mr. Kanio",male,,0,0,349201,7.8958,,S +740,0,3,"Nankoff, Mr. Minko",male,,0,0,349218,7.8958,,S +741,1,1,"Hawksford, Mr. Walter James",male,,0,0,16988,30,D45,S +742,0,1,"Cavendish, Mr. Tyrell William",male,36,1,0,19877,78.85,C46,S +743,1,1,"Ryerson, Miss. Susan Parker ""Suzette""",female,21,2,2,PC 17608,262.375,B57 B59 B63 B66,C +744,0,3,"McNamee, Mr. Neal",male,24,1,0,376566,16.1,,S +745,1,3,"Stranden, Mr. Juho",male,31,0,0,STON/O 2. 3101288,7.925,,S +746,0,1,"Crosby, Capt. Edward Gifford",male,70,1,1,WE/P 5735,71,B22,S +747,0,3,"Abbott, Mr. Rossmore Edward",male,16,1,1,C.A. 2673,20.25,,S +748,1,2,"Sinkkonen, Miss. Anna",female,30,0,0,250648,13,,S +749,0,1,"Marvin, Mr. Daniel Warner",male,19,1,0,113773,53.1,D30,S +750,0,3,"Connaghton, Mr. Michael",male,31,0,0,335097,7.75,,Q +751,1,2,"Wells, Miss. Joan",female,4,1,1,29103,23,,S +752,1,3,"Moor, Master. Meier",male,6,0,1,392096,12.475,E121,S +753,0,3,"Vande Velde, Mr. Johannes Joseph",male,33,0,0,345780,9.5,,S +754,0,3,"Jonkoff, Mr. Lalio",male,23,0,0,349204,7.8958,,S +755,1,2,"Herman, Mrs. Samuel (Jane Laver)",female,48,1,2,220845,65,,S +756,1,2,"Hamalainen, Master. Viljo",male,0.67,1,1,250649,14.5,,S +757,0,3,"Carlsson, Mr. August Sigfrid",male,28,0,0,350042,7.7958,,S +758,0,2,"Bailey, Mr. Percy Andrew",male,18,0,0,29108,11.5,,S +759,0,3,"Theobald, Mr. Thomas Leonard",male,34,0,0,363294,8.05,,S +760,1,1,"Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)",female,33,0,0,110152,86.5,B77,S +761,0,3,"Garfirth, Mr. John",male,,0,0,358585,14.5,,S +762,0,3,"Nirva, Mr. Iisakki Antino Aijo",male,41,0,0,SOTON/O2 3101272,7.125,,S +763,1,3,"Barah, Mr. Hanna Assi",male,20,0,0,2663,7.2292,,C +764,1,1,"Carter, Mrs. William Ernest (Lucile Polk)",female,36,1,2,113760,120,B96 B98,S +765,0,3,"Eklund, Mr. Hans Linus",male,16,0,0,347074,7.775,,S +766,1,1,"Hogeboom, Mrs. John C (Anna Andrews)",female,51,1,0,13502,77.9583,D11,S +767,0,1,"Brewe, Dr. Arthur Jackson",male,,0,0,112379,39.6,,C +768,0,3,"Mangan, Miss. Mary",female,30.5,0,0,364850,7.75,,Q +769,0,3,"Moran, Mr. Daniel J",male,,1,0,371110,24.15,,Q +770,0,3,"Gronnestad, Mr. Daniel Danielsen",male,32,0,0,8471,8.3625,,S +771,0,3,"Lievens, Mr. Rene Aime",male,24,0,0,345781,9.5,,S +772,0,3,"Jensen, Mr. Niels Peder",male,48,0,0,350047,7.8542,,S +773,0,2,"Mack, Mrs. (Mary)",female,57,0,0,S.O./P.P. 3,10.5,E77,S +774,0,3,"Elias, Mr. Dibo",male,,0,0,2674,7.225,,C +775,1,2,"Hocking, Mrs. Elizabeth (Eliza Needs)",female,54,1,3,29105,23,,S +776,0,3,"Myhrman, Mr. Pehr Fabian Oliver Malkolm",male,18,0,0,347078,7.75,,S +777,0,3,"Tobin, Mr. Roger",male,,0,0,383121,7.75,F38,Q +778,1,3,"Emanuel, Miss. Virginia Ethel",female,5,0,0,364516,12.475,,S +779,0,3,"Kilgannon, Mr. Thomas J",male,,0,0,36865,7.7375,,Q +780,1,1,"Robert, Mrs. Edward Scott (Elisabeth Walton McMillan)",female,43,0,1,24160,211.3375,B3,S +781,1,3,"Ayoub, Miss. Banoura",female,13,0,0,2687,7.2292,,C +782,1,1,"Dick, Mrs. Albert Adrian (Vera Gillespie)",female,17,1,0,17474,57,B20,S +783,0,1,"Long, Mr. Milton Clyde",male,29,0,0,113501,30,D6,S +784,0,3,"Johnston, Mr. Andrew G",male,,1,2,W./C. 6607,23.45,,S +785,0,3,"Ali, Mr. William",male,25,0,0,SOTON/O.Q. 3101312,7.05,,S +786,0,3,"Harmer, Mr. Abraham (David Lishin)",male,25,0,0,374887,7.25,,S +787,1,3,"Sjoblom, Miss. Anna Sofia",female,18,0,0,3101265,7.4958,,S +788,0,3,"Rice, Master. George Hugh",male,8,4,1,382652,29.125,,Q +789,1,3,"Dean, Master. Bertram Vere",male,1,1,2,C.A. 2315,20.575,,S +790,0,1,"Guggenheim, Mr. Benjamin",male,46,0,0,PC 17593,79.2,B82 B84,C +791,0,3,"Keane, Mr. Andrew ""Andy""",male,,0,0,12460,7.75,,Q +792,0,2,"Gaskell, Mr. Alfred",male,16,0,0,239865,26,,S +793,0,3,"Sage, Miss. Stella Anna",female,,8,2,CA. 2343,69.55,,S +794,0,1,"Hoyt, Mr. William Fisher",male,,0,0,PC 17600,30.6958,,C +795,0,3,"Dantcheff, Mr. Ristiu",male,25,0,0,349203,7.8958,,S +796,0,2,"Otter, Mr. Richard",male,39,0,0,28213,13,,S +797,1,1,"Leader, Dr. Alice (Farnham)",female,49,0,0,17465,25.9292,D17,S +798,1,3,"Osman, Mrs. Mara",female,31,0,0,349244,8.6833,,S +799,0,3,"Ibrahim Shawah, Mr. Yousseff",male,30,0,0,2685,7.2292,,C +800,0,3,"Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert)",female,30,1,1,345773,24.15,,S +801,0,2,"Ponesell, Mr. Martin",male,34,0,0,250647,13,,S +802,1,2,"Collyer, Mrs. Harvey (Charlotte Annie Tate)",female,31,1,1,C.A. 31921,26.25,,S +803,1,1,"Carter, Master. William Thornton II",male,11,1,2,113760,120,B96 B98,S +804,1,3,"Thomas, Master. Assad Alexander",male,0.42,0,1,2625,8.5167,,C +805,1,3,"Hedman, Mr. Oskar Arvid",male,27,0,0,347089,6.975,,S +806,0,3,"Johansson, Mr. Karl Johan",male,31,0,0,347063,7.775,,S +807,0,1,"Andrews, Mr. Thomas Jr",male,39,0,0,112050,0,A36,S +808,0,3,"Pettersson, Miss. Ellen Natalia",female,18,0,0,347087,7.775,,S +809,0,2,"Meyer, Mr. August",male,39,0,0,248723,13,,S +810,1,1,"Chambers, Mrs. Norman Campbell (Bertha Griggs)",female,33,1,0,113806,53.1,E8,S +811,0,3,"Alexander, Mr. William",male,26,0,0,3474,7.8875,,S +812,0,3,"Lester, Mr. James",male,39,0,0,A/4 48871,24.15,,S +813,0,2,"Slemen, Mr. Richard James",male,35,0,0,28206,10.5,,S +814,0,3,"Andersson, Miss. Ebba Iris Alfrida",female,6,4,2,347082,31.275,,S +815,0,3,"Tomlin, Mr. Ernest Portage",male,30.5,0,0,364499,8.05,,S +816,0,1,"Fry, Mr. Richard",male,,0,0,112058,0,B102,S +817,0,3,"Heininen, Miss. Wendla Maria",female,23,0,0,STON/O2. 3101290,7.925,,S +818,0,2,"Mallet, Mr. Albert",male,31,1,1,S.C./PARIS 2079,37.0042,,C +819,0,3,"Holm, Mr. John Fredrik Alexander",male,43,0,0,C 7075,6.45,,S +820,0,3,"Skoog, Master. Karl Thorsten",male,10,3,2,347088,27.9,,S +821,1,1,"Hays, Mrs. Charles Melville (Clara Jennings Gregg)",female,52,1,1,12749,93.5,B69,S +822,1,3,"Lulic, Mr. Nikola",male,27,0,0,315098,8.6625,,S +823,0,1,"Reuchlin, Jonkheer. John George",male,38,0,0,19972,0,,S +824,1,3,"Moor, Mrs. (Beila)",female,27,0,1,392096,12.475,E121,S +825,0,3,"Panula, Master. Urho Abraham",male,2,4,1,3101295,39.6875,,S +826,0,3,"Flynn, Mr. John",male,,0,0,368323,6.95,,Q +827,0,3,"Lam, Mr. Len",male,,0,0,1601,56.4958,,S +828,1,2,"Mallet, Master. Andre",male,1,0,2,S.C./PARIS 2079,37.0042,,C +829,1,3,"McCormack, Mr. Thomas Joseph",male,,0,0,367228,7.75,,Q +830,1,1,"Stone, Mrs. George Nelson (Martha Evelyn)",female,62,0,0,113572,80,B28, +831,1,3,"Yasbeck, Mrs. Antoni (Selini Alexander)",female,15,1,0,2659,14.4542,,C +832,1,2,"Richards, Master. George Sibley",male,0.83,1,1,29106,18.75,,S +833,0,3,"Saad, Mr. Amin",male,,0,0,2671,7.2292,,C +834,0,3,"Augustsson, Mr. Albert",male,23,0,0,347468,7.8542,,S +835,0,3,"Allum, Mr. Owen George",male,18,0,0,2223,8.3,,S +836,1,1,"Compton, Miss. Sara Rebecca",female,39,1,1,PC 17756,83.1583,E49,C +837,0,3,"Pasic, Mr. Jakob",male,21,0,0,315097,8.6625,,S +838,0,3,"Sirota, Mr. Maurice",male,,0,0,392092,8.05,,S +839,1,3,"Chip, Mr. Chang",male,32,0,0,1601,56.4958,,S +840,1,1,"Marechal, Mr. Pierre",male,,0,0,11774,29.7,C47,C +841,0,3,"Alhomaki, Mr. Ilmari Rudolf",male,20,0,0,SOTON/O2 3101287,7.925,,S +842,0,2,"Mudd, Mr. Thomas Charles",male,16,0,0,S.O./P.P. 3,10.5,,S +843,1,1,"Serepeca, Miss. Augusta",female,30,0,0,113798,31,,C +844,0,3,"Lemberopolous, Mr. Peter L",male,34.5,0,0,2683,6.4375,,C +845,0,3,"Culumovic, Mr. Jeso",male,17,0,0,315090,8.6625,,S +846,0,3,"Abbing, Mr. Anthony",male,42,0,0,C.A. 5547,7.55,,S +847,0,3,"Sage, Mr. Douglas Bullen",male,,8,2,CA. 2343,69.55,,S +848,0,3,"Markoff, Mr. Marin",male,35,0,0,349213,7.8958,,C +849,0,2,"Harper, Rev. John",male,28,0,1,248727,33,,S +850,1,1,"Goldenberg, Mrs. Samuel L (Edwiga Grabowska)",female,,1,0,17453,89.1042,C92,C +851,0,3,"Andersson, Master. Sigvard Harald Elias",male,4,4,2,347082,31.275,,S +852,0,3,"Svensson, Mr. Johan",male,74,0,0,347060,7.775,,S +853,0,3,"Boulos, Miss. Nourelain",female,9,1,1,2678,15.2458,,C +854,1,1,"Lines, Miss. Mary Conover",female,16,0,1,PC 17592,39.4,D28,S +855,0,2,"Carter, Mrs. Ernest Courtenay (Lilian Hughes)",female,44,1,0,244252,26,,S +856,1,3,"Aks, Mrs. Sam (Leah Rosen)",female,18,0,1,392091,9.35,,S +857,1,1,"Wick, Mrs. George Dennick (Mary Hitchcock)",female,45,1,1,36928,164.8667,,S +858,1,1,"Daly, Mr. Peter Denis ",male,51,0,0,113055,26.55,E17,S +859,1,3,"Baclini, Mrs. Solomon (Latifa Qurban)",female,24,0,3,2666,19.2583,,C +860,0,3,"Razi, Mr. Raihed",male,,0,0,2629,7.2292,,C +861,0,3,"Hansen, Mr. Claus Peter",male,41,2,0,350026,14.1083,,S +862,0,2,"Giles, Mr. Frederick Edward",male,21,1,0,28134,11.5,,S +863,1,1,"Swift, Mrs. Frederick Joel (Margaret Welles Barron)",female,48,0,0,17466,25.9292,D17,S +864,0,3,"Sage, Miss. Dorothy Edith ""Dolly""",female,,8,2,CA. 2343,69.55,,S +865,0,2,"Gill, Mr. John William",male,24,0,0,233866,13,,S +866,1,2,"Bystrom, Mrs. (Karolina)",female,42,0,0,236852,13,,S +867,1,2,"Duran y More, Miss. Asuncion",female,27,1,0,SC/PARIS 2149,13.8583,,C +868,0,1,"Roebling, Mr. Washington Augustus II",male,31,0,0,PC 17590,50.4958,A24,S +869,0,3,"van Melkebeke, Mr. Philemon",male,,0,0,345777,9.5,,S +870,1,3,"Johnson, Master. Harold Theodor",male,4,1,1,347742,11.1333,,S +871,0,3,"Balkic, Mr. Cerin",male,26,0,0,349248,7.8958,,S +872,1,1,"Beckwith, Mrs. Richard Leonard (Sallie Monypeny)",female,47,1,1,11751,52.5542,D35,S +873,0,1,"Carlsson, Mr. Frans Olof",male,33,0,0,695,5,B51 B53 B55,S +874,0,3,"Vander Cruyssen, Mr. Victor",male,47,0,0,345765,9,,S +875,1,2,"Abelson, Mrs. Samuel (Hannah Wizosky)",female,28,1,0,P/PP 3381,24,,C +876,1,3,"Najib, Miss. Adele Kiamie ""Jane""",female,15,0,0,2667,7.225,,C +877,0,3,"Gustafsson, Mr. Alfred Ossian",male,20,0,0,7534,9.8458,,S +878,0,3,"Petroff, Mr. Nedelio",male,19,0,0,349212,7.8958,,S +879,0,3,"Laleff, Mr. Kristo",male,,0,0,349217,7.8958,,S +880,1,1,"Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)",female,56,0,1,11767,83.1583,C50,C +881,1,2,"Shelley, Mrs. William (Imanita Parrish Hall)",female,25,0,1,230433,26,,S +882,0,3,"Markun, Mr. Johann",male,33,0,0,349257,7.8958,,S +883,0,3,"Dahlberg, Miss. Gerda Ulrika",female,22,0,0,7552,10.5167,,S +884,0,2,"Banfield, Mr. Frederick James",male,28,0,0,C.A./SOTON 34068,10.5,,S +885,0,3,"Sutehall, Mr. Henry Jr",male,25,0,0,SOTON/OQ 392076,7.05,,S +886,0,3,"Rice, Mrs. William (Margaret Norton)",female,39,0,5,382652,29.125,,Q +887,0,2,"Montvila, Rev. Juozas",male,27,0,0,211536,13,,S +888,1,1,"Graham, Miss. Margaret Edith",female,19,0,0,112053,30,B42,S +889,0,3,"Johnston, Miss. Catherine Helen ""Carrie""",female,,1,2,W./C. 6607,23.45,,S +890,1,1,"Behr, Mr. Karl Howell",male,26,0,0,111369,30,C148,C +891,0,3,"Dooley, Mr. Patrick",male,32,0,0,370376,7.75,,Q diff --git a/demos/zip_two_files/run.py b/demos/zip_two_files/run.py new file mode 100644 index 0000000000000000000000000000000000000000..29c1b015ed9f627e1964ccb65b7c9dae6f1e0865 --- /dev/null +++ b/demos/zip_two_files/run.py @@ -0,0 +1,25 @@ +import os +from zipfile import ZipFile + +import gradio as gr + + +def zip_two_files(file1, file2): + with ZipFile("tmp.zip", "w") as zipObj: + zipObj.write(file1.name, "file1") + zipObj.write(file2.name, "file2") + return "tmp.zip" + + +demo = gr.Interface( + zip_two_files, + ["file", "file"], + "file", + examples=[ + [os.path.join(os.path.dirname(__file__),"files/titanic.csv"), + os.path.join(os.path.dirname(__file__),"files/titanic.csv")], + ], +) + +if __name__ == "__main__": + demo.launch() diff --git a/demos/zip_two_files/screenshot.png b/demos/zip_two_files/screenshot.png new file mode 100644 index 0000000000000000000000000000000000000000..49c51b78a2a3ab894a3dd4c81f3ea197eac68909 --- /dev/null +++ b/demos/zip_two_files/screenshot.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b1494912b7f1af4d8ac3b3ce6600adc6200ea8021ed0273fd1878fbeab0bc7f7 +size 46335 diff --git a/gradio-3.1.4-py3-none-any.whl b/gradio-3.1.4-py3-none-any.whl new file mode 100644 index 0000000000000000000000000000000000000000..8d12ac8ca73259294cc2bcbccc18ff3ae117c4a7 --- /dev/null +++ b/gradio-3.1.4-py3-none-any.whl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:acdeb378e415ce4f9b85f8cbd91bbe73c75e3e83adf4476902259f01140af5f1 +size 5649118 diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/run.py b/run.py new file mode 100644 index 0000000000000000000000000000000000000000..a5831990e722cc79b2efbb8b3dde3f86d31f6ceb --- /dev/null +++ b/run.py @@ -0,0 +1,38 @@ +import importlib +import gradio as gr +import os +import sys +import copy +import pathlib + +demo_dir = pathlib.Path(__file__).parent / "demos" + + +all_demos = [] +for p in os.listdir("./demos"): + full_dir = os.path.join(demo_dir, p) + is_dir = os.path.isdir(full_dir) + no_requirements = not os.path.exists(os.path.join(full_dir, "requirements.txt")) + has_app = os.path.exists(os.path.join(full_dir, "run.py")) + if is_dir and no_requirements and has_app: + all_demos.append(p) + + to_exclude = ["blocks_demos", "rows_and_columns", "image_classifier_interface_load", "generate_english_german", + "all_demos"] + all_demos = [d for d in all_demos if d not in to_exclude] + +demo_module = None +with gr.Blocks() as mega_demo: + with gr.Tabs(): + for demo_name in all_demos: + with gr.TabItem(demo_name): + old_path = copy.deepcopy(sys.path) + sys.path = [os.path.join(demo_dir, demo_name)] + sys.path + if demo_module is None: + demo_module = importlib.import_module(f"run") + else: + demo_module = importlib.reload(demo_module) + demo_module.demo + sys.path = old_path + +mega_demo.launch()