Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import base64
|
3 |
+
import gradio as gr
|
4 |
+
import openai
|
5 |
+
from pydub import AudioSegment
|
6 |
+
import io
|
7 |
+
import tempfile
|
8 |
+
import speech_recognition as sr
|
9 |
+
|
10 |
+
# Initialize the OpenAI client
|
11 |
+
client = openai.OpenAI(
|
12 |
+
base_url="https://llama3-2-3b.lepton.run/api/v1/",
|
13 |
+
api_key=os.environ.get('LEPTON_API_TOKEN')
|
14 |
+
)
|
15 |
+
|
16 |
+
def transcribe_audio(audio):
|
17 |
+
# Convert the audio to wav format
|
18 |
+
audio = AudioSegment.from_file(audio)
|
19 |
+
audio = audio.set_frame_rate(16000).set_channels(1)
|
20 |
+
|
21 |
+
# Save as wav file
|
22 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio:
|
23 |
+
audio.export(temp_audio.name, format="wav")
|
24 |
+
temp_audio_path = temp_audio.name
|
25 |
+
|
26 |
+
# Perform speech recognition
|
27 |
+
recognizer = sr.Recognizer()
|
28 |
+
with sr.AudioFile(temp_audio_path) as source:
|
29 |
+
audio_data = recognizer.record(source)
|
30 |
+
text = recognizer.recognize_google(audio_data)
|
31 |
+
|
32 |
+
# Clean up the temporary file
|
33 |
+
os.unlink(temp_audio_path)
|
34 |
+
|
35 |
+
return text
|
36 |
+
|
37 |
+
def process_audio(audio):
|
38 |
+
# Transcribe the input audio
|
39 |
+
transcription = transcribe_audio(audio)
|
40 |
+
|
41 |
+
# Process the transcription with the API
|
42 |
+
completion = client.chat.completions.create(
|
43 |
+
model="gpt-3.5-turbo",
|
44 |
+
messages=[
|
45 |
+
{"role": "user", "content": transcription},
|
46 |
+
],
|
47 |
+
max_tokens=128,
|
48 |
+
stream=True,
|
49 |
+
extra_body={
|
50 |
+
"require_audio": "true",
|
51 |
+
"tts_preset_id": "jessica",
|
52 |
+
}
|
53 |
+
)
|
54 |
+
|
55 |
+
response_text = ""
|
56 |
+
audios = []
|
57 |
+
|
58 |
+
for chunk in completion:
|
59 |
+
if not chunk.choices:
|
60 |
+
continue
|
61 |
+
content = chunk.choices[0].delta.content
|
62 |
+
audio = getattr(chunk.choices[0], 'audio', [])
|
63 |
+
if content:
|
64 |
+
response_text += content
|
65 |
+
if audio:
|
66 |
+
audios.extend(audio)
|
67 |
+
|
68 |
+
# Combine audio chunks and save as MP3
|
69 |
+
audio_data = b''.join([base64.b64decode(audio) for audio in audios])
|
70 |
+
|
71 |
+
# Save the audio to a temporary file
|
72 |
+
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_audio:
|
73 |
+
temp_audio.write(audio_data)
|
74 |
+
temp_audio_path = temp_audio.name
|
75 |
+
|
76 |
+
return response_text, temp_audio_path
|
77 |
+
|
78 |
+
# Create the Gradio interface
|
79 |
+
iface = gr.Interface(
|
80 |
+
fn=process_audio,
|
81 |
+
inputs=gr.Audio(type="filepath"),
|
82 |
+
outputs=[
|
83 |
+
gr.Textbox(label="Response Text"),
|
84 |
+
gr.Audio(label="Response Audio")
|
85 |
+
],
|
86 |
+
title="Audio-to-Audio Demo",
|
87 |
+
description="Upload an audio file to get a response in both text and audio format."
|
88 |
+
)
|
89 |
+
|
90 |
+
# Launch the interface
|
91 |
+
iface.launch()
|