File size: 4,816 Bytes
54011d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch
import time
import numpy as np


class SnacConfig:
    audio_vocab_size = 4096
    padded_vocab_size = 4160
    end_of_audio = 4097


snac_config = SnacConfig()    


def get_time_str():
    time_str = time.strftime("%Y%m%d_%H%M%S", time.localtime())
    return time_str


def layershift(input_id, layer, stride=4160, shift=152000):
    return input_id + shift + layer * stride

    
def generate_audio_data(snac_tokens, snacmodel, device=None):
    audio = reconstruct_tensors(snac_tokens, device)
    with torch.inference_mode():
        audio_hat = snacmodel.decode(audio)
    audio_data = audio_hat.cpu().numpy().astype(np.float64) * 32768.0
    audio_data = audio_data.astype(np.int16)
    audio_data = audio_data.tobytes()
    return audio_data

    
def get_snac(list_output, index, nums_generate):

    snac = []
    start = index
    for i in range(nums_generate):
        snac.append("#")
        for j in range(7):
            snac.append(list_output[j][start - nums_generate - 5 + j + i])
    return snac


def reconscruct_snac(output_list):
    if len(output_list) == 8:
        output_list = output_list[:-1]
    output = []
    for i in range(7):
        output_list[i] = output_list[i][i + 1 :]
    for i in range(len(output_list[-1])):
        output.append("#")
        for j in range(7):
            output.append(output_list[j][i])
    return output


def reconstruct_tensors(flattened_output, device=None):
    """Reconstructs the list of tensors from the flattened output."""

    if device is None:
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    def count_elements_between_hashes(lst):
        try:
            # Find the index of the first '#'
            first_index = lst.index("#")
            # Find the index of the second '#' after the first
            second_index = lst.index("#", first_index + 1)
            # Count the elements between the two indices
            return second_index - first_index - 1
        except ValueError:
            # Handle the case where there aren't enough '#' symbols
            return "List does not contain two '#' symbols"

    def remove_elements_before_hash(flattened_list):
        try:
            # Find the index of the first '#'
            first_hash_index = flattened_list.index("#")
            # Return the list starting from the first '#'
            return flattened_list[first_hash_index:]
        except ValueError:
            # Handle the case where there is no '#'
            return "List does not contain the symbol '#'"

    def list_to_torch_tensor(tensor1):
        # Convert the list to a torch tensor
        tensor = torch.tensor(tensor1)
        # Reshape the tensor to have size (1, n)
        tensor = tensor.unsqueeze(0)
        return tensor

    flattened_output = remove_elements_before_hash(flattened_output)
    codes = []
    tensor1 = []
    tensor2 = []
    tensor3 = []
    tensor4 = []

    n_tensors = count_elements_between_hashes(flattened_output)
    if n_tensors == 7:
        for i in range(0, len(flattened_output), 8):

            tensor1.append(flattened_output[i + 1])
            tensor2.append(flattened_output[i + 2])
            tensor3.append(flattened_output[i + 3])
            tensor3.append(flattened_output[i + 4])

            tensor2.append(flattened_output[i + 5])
            tensor3.append(flattened_output[i + 6])
            tensor3.append(flattened_output[i + 7])
            codes = [
                list_to_torch_tensor(tensor1).to(device),
                list_to_torch_tensor(tensor2).to(device),
                list_to_torch_tensor(tensor3).to(device),
            ]

    if n_tensors == 15:
        for i in range(0, len(flattened_output), 16):

            tensor1.append(flattened_output[i + 1])
            tensor2.append(flattened_output[i + 2])
            tensor3.append(flattened_output[i + 3])
            tensor4.append(flattened_output[i + 4])
            tensor4.append(flattened_output[i + 5])
            tensor3.append(flattened_output[i + 6])
            tensor4.append(flattened_output[i + 7])
            tensor4.append(flattened_output[i + 8])

            tensor2.append(flattened_output[i + 9])
            tensor3.append(flattened_output[i + 10])
            tensor4.append(flattened_output[i + 11])
            tensor4.append(flattened_output[i + 12])
            tensor3.append(flattened_output[i + 13])
            tensor4.append(flattened_output[i + 14])
            tensor4.append(flattened_output[i + 15])

            codes = [
                list_to_torch_tensor(tensor1).to(device),
                list_to_torch_tensor(tensor2).to(device),
                list_to_torch_tensor(tensor3).to(device),
                list_to_torch_tensor(tensor4).to(device),
            ]

    return codes