File size: 25,087 Bytes
54011d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
import os
import lightning as L
import torch
import glob
import time
from snac import SNAC
from litgpt import Tokenizer
from litgpt.utils import (
    num_parameters,
)
from litgpt.generate.base import (
    generate_AA,
    generate_ASR,
    generate_TA,
    generate_TT,
    generate_AT,
    generate_TA_BATCH,
    next_token_image_batch
)
import soundfile as sf
from litgpt.model import GPT, Config
from lightning.fabric.utilities.load import _lazy_load as lazy_load
from utils.snac_utils import layershift, reconscruct_snac, reconstruct_tensors, get_time_str
from utils.snac_utils import get_snac, generate_audio_data
import whisper
from tqdm import tqdm
from huggingface_hub import snapshot_download


torch.set_printoptions(sci_mode=False)


# TODO
text_vocabsize = 151936
text_specialtokens = 64
audio_vocabsize = 4096
audio_specialtokens = 64

padded_text_vocabsize = text_vocabsize + text_specialtokens
padded_audio_vocabsize = audio_vocabsize + audio_specialtokens

_eot = text_vocabsize
_pad_t = text_vocabsize + 1
_input_t = text_vocabsize + 2
_answer_t = text_vocabsize + 3
_asr = text_vocabsize + 4

_eoa = audio_vocabsize
_pad_a = audio_vocabsize + 1
_input_a = audio_vocabsize + 2
_answer_a = audio_vocabsize + 3
_split = audio_vocabsize + 4
_image = audio_vocabsize + 5
_eoimage = audio_vocabsize + 6


def get_input_ids_TA(text, text_tokenizer):
    input_ids_item = [[] for _ in range(8)]
    text_tokens = text_tokenizer.encode(text)
    for i in range(7):
        input_ids_item[i] = [layershift(_pad_a, i)] * (len(text_tokens) + 2) + [
            layershift(_answer_a, i)
        ]
        input_ids_item[i] = torch.tensor(input_ids_item[i]).unsqueeze(0)
    input_ids_item[-1] = [_input_t] + text_tokens.tolist() + [_eot] + [_answer_t]
    input_ids_item[-1] = torch.tensor(input_ids_item[-1]).unsqueeze(0)
    return input_ids_item


def get_input_ids_TT(text, text_tokenizer):
    input_ids_item = [[] for i in range(8)]
    text_tokens = text_tokenizer.encode(text).tolist()

    for i in range(7):
        input_ids_item[i] = torch.tensor(
            [layershift(_pad_a, i)] * (len(text_tokens) + 3)
        ).unsqueeze(0)
    input_ids_item[-1] = [_input_t] + text_tokens + [_eot] + [_answer_t]
    input_ids_item[-1] = torch.tensor(input_ids_item[-1]).unsqueeze(0)

    return input_ids_item


def get_input_ids_whisper(
    mel, leng, whispermodel, device, 
    special_token_a=_answer_a, special_token_t=_answer_t,
):

    with torch.no_grad():
        mel = mel.unsqueeze(0).to(device)
        # audio_feature = whisper.decode(whispermodel,mel, options).audio_features
        audio_feature = whispermodel.embed_audio(mel)[0][:leng]

    T = audio_feature.size(0)
    input_ids = []
    for i in range(7):
        input_ids_item = []
        input_ids_item.append(layershift(_input_a, i))
        input_ids_item += [layershift(_pad_a, i)] * T
        input_ids_item += [(layershift(_eoa, i)), layershift(special_token_a, i)]
        input_ids.append(torch.tensor(input_ids_item).unsqueeze(0))
    input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, special_token_t])
    input_ids.append(input_id_T.unsqueeze(0))
    return audio_feature.unsqueeze(0), input_ids


def get_input_ids_whisper_ATBatch(mel, leng, whispermodel, device):
    with torch.no_grad():
        mel = mel.unsqueeze(0).to(device)
        # audio_feature = whisper.decode(whispermodel,mel, options).audio_features
        audio_feature = whispermodel.embed_audio(mel)[0][:leng]
    T = audio_feature.size(0)
    input_ids_AA = []
    for i in range(7):
        input_ids_item = []
        input_ids_item.append(layershift(_input_a, i))
        input_ids_item += [layershift(_pad_a, i)] * T
        input_ids_item += [(layershift(_eoa, i)), layershift(_answer_a, i)]
        input_ids_AA.append(torch.tensor(input_ids_item))
    input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, _answer_t])
    input_ids_AA.append(input_id_T)

    input_ids_AT = []
    for i in range(7):
        input_ids_item = []
        input_ids_item.append(layershift(_input_a, i))
        input_ids_item += [layershift(_pad_a, i)] * T
        input_ids_item += [(layershift(_eoa, i)), layershift(_pad_a, i)]
        input_ids_AT.append(torch.tensor(input_ids_item))
    input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, _answer_t])
    input_ids_AT.append(input_id_T)

    input_ids = [input_ids_AA, input_ids_AT]
    stacked_inputids = [[] for _ in range(8)]
    for i in range(2):
        for j in range(8):
            stacked_inputids[j].append(input_ids[i][j])
    stacked_inputids = [torch.stack(tensors) for tensors in stacked_inputids]
    return torch.stack([audio_feature, audio_feature]), stacked_inputids


def load_audio(path):
    audio = whisper.load_audio(path)
    duration_ms = (len(audio) / 16000) * 1000
    audio = whisper.pad_or_trim(audio)
    mel = whisper.log_mel_spectrogram(audio)
    return mel, int(duration_ms / 20) + 1


def A1_A2_batch(fabric, audio_feature, input_ids, leng, model, text_tokenizer, step,
                snacmodel, out_dir=None):
    with fabric.init_tensor():
        model.set_kv_cache(batch_size=2)
    tokenlist = generate_TA_BATCH(
        model,
        audio_feature,
        input_ids,
        [leng, leng],
        ["A1A2", "A1T2"],
        max_returned_tokens=2048,
        temperature=0.9,
        top_k=1,
        eos_id_a=_eoa,
        eos_id_t=_eot,
        pad_id_t=_pad_t,
        shift=padded_text_vocabsize,
        include_prompt=True,
        generate_text=True,
    )
    text_tokenlist = tokenlist[-1]
    if text_vocabsize in text_tokenlist:
        text_tokenlist = text_tokenlist[: text_tokenlist.index(text_vocabsize)]
    text = text_tokenizer.decode(torch.tensor(text_tokenlist)).strip()

    audio_tokenlist = tokenlist[:-1]
    audiolist = reconscruct_snac(audio_tokenlist)
    audio = reconstruct_tensors(audiolist)
    if out_dir is None:
        out_dir = "./output/default/A1-A2-batch"
    else:
        out_dir = out_dir + "/A1-A2-batch"
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)
    with torch.inference_mode():
        audio_hat = snacmodel.decode(audio)
    sf.write(
        f"{out_dir}/{step:02d}.wav",
        audio_hat.squeeze().cpu().numpy(),
        24000,
    )
    model.clear_kv_cache()
    return text


def A1_T2(fabric, audio_feature, input_ids, leng, model, text_tokenizer, step):
    with fabric.init_tensor():
        model.set_kv_cache(batch_size=1)
    tokenlist = generate_AT(
        model,
        audio_feature,
        input_ids,
        [leng],
        ["AT"],
        max_returned_tokens=2048,
        temperature=0.9,
        top_k=1,
        eos_id_a=_eoa,
        eos_id_t=_eot,
        pad_id_t=_pad_t,
        shift=padded_text_vocabsize,
        include_prompt=True,
        generate_text=True,
    )
    return text_tokenizer.decode(torch.tensor(tokenlist)).strip()


def A1_A2(fabric, audio_feature, input_ids, leng, model, text_tokenizer, step,
          snacmodel, out_dir=None):
    with fabric.init_tensor():
        model.set_kv_cache(batch_size=1)
    tokenlist = generate_AA(
        model,
        audio_feature,
        input_ids,
        [leng],
        ["A1T2"],
        max_returned_tokens=2048,
        temperature=0.9,
        top_k=1,
        eos_id_a=_eoa,
        eos_id_t=_eot,
        pad_id_t=_pad_t,
        shift=padded_text_vocabsize,
        include_prompt=True,
        generate_text=True,
    )
    audiolist = reconscruct_snac(tokenlist)
    tokenlist = tokenlist[-1]
    if text_vocabsize in tokenlist:
        tokenlist = tokenlist[: tokenlist.index(text_vocabsize)]
    if out_dir is None:
        out_dir = "./output/default/A1-A2"
    else:
        out_dir = out_dir + "/A1-A2"
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)
        
    audio = reconstruct_tensors(audiolist)
    with torch.inference_mode():
        audio_hat = snacmodel.decode(audio)
    sf.write(
        f"{out_dir}/{step:02d}.wav",
        audio_hat.squeeze().cpu().numpy(),
        24000,
    )
    model.clear_kv_cache()
    return text_tokenizer.decode(torch.tensor(tokenlist)).strip()


def A1_T1(fabric, audio_feature, input_ids, leng, model, text_tokenizer, step):
    with fabric.init_tensor():
        model.set_kv_cache(batch_size=1)
    tokenlist = generate_ASR(
        model,
        audio_feature,
        input_ids,
        [leng],
        ["A1T1"],
        max_returned_tokens=2048,
        temperature=0.9,
        top_k=1,
        eos_id_a=_eoa,
        eos_id_t=_eot,
        pad_id_t=_pad_t,
        shift=padded_text_vocabsize,
        include_prompt=True,
        generate_text=True,
    )
    model.clear_kv_cache()
    return text_tokenizer.decode(torch.tensor(tokenlist)).strip()


def T1_A2(fabric, input_ids, model, text_tokenizer, step,
          snacmodel, out_dir=None):
    with fabric.init_tensor():
        model.set_kv_cache(batch_size=1)
    tokenlist = generate_TA(
        model,
        None,
        input_ids,
        None,
        ["T1A2"],
        max_returned_tokens=2048,
        temperature=0.9,
        top_k=1,
        eos_id_a=_eoa,
        eos_id_t=_eot,
        pad_id_t=_pad_t,
        shift=padded_text_vocabsize,
        include_prompt=True,
        generate_text=True,
    )

    audiolist = reconscruct_snac(tokenlist)
    tokenlist = tokenlist[-1]

    if text_vocabsize in tokenlist:
        tokenlist = tokenlist[: tokenlist.index(text_vocabsize)]
    audio = reconstruct_tensors(audiolist)
    if out_dir is None:
        out_dir = "./output/default/T1-A2"
    else:
        out_dir = out_dir + "/T1-A2"
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    with torch.inference_mode():
        audio_hat = snacmodel.decode(audio)
    sf.write(
        f"{out_dir}/{step:02d}.wav",
        audio_hat.squeeze().cpu().numpy(),
        24000,
    )
    model.clear_kv_cache()
    return text_tokenizer.decode(torch.tensor(tokenlist)).strip()


def T1_T2(fabric, input_ids, model, text_tokenizer, step):

    with fabric.init_tensor():
        model.set_kv_cache(batch_size=1)
    tokenlist = generate_TT(
        model,
        None,
        input_ids,
        None,
        ["T1T2"],
        max_returned_tokens=2048,
        temperature=0.9,
        top_k=1,
        eos_id_a=_eoa,
        eos_id_t=_eot,
        pad_id_t=_pad_t,
        shift=padded_text_vocabsize,
        include_prompt=True,
        generate_text=True,
    )
    model.clear_kv_cache()
    return text_tokenizer.decode(torch.tensor(tokenlist)).strip()

    
def load_model(ckpt_dir, device):
    snacmodel = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval().to(device)
    whisper_model_path = ckpt_dir + "/small.pt"
    if not os.path.exists(whisper_model_path):
        whisper_model_path = "small"
    whispermodel = whisper.load_model(whisper_model_path).to(device)
    text_tokenizer = Tokenizer(ckpt_dir)
    fabric = L.Fabric(devices=1, strategy="auto")
    config = Config.from_file(ckpt_dir + "/model_config.yaml")
    config.post_adapter = False

    with fabric.init_module(empty_init=False):
        model = GPT(config)

    model = fabric.setup(model)
    state_dict = lazy_load(ckpt_dir + "/lit_model.pth")
    model.load_state_dict(state_dict, strict=True)
    model.to(device).eval()

    return fabric, model, text_tokenizer, snacmodel, whispermodel

    
def download_model(ckpt_dir):
    repo_id = "gpt-omni/mini-omni2"
    snapshot_download(repo_id, local_dir=ckpt_dir, revision="main")

    
def get_text_stream(list_output, index, text_tokenizer):
    text_tokens = list_output[-1][index:]
    index += len(text_tokens)
    is_text_end = False
    if text_vocabsize in text_tokens:
        text_tokens = text_tokens[:text_tokens.index(text_vocabsize)]
        is_text_end = True
    if len(text_tokens) == 0:
        return "", index, is_text_end
    res_text = text_tokenizer.decode(torch.tensor(text_tokens))
    return res_text, index, is_text_end

    
class OmniInference:

    def __init__(self, ckpt_dir='./checkpoint', device='cuda:0'):
        self.device = device
        if not os.path.exists(ckpt_dir):
            print(f"checkpoint directory {ckpt_dir} not found, downloading from huggingface")
            download_model(ckpt_dir)
        self.fabric, self.model, self.text_tokenizer, self.snacmodel, self.whispermodel = load_model(ckpt_dir, device)

    def warm_up(self, sample='./data/samples/output1.wav'):
        for _ in self.run_AT_batch_stream(sample):
            pass

    @torch.inference_mode()
    def run_AT_batch_stream(self, 
                            audio_path, 
                            stream_stride=4,
                            max_returned_tokens=2048, 
                            temperature=0.9, 
                            top_k=1, 
                            top_p=1.0,
                            eos_id_a=_eoa,
                            eos_id_t=_eot,
                            save_path=None
        ):

        assert os.path.exists(audio_path), f"audio file {audio_path} not found"
        model = self.model

        with self.fabric.init_tensor():
            model.set_kv_cache(batch_size=2,device=self.device)

        mel, leng = load_audio(audio_path)
        audio_feature, input_ids = get_input_ids_whisper_ATBatch(mel, leng, self.whispermodel, self.device)
        T = input_ids[0].size(1)
        device = input_ids[0].device

        assert max_returned_tokens > T, f"max_returned_tokens {max_returned_tokens} should be greater than audio length {T}"

        if model.max_seq_length < max_returned_tokens - 1:
            raise NotImplementedError(
                f"max_seq_length {model.max_seq_length} needs to be >= {max_returned_tokens - 1}"
            )

        input_pos = torch.tensor([T], device=device)
        list_output = [[] for i in range(8)]
        tokens_A, token_T = next_token_image_batch(
            model,
            audio_feature.to(torch.float32).to(model.device),
            None,
            input_ids,
            [T - 3, T - 3],
            ["A1T2", "A1T2"],
            input_pos=torch.arange(0, T, device=device),
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
        )

        for i in range(7):
            list_output[i].append(tokens_A[i].tolist()[0])
        list_output[7].append(token_T.tolist()[0])

        model_input_ids = [[] for i in range(8)]
        for i in range(7):
            tokens_A[i] = tokens_A[i].clone() + padded_text_vocabsize + i * padded_audio_vocabsize
            model_input_ids[i].append(tokens_A[i].clone().to(device).to(torch.int32))
            model_input_ids[i].append(torch.tensor([layershift(4097, i)], device=device))
            model_input_ids[i] = torch.stack(model_input_ids[i])

        model_input_ids[-1].append(token_T.clone().to(torch.int32))
        model_input_ids[-1].append(token_T.clone().to(torch.int32))
        model_input_ids[-1] = torch.stack(model_input_ids[-1])

        text_end = False
        index = 1
        nums_generate = stream_stride
        begin_generate = False
        current_index = 0

        text_index = 0
        is_text_end = False

        for _ in tqdm(range(2, max_returned_tokens - T + 1)):
            tokens_A, token_T = next_token_image_batch(
                model,
                None,
                None,
                model_input_ids,
                None,
                None,
                input_pos=input_pos,
                temperature=temperature,
                top_k=top_k,
                top_p=top_p,
            )

            if text_end:
                token_T = torch.tensor([_pad_t], device=device)

            if tokens_A[-1] == eos_id_a:
                break

            if token_T == eos_id_t:
                text_end = True

            for i in range(7):
                list_output[i].append(tokens_A[i].tolist()[0])
            list_output[7].append(token_T.tolist()[0])

            model_input_ids = [[] for i in range(8)]
            for i in range(7):
                tokens_A[i] = tokens_A[i].clone() +padded_text_vocabsize + i * padded_audio_vocabsize
                model_input_ids[i].append(tokens_A[i].clone().to(device).to(torch.int32))
                model_input_ids[i].append(
                    torch.tensor([layershift(4097, i)], device=device)
                )
                model_input_ids[i] = torch.stack(model_input_ids[i])

            model_input_ids[-1].append(token_T.clone().to(torch.int32))
            model_input_ids[-1].append(token_T.clone().to(torch.int32))
            model_input_ids[-1] = torch.stack(model_input_ids[-1])

            if index == 7:
                begin_generate = True

            if begin_generate:
                current_index += 1
                if current_index == nums_generate:
                    current_index = 0
                    snac = get_snac(list_output, index, nums_generate)
                    audio_stream = generate_audio_data(snac, self.snacmodel, self.device)
                    if is_text_end:
                        text_stream = ""
                    else:
                        text_stream, text_index, is_text_end = get_text_stream(list_output, text_index, self.text_tokenizer)

                    yield (audio_stream, text_stream)

            input_pos = input_pos.add_(1)
            index += 1
        text = self.text_tokenizer.decode(torch.tensor(list_output[-1]))
        print(f"text output: {text}")

        if save_path is not None:
            audiolist = reconscruct_snac(list_output)
            audio = reconstruct_tensors(audiolist)
            with torch.inference_mode():
                audio_hat = self.snacmodel.decode(audio)
                sf.write(save_path, audio_hat.squeeze().cpu().numpy(), 24000)
        
        model.clear_kv_cache()
        return list_output


def test_infer():
    device = "cuda:0"
    out_dir = f"./output/{get_time_str()}"
    ckpt_dir = f"./checkpoint"
    if not os.path.exists(ckpt_dir):
        print(f"checkpoint directory {ckpt_dir} not found, downloading from huggingface")
        download_model(ckpt_dir)

    fabric, model, text_tokenizer, snacmodel, whispermodel = load_model(ckpt_dir, device)

    task = ['A1A2', 'asr', "T1A2", "AA-BATCH", 'T1T2', 'AT']

    # prepare test data
    # TODO
    test_audio_list = sorted(glob.glob('./data/samples/output*.wav'))
    test_audio_transcripts = [
        "What is your name?",
        "what are your hobbies?",
        "Do you like beijing",
        "How are you feeling today?",
        "what is the weather like today?",
    ]
    test_text_list = [
        "What is your name?",
        "How are you feeling today?",
        "Can you describe your surroundings?",
        "What did you do yesterday?",
        "What is your favorite book and why?",
        "How do you make a cup of tea?",
        "What is the weather like today?",
        "Can you explain the concept of time?",
        "Can you tell me a joke?",
    ]

    # LOAD MODEL
    with torch.no_grad():
        if "A1A2" in task:
            print("===============================================================")
            print("                       testing A1A2")
            print("===============================================================")
            step = 0
            for path in test_audio_list:
                try:
                    mel, leng = load_audio(path)
                    audio_feature, input_ids = get_input_ids_whisper(mel, leng, whispermodel, device)
                    text = A1_A2(
                        fabric,
                        audio_feature,
                        input_ids,
                        leng,
                        model,
                        text_tokenizer,
                        step,
                        snacmodel,
                        out_dir=out_dir,
                    )
                    print(f"input: {test_audio_transcripts[step]}")
                    print(f"output: {text}")
                    step += 1
                    print(
                        "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"
                    )
                except:
                    print(f"[error] failed to process {path}")
            print("===============================================================")

        if 'asr' in task:
            print("===============================================================")
            print("                       testing asr")
            print("===============================================================")

            index = 0
            step = 0
            for path in test_audio_list:
                mel, leng = load_audio(path)
                audio_feature, input_ids = get_input_ids_whisper(mel, leng, whispermodel, device, special_token_a=_pad_a, special_token_t=_asr)
                output = A1_T1(fabric, audio_feature, input_ids ,leng, model, text_tokenizer, index).lower().replace(',','').replace('.','').replace('?','')
                print(f"audio_path: {path}")
                print(f"audio transcript: {test_audio_transcripts[index]}")
                print(f"asr output: {output}")
                print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++")
                index += 1

        if "T1A2" in task:
            step = 0
            print("\n")
            print("===============================================================")
            print("                       testing T1A2")
            print("===============================================================")
            for text in test_text_list:
                input_ids = get_input_ids_TA(text, text_tokenizer)
                text_output = T1_A2(fabric, input_ids, model, text_tokenizer, step,
                                    snacmodel, out_dir=out_dir)
                print(f"input: {text}")
                print(f"output: {text_output}")
                print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++")
                step += 1
            print("===============================================================")

        if "T1T2" in task:
            step = 0
            print("\n")
            print("===============================================================")
            print("                       testing T1T2")
            print("===============================================================")

            for text in test_text_list:
                input_ids = get_input_ids_TT(text, text_tokenizer)
                text_output = T1_T2(fabric, input_ids, model, text_tokenizer, step)
                print(f" Input: {text}")
                print(f"Output: {text_output}")
                print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++")
            print("===============================================================")

        if "AT" in task:
            print("===============================================================")
            print("                       testing A1T2")
            print("===============================================================")
            step = 0
            for path in test_audio_list:
                mel, leng = load_audio(path)
                audio_feature, input_ids = get_input_ids_whisper(
                    mel, leng, whispermodel, device, 
                    special_token_a=_pad_a, special_token_t=_answer_t
                )
                text = A1_T2(
                    fabric, audio_feature, input_ids, leng, model, text_tokenizer, step
                )
                print(f"input: {test_audio_transcripts[step]}")
                print(f"output: {text}")
                step += 1
                print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++")
            print("===============================================================")

        if "AA-BATCH" in task:
            print("===============================================================")
            print("                       testing A1A2-BATCH")
            print("===============================================================")
            step = 0
            for path in test_audio_list:
                mel, leng = load_audio(path)
                audio_feature, input_ids = get_input_ids_whisper_ATBatch(mel, leng, whispermodel, device)
                text = A1_A2_batch(
                    fabric, audio_feature, input_ids, leng, model, text_tokenizer, step,
                    snacmodel, out_dir=out_dir
                )
                print(f"input: {test_audio_transcripts[step]}")
                print(f"output: {text}")
                step += 1
                print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++")
            print("===============================================================")

        print("*********************** test end *****************************")



if __name__ == "__main__":
    test_infer()