Spaces:
Running
on
T4
Running
on
T4
import os | |
import lightning as L | |
import torch | |
import glob | |
import time | |
from snac import SNAC | |
from litgpt import Tokenizer | |
from litgpt.utils import ( | |
num_parameters, | |
) | |
from litgpt.generate.base import ( | |
generate_AA, | |
generate_ASR, | |
generate_TA, | |
generate_TT, | |
generate_AT, | |
generate_TA_BATCH, | |
next_token_image_batch | |
) | |
import soundfile as sf | |
from litgpt.model import GPT, Config | |
from lightning.fabric.utilities.load import _lazy_load as lazy_load | |
from utils.snac_utils import layershift, reconscruct_snac, reconstruct_tensors, get_time_str | |
from utils.snac_utils import get_snac, generate_audio_data | |
import whisper | |
from tqdm import tqdm | |
from huggingface_hub import snapshot_download | |
torch.set_printoptions(sci_mode=False) | |
# TODO | |
text_vocabsize = 151936 | |
text_specialtokens = 64 | |
audio_vocabsize = 4096 | |
audio_specialtokens = 64 | |
padded_text_vocabsize = text_vocabsize + text_specialtokens | |
padded_audio_vocabsize = audio_vocabsize + audio_specialtokens | |
_eot = text_vocabsize | |
_pad_t = text_vocabsize + 1 | |
_input_t = text_vocabsize + 2 | |
_answer_t = text_vocabsize + 3 | |
_asr = text_vocabsize + 4 | |
_eoa = audio_vocabsize | |
_pad_a = audio_vocabsize + 1 | |
_input_a = audio_vocabsize + 2 | |
_answer_a = audio_vocabsize + 3 | |
_split = audio_vocabsize + 4 | |
_image = audio_vocabsize + 5 | |
_eoimage = audio_vocabsize + 6 | |
def get_input_ids_TA(text, text_tokenizer): | |
input_ids_item = [[] for _ in range(8)] | |
text_tokens = text_tokenizer.encode(text) | |
for i in range(7): | |
input_ids_item[i] = [layershift(_pad_a, i)] * (len(text_tokens) + 2) + [ | |
layershift(_answer_a, i) | |
] | |
input_ids_item[i] = torch.tensor(input_ids_item[i]).unsqueeze(0) | |
input_ids_item[-1] = [_input_t] + text_tokens.tolist() + [_eot] + [_answer_t] | |
input_ids_item[-1] = torch.tensor(input_ids_item[-1]).unsqueeze(0) | |
return input_ids_item | |
def get_input_ids_TT(text, text_tokenizer): | |
input_ids_item = [[] for i in range(8)] | |
text_tokens = text_tokenizer.encode(text).tolist() | |
for i in range(7): | |
input_ids_item[i] = torch.tensor( | |
[layershift(_pad_a, i)] * (len(text_tokens) + 3) | |
).unsqueeze(0) | |
input_ids_item[-1] = [_input_t] + text_tokens + [_eot] + [_answer_t] | |
input_ids_item[-1] = torch.tensor(input_ids_item[-1]).unsqueeze(0) | |
return input_ids_item | |
def get_input_ids_whisper( | |
mel, leng, whispermodel, device, | |
special_token_a=_answer_a, special_token_t=_answer_t, | |
): | |
with torch.no_grad(): | |
mel = mel.unsqueeze(0).to(device) | |
# audio_feature = whisper.decode(whispermodel,mel, options).audio_features | |
audio_feature = whispermodel.embed_audio(mel)[0][:leng] | |
T = audio_feature.size(0) | |
input_ids = [] | |
for i in range(7): | |
input_ids_item = [] | |
input_ids_item.append(layershift(_input_a, i)) | |
input_ids_item += [layershift(_pad_a, i)] * T | |
input_ids_item += [(layershift(_eoa, i)), layershift(special_token_a, i)] | |
input_ids.append(torch.tensor(input_ids_item).unsqueeze(0)) | |
input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, special_token_t]) | |
input_ids.append(input_id_T.unsqueeze(0)) | |
return audio_feature.unsqueeze(0), input_ids | |
def get_input_ids_whisper_ATBatch(mel, leng, whispermodel, device): | |
with torch.no_grad(): | |
mel = mel.unsqueeze(0).to(device) | |
# audio_feature = whisper.decode(whispermodel,mel, options).audio_features | |
audio_feature = whispermodel.embed_audio(mel)[0][:leng] | |
T = audio_feature.size(0) | |
input_ids_AA = [] | |
for i in range(7): | |
input_ids_item = [] | |
input_ids_item.append(layershift(_input_a, i)) | |
input_ids_item += [layershift(_pad_a, i)] * T | |
input_ids_item += [(layershift(_eoa, i)), layershift(_answer_a, i)] | |
input_ids_AA.append(torch.tensor(input_ids_item)) | |
input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, _answer_t]) | |
input_ids_AA.append(input_id_T) | |
input_ids_AT = [] | |
for i in range(7): | |
input_ids_item = [] | |
input_ids_item.append(layershift(_input_a, i)) | |
input_ids_item += [layershift(_pad_a, i)] * T | |
input_ids_item += [(layershift(_eoa, i)), layershift(_pad_a, i)] | |
input_ids_AT.append(torch.tensor(input_ids_item)) | |
input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, _answer_t]) | |
input_ids_AT.append(input_id_T) | |
input_ids = [input_ids_AA, input_ids_AT] | |
stacked_inputids = [[] for _ in range(8)] | |
for i in range(2): | |
for j in range(8): | |
stacked_inputids[j].append(input_ids[i][j]) | |
stacked_inputids = [torch.stack(tensors) for tensors in stacked_inputids] | |
return torch.stack([audio_feature, audio_feature]), stacked_inputids | |
def load_audio(path): | |
audio = whisper.load_audio(path) | |
duration_ms = (len(audio) / 16000) * 1000 | |
audio = whisper.pad_or_trim(audio) | |
mel = whisper.log_mel_spectrogram(audio) | |
return mel, int(duration_ms / 20) + 1 | |
def A1_A2_batch(fabric, audio_feature, input_ids, leng, model, text_tokenizer, step, | |
snacmodel, out_dir=None): | |
with fabric.init_tensor(): | |
model.set_kv_cache(batch_size=2) | |
tokenlist = generate_TA_BATCH( | |
model, | |
audio_feature, | |
input_ids, | |
[leng, leng], | |
["A1A2", "A1T2"], | |
max_returned_tokens=2048, | |
temperature=0.9, | |
top_k=1, | |
eos_id_a=_eoa, | |
eos_id_t=_eot, | |
pad_id_t=_pad_t, | |
shift=padded_text_vocabsize, | |
include_prompt=True, | |
generate_text=True, | |
) | |
text_tokenlist = tokenlist[-1] | |
if text_vocabsize in text_tokenlist: | |
text_tokenlist = text_tokenlist[: text_tokenlist.index(text_vocabsize)] | |
text = text_tokenizer.decode(torch.tensor(text_tokenlist)).strip() | |
audio_tokenlist = tokenlist[:-1] | |
audiolist = reconscruct_snac(audio_tokenlist) | |
audio = reconstruct_tensors(audiolist) | |
if out_dir is None: | |
out_dir = "./output/default/A1-A2-batch" | |
else: | |
out_dir = out_dir + "/A1-A2-batch" | |
if not os.path.exists(out_dir): | |
os.makedirs(out_dir) | |
with torch.inference_mode(): | |
audio_hat = snacmodel.decode(audio) | |
sf.write( | |
f"{out_dir}/{step:02d}.wav", | |
audio_hat.squeeze().cpu().numpy(), | |
24000, | |
) | |
model.clear_kv_cache() | |
return text | |
def A1_T2(fabric, audio_feature, input_ids, leng, model, text_tokenizer, step): | |
with fabric.init_tensor(): | |
model.set_kv_cache(batch_size=1) | |
tokenlist = generate_AT( | |
model, | |
audio_feature, | |
input_ids, | |
[leng], | |
["AT"], | |
max_returned_tokens=2048, | |
temperature=0.9, | |
top_k=1, | |
eos_id_a=_eoa, | |
eos_id_t=_eot, | |
pad_id_t=_pad_t, | |
shift=padded_text_vocabsize, | |
include_prompt=True, | |
generate_text=True, | |
) | |
return text_tokenizer.decode(torch.tensor(tokenlist)).strip() | |
def A1_A2(fabric, audio_feature, input_ids, leng, model, text_tokenizer, step, | |
snacmodel, out_dir=None): | |
with fabric.init_tensor(): | |
model.set_kv_cache(batch_size=1) | |
tokenlist = generate_AA( | |
model, | |
audio_feature, | |
input_ids, | |
[leng], | |
["A1T2"], | |
max_returned_tokens=2048, | |
temperature=0.9, | |
top_k=1, | |
eos_id_a=_eoa, | |
eos_id_t=_eot, | |
pad_id_t=_pad_t, | |
shift=padded_text_vocabsize, | |
include_prompt=True, | |
generate_text=True, | |
) | |
audiolist = reconscruct_snac(tokenlist) | |
tokenlist = tokenlist[-1] | |
if text_vocabsize in tokenlist: | |
tokenlist = tokenlist[: tokenlist.index(text_vocabsize)] | |
if out_dir is None: | |
out_dir = "./output/default/A1-A2" | |
else: | |
out_dir = out_dir + "/A1-A2" | |
if not os.path.exists(out_dir): | |
os.makedirs(out_dir) | |
audio = reconstruct_tensors(audiolist) | |
with torch.inference_mode(): | |
audio_hat = snacmodel.decode(audio) | |
sf.write( | |
f"{out_dir}/{step:02d}.wav", | |
audio_hat.squeeze().cpu().numpy(), | |
24000, | |
) | |
model.clear_kv_cache() | |
return text_tokenizer.decode(torch.tensor(tokenlist)).strip() | |
def A1_T1(fabric, audio_feature, input_ids, leng, model, text_tokenizer, step): | |
with fabric.init_tensor(): | |
model.set_kv_cache(batch_size=1) | |
tokenlist = generate_ASR( | |
model, | |
audio_feature, | |
input_ids, | |
[leng], | |
["A1T1"], | |
max_returned_tokens=2048, | |
temperature=0.9, | |
top_k=1, | |
eos_id_a=_eoa, | |
eos_id_t=_eot, | |
pad_id_t=_pad_t, | |
shift=padded_text_vocabsize, | |
include_prompt=True, | |
generate_text=True, | |
) | |
model.clear_kv_cache() | |
return text_tokenizer.decode(torch.tensor(tokenlist)).strip() | |
def T1_A2(fabric, input_ids, model, text_tokenizer, step, | |
snacmodel, out_dir=None): | |
with fabric.init_tensor(): | |
model.set_kv_cache(batch_size=1) | |
tokenlist = generate_TA( | |
model, | |
None, | |
input_ids, | |
None, | |
["T1A2"], | |
max_returned_tokens=2048, | |
temperature=0.9, | |
top_k=1, | |
eos_id_a=_eoa, | |
eos_id_t=_eot, | |
pad_id_t=_pad_t, | |
shift=padded_text_vocabsize, | |
include_prompt=True, | |
generate_text=True, | |
) | |
audiolist = reconscruct_snac(tokenlist) | |
tokenlist = tokenlist[-1] | |
if text_vocabsize in tokenlist: | |
tokenlist = tokenlist[: tokenlist.index(text_vocabsize)] | |
audio = reconstruct_tensors(audiolist) | |
if out_dir is None: | |
out_dir = "./output/default/T1-A2" | |
else: | |
out_dir = out_dir + "/T1-A2" | |
if not os.path.exists(out_dir): | |
os.makedirs(out_dir) | |
with torch.inference_mode(): | |
audio_hat = snacmodel.decode(audio) | |
sf.write( | |
f"{out_dir}/{step:02d}.wav", | |
audio_hat.squeeze().cpu().numpy(), | |
24000, | |
) | |
model.clear_kv_cache() | |
return text_tokenizer.decode(torch.tensor(tokenlist)).strip() | |
def T1_T2(fabric, input_ids, model, text_tokenizer, step): | |
with fabric.init_tensor(): | |
model.set_kv_cache(batch_size=1) | |
tokenlist = generate_TT( | |
model, | |
None, | |
input_ids, | |
None, | |
["T1T2"], | |
max_returned_tokens=2048, | |
temperature=0.9, | |
top_k=1, | |
eos_id_a=_eoa, | |
eos_id_t=_eot, | |
pad_id_t=_pad_t, | |
shift=padded_text_vocabsize, | |
include_prompt=True, | |
generate_text=True, | |
) | |
model.clear_kv_cache() | |
return text_tokenizer.decode(torch.tensor(tokenlist)).strip() | |
def load_model(ckpt_dir, device): | |
snacmodel = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval().to(device) | |
whisper_model_path = ckpt_dir + "/small.pt" | |
if not os.path.exists(whisper_model_path): | |
whisper_model_path = "small" | |
whispermodel = whisper.load_model(whisper_model_path).to(device) | |
text_tokenizer = Tokenizer(ckpt_dir) | |
fabric = L.Fabric(devices=1, strategy="auto") | |
config = Config.from_file(ckpt_dir + "/model_config.yaml") | |
config.post_adapter = False | |
with fabric.init_module(empty_init=False): | |
model = GPT(config) | |
model = fabric.setup(model) | |
state_dict = lazy_load(ckpt_dir + "/lit_model.pth") | |
model.load_state_dict(state_dict, strict=True) | |
model.to(device).eval() | |
return fabric, model, text_tokenizer, snacmodel, whispermodel | |
def download_model(ckpt_dir): | |
repo_id = "gpt-omni/mini-omni2" | |
snapshot_download(repo_id, local_dir=ckpt_dir, revision="main") | |
def get_text_stream(list_output, index, text_tokenizer): | |
text_tokens = list_output[-1][index:] | |
index += len(text_tokens) | |
is_text_end = False | |
if text_vocabsize in text_tokens: | |
text_tokens = text_tokens[:text_tokens.index(text_vocabsize)] | |
is_text_end = True | |
if len(text_tokens) == 0: | |
return "", index, is_text_end | |
res_text = text_tokenizer.decode(torch.tensor(text_tokens)) | |
return res_text, index, is_text_end | |
class OmniInference: | |
def __init__(self, ckpt_dir='./checkpoint', device='cuda:0'): | |
self.device = device | |
if not os.path.exists(ckpt_dir): | |
print(f"checkpoint directory {ckpt_dir} not found, downloading from huggingface") | |
download_model(ckpt_dir) | |
self.fabric, self.model, self.text_tokenizer, self.snacmodel, self.whispermodel = load_model(ckpt_dir, device) | |
def warm_up(self, sample='./data/samples/output1.wav'): | |
for _ in self.run_AT_batch_stream(sample): | |
pass | |
def run_AT_batch_stream(self, | |
audio_path, | |
stream_stride=4, | |
max_returned_tokens=2048, | |
temperature=0.9, | |
top_k=1, | |
top_p=1.0, | |
eos_id_a=_eoa, | |
eos_id_t=_eot, | |
save_path=None | |
): | |
assert os.path.exists(audio_path), f"audio file {audio_path} not found" | |
model = self.model | |
with self.fabric.init_tensor(): | |
model.set_kv_cache(batch_size=2,device=self.device) | |
mel, leng = load_audio(audio_path) | |
audio_feature, input_ids = get_input_ids_whisper_ATBatch(mel, leng, self.whispermodel, self.device) | |
T = input_ids[0].size(1) | |
device = input_ids[0].device | |
assert max_returned_tokens > T, f"max_returned_tokens {max_returned_tokens} should be greater than audio length {T}" | |
if model.max_seq_length < max_returned_tokens - 1: | |
raise NotImplementedError( | |
f"max_seq_length {model.max_seq_length} needs to be >= {max_returned_tokens - 1}" | |
) | |
input_pos = torch.tensor([T], device=device) | |
list_output = [[] for i in range(8)] | |
tokens_A, token_T = next_token_image_batch( | |
model, | |
audio_feature.to(torch.float32).to(model.device), | |
None, | |
input_ids, | |
[T - 3, T - 3], | |
["A1T2", "A1T2"], | |
input_pos=torch.arange(0, T, device=device), | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
) | |
for i in range(7): | |
list_output[i].append(tokens_A[i].tolist()[0]) | |
list_output[7].append(token_T.tolist()[0]) | |
model_input_ids = [[] for i in range(8)] | |
for i in range(7): | |
tokens_A[i] = tokens_A[i].clone() + padded_text_vocabsize + i * padded_audio_vocabsize | |
model_input_ids[i].append(tokens_A[i].clone().to(device).to(torch.int32)) | |
model_input_ids[i].append(torch.tensor([layershift(4097, i)], device=device)) | |
model_input_ids[i] = torch.stack(model_input_ids[i]) | |
model_input_ids[-1].append(token_T.clone().to(torch.int32)) | |
model_input_ids[-1].append(token_T.clone().to(torch.int32)) | |
model_input_ids[-1] = torch.stack(model_input_ids[-1]) | |
text_end = False | |
index = 1 | |
nums_generate = stream_stride | |
begin_generate = False | |
current_index = 0 | |
text_index = 0 | |
is_text_end = False | |
for _ in tqdm(range(2, max_returned_tokens - T + 1)): | |
tokens_A, token_T = next_token_image_batch( | |
model, | |
None, | |
None, | |
model_input_ids, | |
None, | |
None, | |
input_pos=input_pos, | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
) | |
if text_end: | |
token_T = torch.tensor([_pad_t], device=device) | |
if tokens_A[-1] == eos_id_a: | |
break | |
if token_T == eos_id_t: | |
text_end = True | |
for i in range(7): | |
list_output[i].append(tokens_A[i].tolist()[0]) | |
list_output[7].append(token_T.tolist()[0]) | |
model_input_ids = [[] for i in range(8)] | |
for i in range(7): | |
tokens_A[i] = tokens_A[i].clone() +padded_text_vocabsize + i * padded_audio_vocabsize | |
model_input_ids[i].append(tokens_A[i].clone().to(device).to(torch.int32)) | |
model_input_ids[i].append( | |
torch.tensor([layershift(4097, i)], device=device) | |
) | |
model_input_ids[i] = torch.stack(model_input_ids[i]) | |
model_input_ids[-1].append(token_T.clone().to(torch.int32)) | |
model_input_ids[-1].append(token_T.clone().to(torch.int32)) | |
model_input_ids[-1] = torch.stack(model_input_ids[-1]) | |
if index == 7: | |
begin_generate = True | |
if begin_generate: | |
current_index += 1 | |
if current_index == nums_generate: | |
current_index = 0 | |
snac = get_snac(list_output, index, nums_generate) | |
audio_stream = generate_audio_data(snac, self.snacmodel, self.device) | |
if is_text_end: | |
text_stream = "" | |
else: | |
text_stream, text_index, is_text_end = get_text_stream(list_output, text_index, self.text_tokenizer) | |
yield (audio_stream, text_stream) | |
input_pos = input_pos.add_(1) | |
index += 1 | |
text = self.text_tokenizer.decode(torch.tensor(list_output[-1])) | |
print(f"text output: {text}") | |
if save_path is not None: | |
audiolist = reconscruct_snac(list_output) | |
audio = reconstruct_tensors(audiolist) | |
with torch.inference_mode(): | |
audio_hat = self.snacmodel.decode(audio) | |
sf.write(save_path, audio_hat.squeeze().cpu().numpy(), 24000) | |
model.clear_kv_cache() | |
return list_output | |
def test_infer(): | |
device = "cuda:0" | |
out_dir = f"./output/{get_time_str()}" | |
ckpt_dir = f"./checkpoint" | |
if not os.path.exists(ckpt_dir): | |
print(f"checkpoint directory {ckpt_dir} not found, downloading from huggingface") | |
download_model(ckpt_dir) | |
fabric, model, text_tokenizer, snacmodel, whispermodel = load_model(ckpt_dir, device) | |
task = ['A1A2', 'asr', "T1A2", "AA-BATCH", 'T1T2', 'AT'] | |
# prepare test data | |
# TODO | |
test_audio_list = sorted(glob.glob('./data/samples/output*.wav')) | |
test_audio_transcripts = [ | |
"What is your name?", | |
"what are your hobbies?", | |
"Do you like beijing", | |
"How are you feeling today?", | |
"what is the weather like today?", | |
] | |
test_text_list = [ | |
"What is your name?", | |
"How are you feeling today?", | |
"Can you describe your surroundings?", | |
"What did you do yesterday?", | |
"What is your favorite book and why?", | |
"How do you make a cup of tea?", | |
"What is the weather like today?", | |
"Can you explain the concept of time?", | |
"Can you tell me a joke?", | |
] | |
# LOAD MODEL | |
with torch.no_grad(): | |
if "A1A2" in task: | |
print("===============================================================") | |
print(" testing A1A2") | |
print("===============================================================") | |
step = 0 | |
for path in test_audio_list: | |
try: | |
mel, leng = load_audio(path) | |
audio_feature, input_ids = get_input_ids_whisper(mel, leng, whispermodel, device) | |
text = A1_A2( | |
fabric, | |
audio_feature, | |
input_ids, | |
leng, | |
model, | |
text_tokenizer, | |
step, | |
snacmodel, | |
out_dir=out_dir, | |
) | |
print(f"input: {test_audio_transcripts[step]}") | |
print(f"output: {text}") | |
step += 1 | |
print( | |
"+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++" | |
) | |
except: | |
print(f"[error] failed to process {path}") | |
print("===============================================================") | |
if 'asr' in task: | |
print("===============================================================") | |
print(" testing asr") | |
print("===============================================================") | |
index = 0 | |
step = 0 | |
for path in test_audio_list: | |
mel, leng = load_audio(path) | |
audio_feature, input_ids = get_input_ids_whisper(mel, leng, whispermodel, device, special_token_a=_pad_a, special_token_t=_asr) | |
output = A1_T1(fabric, audio_feature, input_ids ,leng, model, text_tokenizer, index).lower().replace(',','').replace('.','').replace('?','') | |
print(f"audio_path: {path}") | |
print(f"audio transcript: {test_audio_transcripts[index]}") | |
print(f"asr output: {output}") | |
print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++") | |
index += 1 | |
if "T1A2" in task: | |
step = 0 | |
print("\n") | |
print("===============================================================") | |
print(" testing T1A2") | |
print("===============================================================") | |
for text in test_text_list: | |
input_ids = get_input_ids_TA(text, text_tokenizer) | |
text_output = T1_A2(fabric, input_ids, model, text_tokenizer, step, | |
snacmodel, out_dir=out_dir) | |
print(f"input: {text}") | |
print(f"output: {text_output}") | |
print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++") | |
step += 1 | |
print("===============================================================") | |
if "T1T2" in task: | |
step = 0 | |
print("\n") | |
print("===============================================================") | |
print(" testing T1T2") | |
print("===============================================================") | |
for text in test_text_list: | |
input_ids = get_input_ids_TT(text, text_tokenizer) | |
text_output = T1_T2(fabric, input_ids, model, text_tokenizer, step) | |
print(f" Input: {text}") | |
print(f"Output: {text_output}") | |
print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++") | |
print("===============================================================") | |
if "AT" in task: | |
print("===============================================================") | |
print(" testing A1T2") | |
print("===============================================================") | |
step = 0 | |
for path in test_audio_list: | |
mel, leng = load_audio(path) | |
audio_feature, input_ids = get_input_ids_whisper( | |
mel, leng, whispermodel, device, | |
special_token_a=_pad_a, special_token_t=_answer_t | |
) | |
text = A1_T2( | |
fabric, audio_feature, input_ids, leng, model, text_tokenizer, step | |
) | |
print(f"input: {test_audio_transcripts[step]}") | |
print(f"output: {text}") | |
step += 1 | |
print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++") | |
print("===============================================================") | |
if "AA-BATCH" in task: | |
print("===============================================================") | |
print(" testing A1A2-BATCH") | |
print("===============================================================") | |
step = 0 | |
for path in test_audio_list: | |
mel, leng = load_audio(path) | |
audio_feature, input_ids = get_input_ids_whisper_ATBatch(mel, leng, whispermodel, device) | |
text = A1_A2_batch( | |
fabric, audio_feature, input_ids, leng, model, text_tokenizer, step, | |
snacmodel, out_dir=out_dir | |
) | |
print(f"input: {test_audio_transcripts[step]}") | |
print(f"output: {text}") | |
step += 1 | |
print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++") | |
print("===============================================================") | |
print("*********************** test end *****************************") | |
if __name__ == "__main__": | |
test_infer() | |