Spaces:
Running
on
T4
Running
on
T4
import os | |
import torch | |
from litgpt.generate.base import next_token_image_batch | |
import soundfile as sf | |
from utils.snac_utils import layershift, reconscruct_snac, reconstruct_tensors, get_time_str | |
from utils.snac_utils import get_snac, generate_audio_data | |
import clip | |
import inference | |
from tqdm import tqdm | |
from inference import OmniInference, load_model, load_audio, download_model | |
from inference import text_vocabsize, padded_text_vocabsize, get_text_stream | |
from PIL import Image | |
torch.set_printoptions(sci_mode=False) | |
_image = inference._image | |
_eoimage = inference._eoimage | |
_pad_t = inference._pad_t | |
_input_t = inference._input_t | |
_answer_t = inference._answer_t | |
_eot = inference._eot | |
_eoa = inference._eoa | |
_pad_a = inference._pad_a | |
_input_a = inference._input_a | |
_answer_a = inference._answer_a | |
def get_input_ids_ImageQA_ATBatch(mel, leng, whispermodel, device): | |
with torch.no_grad(): | |
mel = mel.unsqueeze(0).to(device) | |
audio_feature = whispermodel.embed_audio(mel)[0][:leng] | |
audio_len = audio_feature.size(0) | |
input_ids = [] | |
input_ids_item = [[] for i in range(8)] | |
for i in range(7): | |
input_ids_item[i] = [layershift(_image,i)] + [layershift(_pad_a,i)] * 50 + [layershift(_eoimage,i)] | |
input_ids_item[i] += [layershift(_input_a,i)]+[layershift(_pad_a,i)]*(audio_len)+[layershift(_eoa,i)] | |
input_ids_item[i] += [layershift(_answer_a,i)] | |
input_ids_item[-1] = [_pad_t]* (52 + 2 + audio_len) + [_answer_t] | |
input_ids_item = [torch.tensor(item) for item in input_ids_item] | |
input_ids.append(input_ids_item) | |
input_ids_item = [[] for i in range(8)] | |
for i in range(7): | |
input_ids_item[i] = [layershift(_image,i)] + [layershift(_pad_a,i)] * 50 + [layershift(_eoimage,i)] | |
input_ids_item[i] += [layershift(_input_a,i)]+[layershift(_pad_a,i)]*(audio_len)+[layershift(_eoa,i)] + [layershift(_pad_a,i)] | |
input_ids_item[-1] = [_pad_t]* (52 + 2 + audio_len) + [_answer_t] | |
input_ids_item = [torch.tensor(item) for item in input_ids_item] | |
input_ids.append(input_ids_item) | |
stacked_inputids = [[] for _ in range(8)] | |
for i in range(2): | |
for j in range(8): | |
stacked_inputids[j].append(input_ids[i][j]) | |
stacked_inputids = [torch.stack(tensors) for tensors in stacked_inputids] | |
return torch.stack([audio_feature,audio_feature]), stacked_inputids | |
def load_clip_model(ckpt_dir, device): | |
clip_model_path = ckpt_dir + "/ViT-B-32.pt" | |
if not os.path.exists(clip_model_path): | |
clip_model_path = "ViT-B/32" | |
clipmodel, clippreprocess = clip.load(clip_model_path, device=device) | |
return clipmodel, clippreprocess | |
class OmniVisionInference(OmniInference): | |
def __init__(self, ckpt_dir='./checkpoint', device='cuda:0'): | |
self.device = device | |
if not os.path.exists(ckpt_dir): | |
print(f"checkpoint directory {ckpt_dir} not found, downloading from huggingface") | |
download_model(ckpt_dir) | |
self.fabric, self.model, self.text_tokenizer, self.snacmodel, self.whispermodel = load_model(ckpt_dir, device) | |
self.clipmodel, self.clippreprocess = load_clip_model(ckpt_dir, device) | |
def warm_up(self, | |
audio_sample='./data/samples/vision_qa_audio.wav', | |
image_sample='./data/samples/vision_qa_image.jpg' | |
): | |
for _ in self.run_vision_AA_batch_stream(audio_sample, image_sample, | |
save_path="./data/samples/vision_qa_output.wav", | |
warm_up=True): | |
pass | |
def run_vision_AA_batch_stream(self, audio_path, image_path, | |
stream_stride=4, | |
max_returned_tokens=2048, | |
temperature=0.9, | |
top_k=1, | |
top_p=1.0, | |
eos_id_a=_eoa, | |
eos_id_t=_eot, | |
pad_id=_pad_t, | |
save_path=None, | |
warm_up=False | |
): | |
with self.fabric.init_tensor(): | |
self.model.set_kv_cache(batch_size=2) | |
model = self.model | |
mel, leng = load_audio(audio_path) | |
img = Image.open(image_path) | |
audio_feature, input_ids = get_input_ids_ImageQA_ATBatch(mel, leng, self.whispermodel, self.device) | |
ima = self.clippreprocess(img).unsqueeze(0).to(self.device) | |
ima_feature = self.clipmodel.encode_image(ima).squeeze(0).to(self.device) | |
ima_feature = torch.stack([ima_feature.clone(),ima_feature.clone()]).to(self.device) | |
leng = [leng,leng] | |
task = ['ImageQA_A','ImageQA_AT'] | |
T = input_ids[0].size(1) | |
assert max_returned_tokens > T, f"max_returned_tokens {max_returned_tokens} should be greater than audio length {T}" | |
if model.max_seq_length < max_returned_tokens - 1: | |
raise NotImplementedError( | |
f"max_seq_length {model.max_seq_length} needs to be >= {max_returned_tokens - 1}" | |
) | |
list_output = [[] for i in range(8)] | |
tokens_A , token_T = next_token_image_batch( | |
model, | |
audio_feature.to(torch.float32).to(self.device), | |
ima_feature.to(torch.float32).to(self.device) , | |
input_ids , | |
whisper_lens = leng , | |
task = task, | |
input_pos = torch.arange(0, T, device=self.device), | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p | |
) | |
for i in range(7): list_output[i].append(tokens_A[i].tolist()[0]) | |
list_output[7].append(token_T.tolist()[0]) | |
text_end = False | |
index = 1 | |
nums_generate = stream_stride | |
begin_generate = False | |
current_index = 0 | |
input_pos = torch.tensor([T], device=self.device) | |
model_input_ids = [[] for i in range(8)] | |
for i in range(7): | |
tokens_A[i] = tokens_A[i].clone() + padded_text_vocabsize+ i * 4160 | |
model_input_ids[i].append(tokens_A[i].clone().to(self.device).to(torch.int32)) | |
model_input_ids[i].append(torch.tensor([layershift(4097,i)],device=self.device)) | |
model_input_ids[i] = torch.stack(model_input_ids[i]) | |
model_input_ids[-1].append(token_T.clone().to(torch.int32)) | |
model_input_ids[-1].append(token_T.clone().to(torch.int32)) | |
model_input_ids[-1] = torch.stack(model_input_ids[-1]) | |
text_index = 0 | |
is_text_end = False | |
for _ in tqdm(range(2, max_returned_tokens - T + 1)): | |
tokens_A , token_T = next_token_image_batch(model, None , None , | |
input_ids = model_input_ids, | |
whisper_lens= None, | |
task = None, | |
input_pos = input_pos, | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p) | |
if text_end: | |
token_T = torch.tensor([_pad_t], device=self.device) | |
if tokens_A[-1] == eos_id_a: | |
break | |
if token_T == eos_id_t: | |
text_end = True | |
for i in range(7): list_output[i].append(tokens_A[i].tolist()[0]) | |
list_output[7].append(token_T.tolist()[0]) | |
if index == 7: | |
begin_generate = True | |
if begin_generate: | |
current_index += 1 | |
if current_index == nums_generate: | |
current_index = 0 | |
snac = get_snac(list_output,index,nums_generate) | |
audio_stream = generate_audio_data(snac, self.snacmodel, self.device) | |
if is_text_end: | |
text_stream = "" | |
else: | |
text_stream, text_index, is_text_end = get_text_stream(list_output, text_index, self.text_tokenizer) | |
yield (audio_stream, text_stream) | |
if warm_up: | |
break | |
input_pos = input_pos.add_(1) | |
model_input_ids = [[] for i in range(8)] | |
for i in range(7): | |
tokens_A[i] = tokens_A[i].clone() + padded_text_vocabsize+ i * 4160 | |
model_input_ids[i].append(tokens_A[i].clone().to(self.device).to(torch.int32)) | |
model_input_ids[i].append(torch.tensor([layershift(4097,i)],device=self.device)) | |
model_input_ids[i] = torch.stack(model_input_ids[i]) | |
model_input_ids[-1].append(token_T.clone().to(torch.int32)) | |
model_input_ids[-1].append(token_T.clone().to(torch.int32)) | |
model_input_ids[-1] = torch.stack(model_input_ids[-1]) | |
index += 1 | |
text_tokens = list_output[-1] | |
if text_vocabsize in text_tokens: | |
text_tokens = text_tokens[:text_tokens.index(text_vocabsize)] | |
res_text = self.text_tokenizer.decode(torch.tensor(text_tokens)) | |
print(f"text output: {res_text}") | |
if save_path is not None: | |
audiolist = reconscruct_snac(list_output) | |
audio = reconstruct_tensors(audiolist) | |
with torch.inference_mode(): | |
audio_hat = self.snacmodel.decode(audio) | |
sf.write(save_path, audio_hat.squeeze().cpu().numpy(), 24000) | |
model.clear_kv_cache() | |
def test_vision_infer(): | |
client = OmniVisionInference() | |
client.warm_up() | |
input_audio_path = './data/samples/vision_qa_audio.wav' | |
input_image_path = './data/samples/vision_qa_image.jpg' | |
res_text = "" | |
for audio_stream, text_stream in client.run_vision_AA_batch_stream( | |
input_audio_path, | |
input_image_path, | |
save_path="./vision_qa_output.wav" | |
): | |
res_text += text_stream | |
print(f"text_output: {res_text}") | |
if __name__ == "__main__": | |
test_vision_infer() | |