# Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file. """Full definition of a decoder-only transformer-based language model, all of it in this single file. Based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT and https://github.com/EleutherAI/gpt-neox/tree/main/megatron/model. """ import math from typing import Any, Optional, Tuple import torch import torch.nn as nn from typing_extensions import Self from litgpt.config import Config class GPT(nn.Module): def __init__(self, config: Config) -> None: super().__init__() assert config.padded_vocab_size is not None self.config = config if self.config.asr_adapter == "mlp": print("Using MLP adapter for ASR feature") self.whisper_adapter = nn.Linear(config.whisper_adapter_dim, config.n_embd) elif self.config.asr_adapter == "llamamlp": print("using LLAMA MLP adapter for ASR feature") self.whisper_adapter = whisperMLP(config=config) else: raise ValueError("asr_adapter should be mlp or llamamlp") self.lm_head = nn.Linear( config.n_embd, config.padded_vocab_size, bias=config.lm_head_bias ) self.vision_adapter = visionMLP(config = config) if config.post_adapter: self.transformer = nn.ModuleDict( dict( wte=nn.Embedding(config.padded_vocab_size, config.n_embd), h=nn.ModuleList(Block(config) for _ in range(config.n_layer)), post_adapter=nn.ModuleList( Block(config) for _ in range(config.post_adapter_layers) ), ln_f=config.norm_class(config.n_embd, eps=config.norm_eps), post_adapter_audio_ln=config.norm_class( config.n_embd, eps=config.norm_eps ), post_adapter_audio_lm_head=nn.Linear( config.n_embd, config.cat_audio_vocab_size, bias=config.lm_head_bias ), ) ) else: self.transformer = nn.ModuleDict( dict( wte=nn.Embedding(config.padded_vocab_size, config.n_embd), h=nn.ModuleList(Block(config) for _ in range(config.n_layer)), ln_f=config.norm_class(config.n_embd, eps=config.norm_eps), ) ) self.max_seq_length = self.config.block_size self.mask_cache: Optional[torch.Tensor] = None if config.tie_word_embeddings: self.lm_head.weight = self.transformer.wte.weight @property def max_seq_length(self) -> int: return self._max_seq_length @max_seq_length.setter def max_seq_length(self, value: int) -> None: """ When doing inference, the sequences used might be shorter than the model's context length. This allows setting a smaller number to avoid allocating unused memory """ if value > self.config.block_size: raise ValueError( f"Cannot attend to {value}, block size is only {self.config.block_size}" ) self._max_seq_length = value if not hasattr(self, "cos"): # first call cos, sin = self.rope_cache() self.register_buffer("cos", cos, persistent=False) self.register_buffer("sin", sin, persistent=False) # override elif value != self.cos.size(0): self.cos, self.sin = self.rope_cache(device=self.cos.device) # the mask and kv cache size will get updated on `set_kv_cache`. we cannot update it here because we don't know # if the kv cache is expected def reset_parameters(self) -> None: # Trigger resetting the rope-cache self.cos, self.sin = self.rope_cache(device=self.cos.device) def _init_weights(self, module: nn.Module) -> None: """Meant to be used with `gpt.apply(gpt._init_weights)`.""" if isinstance(module, nn.Linear): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) def concat_feat(self, audio_feature, clip_feature, input_ids, T, task): for j in range(len(T)): if task[j] != 'T1T2' and task[j] != 'T1A2' and task[j]!='ImageQA_T' and not task[j] == 'ImageCAP' and not task[j] == 'ImageQA_A' and not task[j] == 'ImageQA_AT': for i in range(7): input_ids[i][j,1:T[j]+1,:] = audio_feature[j][:T[j]].clone() assert task[j] != 'ImageQ', "ImageQ should be concat with audio feature" elif task[j] == 'ImageQA_A' or task[j] == 'ImageQA_AT': print("concat ImageQA_A feature") for i in range(7): input_ids[i][j,1:51,:] = clip_feature[j].clone() input_ids[i][j,52 : 52 + T[j],:] = audio_feature[j][:T[j]].clone() elif task[j] == 'ImageQA_T' or task[j] =='ImageCAP': for i in range(7): input_ids[i][j,1:51,:] = clip_feature[j].clone() return input_ids def forward( self, audio_features: torch.Tensor, input_ids: torch.Tensor, clip_features: torch.Tensor, input_pos: Optional[torch.Tensor] = None, whisper_lens: Optional[list] = None, task: Optional[str] = None, ) -> torch.Tensor: show = False T = input_ids[0].size(1) if self.max_seq_length < T: raise ValueError( f"Cannot forward sequence of length {T}, max seq length is only {self.max_seq_length}." ) if input_pos is not None: # use the kv cache cos = self.cos.index_select(0, input_pos) sin = self.sin.index_select(0, input_pos) if self.mask_cache is None: raise TypeError("You need to call `gpt.set_kv_cache()`") mask = self.mask_cache.index_select(2, input_pos) else: cos = self.cos[:T] sin = self.sin[:T] mask = None if audio_features is not None: # get whisper feature x_a = self.whisper_adapter(audio_features) if clip_features is not None: x_v = self.vision_adapter(clip_features) else: x_v = None # get input_ids embedding x0, x1, x2, x3, x4, x5, x6, x7 = input_ids x0 = self.transformer.wte(x0) x1 = self.transformer.wte(x1) x2 = self.transformer.wte(x2) x3 = self.transformer.wte(x3) x4 = self.transformer.wte(x4) x5 = self.transformer.wte(x5) x6 = self.transformer.wte(x6) x7 = self.transformer.wte(x7) # concat whisper feature input_emb = self.concat_feat( x_a, x_v, [x0, x1, x2, x3, x4, x5, x6, x7], whisper_lens, task ) x0, x1, x2, x3, x4, x5, x6, x7 = input_emb else: x0, x1, x2, x3, x4, x5, x6, x7 = input_ids x0 = self.transformer.wte(x0) x1 = self.transformer.wte(x1) x2 = self.transformer.wte(x2) x3 = self.transformer.wte(x3) x4 = self.transformer.wte(x4) x5 = self.transformer.wte(x5) x6 = self.transformer.wte(x6) x7 = self.transformer.wte(x7) x = (x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7) / 8 if self.config.scale_embeddings: x = x * (self.config.n_embd**0.5) for block in self.transformer.h: x = block(x, cos, sin, mask, input_pos) text_vocab_size = self.config.text_vocab_size audio_vocab_size = self.config.audio_vocab_size x_ori = x x_ori = self.transformer.ln_f(x_ori) x_ori = self.lm_head(x_ori) # (b, t, vocab_size) xt = x_ori[..., :text_vocab_size] if self.config.post_adapter: for block in self.transformer.post_adapter: x = block(x, cos, sin, mask, input_pos) x = self.transformer.post_adapter_audio_ln(x) x = self.transformer.post_adapter_audio_lm_head(x) # (b, t, vocab_size) xa = [] for i in range(7): xa.append(x[..., audio_vocab_size * i : audio_vocab_size * (i + 1)]) else: xa = [] for i in range(7): xa.append(x_ori[..., text_vocab_size + audio_vocab_size * i : text_vocab_size + audio_vocab_size * (i + 1)]) return xa, xt @classmethod def from_name(cls, name: str, **kwargs: Any) -> Self: return cls(Config.from_name(name, **kwargs)) def rope_cache( self, device: Optional[torch.device] = None ) -> Tuple[torch.Tensor, torch.Tensor]: return build_rope_cache( seq_len=self.max_seq_length, n_elem=self.config.rope_n_elem, device=device, condense_ratio=self.config.rope_condense_ratio, base=self.config.rope_base, ) def set_kv_cache( self, batch_size: int, rope_cache_length: Optional[int] = None, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ) -> None: if rope_cache_length is None: rope_cache_length = self.cos.size(-1) max_seq_length = self.max_seq_length # initialize the kv cache for all blocks for block in self.transformer.h: block.attn.kv_cache = block.attn.build_kv_cache( batch_size, max_seq_length, rope_cache_length, device, dtype ) if self.config.post_adapter: for block in self.transformer.post_adapter: block.attn.kv_cache = block.attn.build_kv_cache( batch_size, max_seq_length, rope_cache_length, device, dtype ) if self.mask_cache is None or self.mask_cache.size(3) != max_seq_length: # passing `attn_mask` to SDPA disables the flash implementation. since we only need the mask # for the kv-cache support (only during inference), we only create it in that situation self.mask_cache = build_mask_cache(max_seq_length, device) def clear_kv_cache(self) -> None: self.mask_cache = None for block in self.transformer.h: block.attn.kv_cache = None class visionMLP(nn.Module): def __init__(self, config: Config) -> None: super().__init__() vision_adapter_dim = config.vision_adapter_dim self.fc_1 = nn.Linear(vision_adapter_dim, config.intermediate_size, bias=config.bias) self.fc_2 = nn.Linear(vision_adapter_dim, config.intermediate_size, bias=config.bias) self.proj = nn.Linear(config.intermediate_size, config.n_embd, bias=config.bias) self.config = config def forward(self, x: torch.Tensor) -> torch.Tensor: x_fc_1 = self.fc_1(x) x_fc_2 = self.fc_2(x) x = torch.nn.functional.silu(x_fc_1) * x_fc_2 return self.proj(x) class Block(nn.Module): def __init__(self, config: Config) -> None: super().__init__() if not config.parallel_residual and config.shared_attention_norm: raise NotImplementedError( "No checkpoint amongst the ones we support uses this configuration" " (non-parallel residual and shared attention norm)." ) self.norm_1 = config.norm_class(config.n_embd, eps=config.norm_eps) self.attn = CausalSelfAttention(config) self.norm_2 = ( None if config.shared_attention_norm else config.norm_class(config.n_embd, eps=config.norm_eps) ) self.mlp = config.mlp_class(config) self.config = config def forward( self, x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, mask: Optional[torch.Tensor] = None, input_pos: Optional[torch.Tensor] = None, ) -> torch.Tensor: """ Non-parallel residual Parallel residual ┌─ x ┌─ x ────────────┐ Note: if `shared_attention_norm` is True, │ ↓ │ ↓ ↓ the output from `norm_1` is reused │ norm_1 │ norm_1 ───► norm_2 │ ↓ │ ↓ ↓ │ attn │ attn mlp │ ↓ │ ↓ │ ┌─ └► + └► + ◄───────────┘ │ norm_2 │ ↓ │ mlp │ ↓ └───► + """ x_normed = self.norm_1(x) attention_output = self.attn(x_normed, cos, sin, mask, input_pos) if self.config.parallel_residual: x_normed = x_normed if self.config.shared_attention_norm else self.norm_2(x) x = self.mlp(x_normed) + attention_output + x else: x = attention_output + x x = self.mlp(self.norm_2(x)) + x return x class CausalSelfAttention(nn.Module): def __init__(self, config: Config) -> None: super().__init__() shape = (config.n_head + 2 * config.n_query_groups) * config.head_size # key, query, value projections for all heads, but in a batch self.attn = nn.Linear(config.n_embd, shape, bias=config.add_qkv_bias) # output projection # if `head_size` is explicitly specified in the config, `n_emd` might not be equal to `head_size * n_head` self.proj = nn.Linear( config.head_size * config.n_head, config.n_embd, bias=config.bias ) # disabled by default self.kv_cache: Optional[KVCache] = None self.config = config def forward( self, x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, mask: Optional[torch.Tensor] = None, input_pos: Optional[torch.Tensor] = None, ) -> torch.Tensor: B, T, C = ( x.size() ) # batch size, sequence length, embedding dimensionality (n_embd) qkv = self.attn(x) # assemble into a number of query groups to support MHA, MQA and GQA together (see `config.n_query_groups`) q_per_kv = self.config.n_head // self.config.n_query_groups total_qkv = q_per_kv + 2 # each group has 1+ queries, 1 key, and 1 value qkv = qkv.view( B, T, self.config.n_query_groups, total_qkv, self.config.head_size ) qkv = qkv.permute(0, 2, 3, 1, 4) # (B, n_query_groups, total_qkv, T, hs) # split batched computation into three q, k, v = qkv.split((q_per_kv, 1, 1), dim=2) # maybe repeat k and v if for the non multi-head attention cases # training: flash attention requires it # inference: multi-query would require a full kv cache so avoid it to limit its memory usage if self.config.n_query_groups != self.config.n_head and ( input_pos is None or self.config.n_query_groups != 1 ): k = k.expand( B, self.config.n_query_groups, q_per_kv, T, self.config.head_size ) v = v.expand( B, self.config.n_query_groups, q_per_kv, T, self.config.head_size ) q = q.reshape(B, -1, T, self.config.head_size) # (B, nh_q, T, hs) k = k.reshape(B, -1, T, self.config.head_size) # (B, nh_k, T, hs) v = v.reshape(B, -1, T, self.config.head_size) # (B, nh_v, T, hs) q_roped = apply_rope(q[..., : self.config.rope_n_elem], cos, sin) k_roped = apply_rope(k[..., : self.config.rope_n_elem], cos, sin) q = torch.cat((q_roped, q[..., self.config.rope_n_elem :]), dim=-1) k = torch.cat((k_roped, k[..., self.config.rope_n_elem :]), dim=-1) if input_pos is not None: if not isinstance(self.kv_cache, KVCache): raise TypeError("You need to call `gpt.set_kv_cache()`") k, v = self.kv_cache(input_pos, k, v) y = self.scaled_dot_product_attention(q, k, v, mask) y = y.reshape( B, T, self.config.head_size * self.config.n_head ) # re-assemble all head outputs side by side # output projection return self.proj(y) def scaled_dot_product_attention( self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: scale = 1.0 / math.sqrt(self.config.head_size) y = torch.nn.functional.scaled_dot_product_attention( q, k, v, attn_mask=mask, dropout_p=0.0, scale=scale, is_causal=mask is None ) return y.transpose(1, 2) def build_kv_cache( self, batch_size: int, max_seq_length: int, rope_cache_length: Optional[int] = None, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ) -> "KVCache": heads = 1 if self.config.n_query_groups == 1 else self.config.n_head v_shape = (batch_size, heads, max_seq_length, self.config.head_size) if rope_cache_length is None: if self.config.rotary_percentage != 1.0: raise TypeError( "Please pass the `rope_cache_length=gpt.cos.size(-1)` value" ) k_shape = v_shape else: k_shape = ( batch_size, heads, max_seq_length, rope_cache_length + self.config.head_size - self.config.rope_n_elem, ) return KVCache(k_shape, v_shape, device=device, dtype=dtype) class GptNeoxMLP(nn.Module): def __init__(self, config: Config) -> None: super().__init__() self.fc = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias) self.proj = nn.Linear(config.intermediate_size, config.n_embd, bias=config.bias) self.config = config def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.fc(x) x = torch.nn.functional.gelu(x, approximate=self.config.gelu_approximate) return self.proj(x) class LLaMAMLP(nn.Module): def __init__(self, config: Config) -> None: super().__init__() self.fc_1 = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias) self.fc_2 = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias) self.proj = nn.Linear(config.intermediate_size, config.n_embd, bias=config.bias) self.config = config def forward(self, x: torch.Tensor) -> torch.Tensor: x_fc_1 = self.fc_1(x) x_fc_2 = self.fc_2(x) x = torch.nn.functional.silu(x_fc_1) * x_fc_2 return self.proj(x) class whisperMLP(nn.Module): def __init__(self, config: Config) -> None: super().__init__() self.fc_1 = nn.Linear(config.whisper_adapter_dim, config.intermediate_size, bias=config.bias) self.fc_2 = nn.Linear(config.whisper_adapter_dim, config.intermediate_size, bias=config.bias) self.proj = nn.Linear(config.intermediate_size, config.n_embd, bias=config.bias) self.config = config def forward(self, x: torch.Tensor) -> torch.Tensor: x_fc_1 = self.fc_1(x) x_fc_2 = self.fc_2(x) x = torch.nn.functional.silu(x_fc_1) * x_fc_2 return self.proj(x) class GemmaMLP(LLaMAMLP): def forward(self, x: torch.Tensor) -> torch.Tensor: x_fc_1 = self.fc_1(x) x_fc_2 = self.fc_2(x) x = ( torch.nn.functional.gelu(x_fc_1, approximate=self.config.gelu_approximate) * x_fc_2 ) return self.proj(x) class LLaMAMoE(nn.Module): def __init__(self, config: Config) -> None: super().__init__() self.gate = nn.Linear(config.n_embd, config.n_expert, bias=False) self.experts = nn.ModuleList(LLaMAMLP(config) for _ in range(config.n_expert)) self.config = config def forward(self, x: torch.Tensor) -> torch.Tensor: """ Derived from: https://github.com/mistralai/mistral-src/blob/b46d6/moe_one_file_ref.py#L203-L219 See also figure 1 in https://arxiv.org/abs/2211.15841 """ B, T, C = ( x.size() ) # batch size, sequence length, embedding dimensionality (n_embd) x = x.view(-1, C) # (B*T, C) router = self.gate(x) # (B*T, n_expert) probs, indices = torch.topk( router, self.config.n_expert_per_token ) # (B*T, n_expert_per_token) probs = probs.softmax(dim=1, dtype=torch.float).to(dtype=x.dtype) masks = indices.unsqueeze(-1) == torch.arange( self.config.n_expert, device=x.device ) masks = masks.permute(2, 0, 1) # (n_expert, B*T, n_expert_per_token) y = torch.zeros_like(x) # (B*T, C) for mask, expert in zip(masks, self.experts): token_idx, expert_idx = torch.where(mask) y[token_idx] += probs[token_idx, expert_idx, None] * expert(x[token_idx]) return y.view(B, T, C) def build_rope_cache( seq_len: int, n_elem: int, device: Optional[torch.device] = None, base: int = 10000, condense_ratio: int = 1, ) -> Tuple[torch.Tensor, torch.Tensor]: """Enhanced Transformer with Rotary Position Embedding. Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/ transformers/rope/__init__.py. MIT License: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license. """ # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$ theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, device=device).float() / n_elem)) # Create position indexes `[0, 1, ..., seq_len - 1]` seq_idx = torch.arange(seq_len, device=device) / condense_ratio # Calculate the product of position index and $\theta_i$ idx_theta = torch.outer(seq_idx, theta).repeat(1, 2) return torch.cos(idx_theta), torch.sin(idx_theta) def apply_rope(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor: head_size = x.size(-1) x1 = x[..., : head_size // 2] # (B, nh, T, hs/2) x2 = x[..., head_size // 2 :] # (B, nh, T, hs/2) rotated = torch.cat((-x2, x1), dim=-1) # (B, nh, T, hs) roped = (x * cos) + (rotated * sin) return roped.to(dtype=x.dtype) class KVCache(nn.Module): def __init__( self, k_shape: Tuple[int, int, int, int], v_shape: Tuple[int, int, int, int], device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ) -> None: super().__init__() self.register_buffer( "k", torch.zeros(k_shape, device=device, dtype=dtype), persistent=False ) self.register_buffer( "v", torch.zeros(v_shape, device=device, dtype=dtype), persistent=False ) def forward( self, input_pos: torch.Tensor, k: torch.Tensor, v: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: # move the buffer to the activation dtype for when AMP is used self.k = self.k.to(k.dtype) self.v = self.v.to(v.dtype) # update the cache k = self.k.index_copy_(2, input_pos, k) v = self.v.index_copy_(2, input_pos, v) return k, v def reset_parameters(self) -> None: torch.nn.init.zeros_(self.k) torch.nn.init.zeros_(self.v) def build_mask_cache( max_seq_length: int, device: Optional[torch.device] = None ) -> torch.Tensor: ones = torch.ones((max_seq_length, max_seq_length), device=device, dtype=torch.bool) return torch.tril(ones).unsqueeze(0).unsqueeze(0) class RMSNorm(torch.nn.Module): """Root Mean Square Layer Normalization. Derived from https://github.com/bzhangGo/rmsnorm/blob/master/rmsnorm_torch.py. BSD 3-Clause License: https://github.com/bzhangGo/rmsnorm/blob/master/LICENSE. """ def __init__( self, size: int, dim: int = -1, eps: float = 1e-6, add_unit_offset: bool = False ) -> None: super().__init__() self.weight = torch.nn.Parameter(torch.ones(size)) self.eps = eps self.dim = dim self.add_unit_offset = add_unit_offset def forward(self, x: torch.Tensor) -> torch.Tensor: dtype = x.dtype x = x.float() # NOTE: the original RMSNorm paper implementation is not equivalent norm_x = torch.mean(x * x, dim=self.dim, keepdim=True) x_normed = x * torch.rsqrt(norm_x + self.eps) x_normed = x_normed.to(dtype=dtype) if self.add_unit_offset: # Gemma model requires a unit offset # https://github.com/google/gemma_pytorch/blob/main/gemma/model.py#L176 return x_normed * (1 + self.weight) return x_normed * self.weight def reset_parameters(self) -> None: torch.nn.init.ones_(self.weight)