Spaces:
Running
on
T4
Running
on
T4
File size: 24,028 Bytes
2776201 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
# Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
"""Full definition of a decoder-only transformer-based language model, all of it in this single file.
Based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT and
https://github.com/EleutherAI/gpt-neox/tree/main/megatron/model.
"""
import math
from typing import Any, Optional, Tuple
import torch
import torch.nn as nn
from typing_extensions import Self
from litgpt.config import Config
class GPT(nn.Module):
def __init__(self, config: Config) -> None:
super().__init__()
assert config.padded_vocab_size is not None
self.config = config
if self.config.asr_adapter == "mlp":
print("Using MLP adapter for ASR feature")
self.whisper_adapter = nn.Linear(config.whisper_adapter_dim, config.n_embd)
elif self.config.asr_adapter == "llamamlp":
print("using LLAMA MLP adapter for ASR feature")
self.whisper_adapter = whisperMLP(config=config)
else:
raise ValueError("asr_adapter should be mlp or llamamlp")
self.lm_head = nn.Linear(
config.n_embd, config.padded_vocab_size, bias=config.lm_head_bias
)
if config.post_adapter:
self.transformer = nn.ModuleDict(
dict(
wte=nn.Embedding(config.padded_vocab_size, config.n_embd),
h=nn.ModuleList(Block(config) for _ in range(config.n_layer)),
post_adapter=nn.ModuleList(
Block(config) for _ in range(config.post_adapter_layers)
),
ln_f=config.norm_class(config.n_embd, eps=config.norm_eps),
post_adapter_audio_ln=config.norm_class(
config.n_embd, eps=config.norm_eps
),
post_adapter_audio_lm_head=nn.Linear(
config.n_embd, config.cat_audio_vocab_size, bias=config.lm_head_bias
),
)
)
else:
self.transformer = nn.ModuleDict(
dict(
wte=nn.Embedding(config.padded_vocab_size, config.n_embd),
h=nn.ModuleList(Block(config) for _ in range(config.n_layer)),
ln_f=config.norm_class(config.n_embd, eps=config.norm_eps),
)
)
self.max_seq_length = self.config.block_size
self.mask_cache: Optional[torch.Tensor] = None
if config.tie_word_embeddings:
self.lm_head.weight = self.transformer.wte.weight
@property
def max_seq_length(self) -> int:
return self._max_seq_length
@max_seq_length.setter
def max_seq_length(self, value: int) -> None:
"""
When doing inference, the sequences used might be shorter than the model's context length.
This allows setting a smaller number to avoid allocating unused memory
"""
if value > self.config.block_size:
raise ValueError(
f"Cannot attend to {value}, block size is only {self.config.block_size}"
)
self._max_seq_length = value
if not hasattr(self, "cos"):
# first call
cos, sin = self.rope_cache()
self.register_buffer("cos", cos, persistent=False)
self.register_buffer("sin", sin, persistent=False)
# override
elif value != self.cos.size(0):
self.cos, self.sin = self.rope_cache(device=self.cos.device)
# the mask and kv cache size will get updated on `set_kv_cache`. we cannot update it here because we don't know
# if the kv cache is expected
def reset_parameters(self) -> None:
# Trigger resetting the rope-cache
self.cos, self.sin = self.rope_cache(device=self.cos.device)
def _init_weights(self, module: nn.Module) -> None:
"""Meant to be used with `gpt.apply(gpt._init_weights)`."""
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def concat_whisper_feat(self, audio_feature, input_ids, T, task):
for j in range(len(T)):
if task[j] != "T1T2" and task[j] != "T1A2":
for i in range(7):
input_ids[i][j, 1 : T[j] + 1, :] = audio_feature[j][: T[j]].clone()
else:
continue
return input_ids
def forward(
self,
audio_features: torch.Tensor,
input_ids: torch.Tensor,
input_pos: Optional[torch.Tensor] = None,
whisper_lens: Optional[list] = None,
task: Optional[str] = None,
) -> torch.Tensor:
show = False
T = input_ids[0].size(1)
if self.max_seq_length < T:
raise ValueError(
f"Cannot forward sequence of length {T}, max seq length is only {self.max_seq_length}."
)
if input_pos is not None: # use the kv cache
cos = self.cos.index_select(0, input_pos)
sin = self.sin.index_select(0, input_pos)
if self.mask_cache is None:
raise TypeError("You need to call `gpt.set_kv_cache()`")
mask = self.mask_cache.index_select(2, input_pos)
else:
cos = self.cos[:T]
sin = self.sin[:T]
mask = None
if audio_features is not None:
# get whisper feature
x_a = self.whisper_adapter(audio_features)
# get input_ids embedding
x0, x1, x2, x3, x4, x5, x6, x7 = input_ids
x0 = self.transformer.wte(x0)
x1 = self.transformer.wte(x1)
x2 = self.transformer.wte(x2)
x3 = self.transformer.wte(x3)
x4 = self.transformer.wte(x4)
x5 = self.transformer.wte(x5)
x6 = self.transformer.wte(x6)
x7 = self.transformer.wte(x7)
# concat whisper feature
input_emb = self.concat_whisper_feat(
x_a, [x0, x1, x2, x3, x4, x5, x6, x7], whisper_lens, task
)
x0, x1, x2, x3, x4, x5, x6, x7 = input_emb
else:
x0, x1, x2, x3, x4, x5, x6, x7 = input_ids
x0 = self.transformer.wte(x0)
x1 = self.transformer.wte(x1)
x2 = self.transformer.wte(x2)
x3 = self.transformer.wte(x3)
x4 = self.transformer.wte(x4)
x5 = self.transformer.wte(x5)
x6 = self.transformer.wte(x6)
x7 = self.transformer.wte(x7)
x = (x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7) / 8
if self.config.scale_embeddings:
x = x * (self.config.n_embd**0.5)
for block in self.transformer.h:
x = block(x, cos, sin, mask, input_pos)
text_vocab_size = self.config.text_vocab_size
audio_vocab_size = self.config.audio_vocab_size
x_ori = x
x_ori = self.transformer.ln_f(x_ori)
x_ori = self.lm_head(x_ori) # (b, t, vocab_size)
xt = x_ori[..., :text_vocab_size]
if self.config.post_adapter:
for block in self.transformer.post_adapter:
x = block(x, cos, sin, mask, input_pos)
x = self.transformer.post_adapter_audio_ln(x)
x = self.transformer.post_adapter_audio_lm_head(x) # (b, t, vocab_size)
xa = []
for i in range(7):
xa.append(x[..., audio_vocab_size * i : audio_vocab_size * (i + 1)])
else:
xa = []
for i in range(7):
xa.append(x_ori[..., text_vocab_size + audio_vocab_size * i : text_vocab_size + audio_vocab_size * (i + 1)])
return xa, xt
@classmethod
def from_name(cls, name: str, **kwargs: Any) -> Self:
return cls(Config.from_name(name, **kwargs))
def rope_cache(
self, device: Optional[torch.device] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
return build_rope_cache(
seq_len=self.max_seq_length,
n_elem=self.config.rope_n_elem,
device=device,
condense_ratio=self.config.rope_condense_ratio,
base=self.config.rope_base,
)
def set_kv_cache(
self,
batch_size: int,
rope_cache_length: Optional[int] = None,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
if rope_cache_length is None:
rope_cache_length = self.cos.size(-1)
max_seq_length = self.max_seq_length
# initialize the kv cache for all blocks
for block in self.transformer.h:
block.attn.kv_cache = block.attn.build_kv_cache(
batch_size, max_seq_length, rope_cache_length, device, dtype
)
if self.config.post_adapter:
for block in self.transformer.post_adapter:
block.attn.kv_cache = block.attn.build_kv_cache(
batch_size, max_seq_length, rope_cache_length, device, dtype
)
if self.mask_cache is None or self.mask_cache.size(3) != max_seq_length:
# passing `attn_mask` to SDPA disables the flash implementation. since we only need the mask
# for the kv-cache support (only during inference), we only create it in that situation
self.mask_cache = build_mask_cache(max_seq_length, device)
def clear_kv_cache(self) -> None:
self.mask_cache = None
for block in self.transformer.h:
block.attn.kv_cache = None
class Block(nn.Module):
def __init__(self, config: Config) -> None:
super().__init__()
if not config.parallel_residual and config.shared_attention_norm:
raise NotImplementedError(
"No checkpoint amongst the ones we support uses this configuration"
" (non-parallel residual and shared attention norm)."
)
self.norm_1 = config.norm_class(config.n_embd, eps=config.norm_eps)
self.attn = CausalSelfAttention(config)
self.norm_2 = (
None
if config.shared_attention_norm
else config.norm_class(config.n_embd, eps=config.norm_eps)
)
self.mlp = config.mlp_class(config)
self.config = config
def forward(
self,
x: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
mask: Optional[torch.Tensor] = None,
input_pos: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Non-parallel residual Parallel residual
ββ x ββ x βββββββββββββ Note: if `shared_attention_norm` is True,
β β β β β the output from `norm_1` is reused
β norm_1 β norm_1 ββββΊ norm_2
β β β β β
β attn β attn mlp
β β β β β
ββ ββΊ + ββΊ + βββββββββββββ
β norm_2
β β
β mlp
β β
βββββΊ +
"""
x_normed = self.norm_1(x)
attention_output = self.attn(x_normed, cos, sin, mask, input_pos)
if self.config.parallel_residual:
x_normed = x_normed if self.config.shared_attention_norm else self.norm_2(x)
x = self.mlp(x_normed) + attention_output + x
else:
x = attention_output + x
x = self.mlp(self.norm_2(x)) + x
return x
class CausalSelfAttention(nn.Module):
def __init__(self, config: Config) -> None:
super().__init__()
shape = (config.n_head + 2 * config.n_query_groups) * config.head_size
# key, query, value projections for all heads, but in a batch
self.attn = nn.Linear(config.n_embd, shape, bias=config.add_qkv_bias)
# output projection
# if `head_size` is explicitly specified in the config, `n_emd` might not be equal to `head_size * n_head`
self.proj = nn.Linear(
config.head_size * config.n_head, config.n_embd, bias=config.bias
)
# disabled by default
self.kv_cache: Optional[KVCache] = None
self.config = config
def forward(
self,
x: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
mask: Optional[torch.Tensor] = None,
input_pos: Optional[torch.Tensor] = None,
) -> torch.Tensor:
B, T, C = (
x.size()
) # batch size, sequence length, embedding dimensionality (n_embd)
qkv = self.attn(x)
# assemble into a number of query groups to support MHA, MQA and GQA together (see `config.n_query_groups`)
q_per_kv = self.config.n_head // self.config.n_query_groups
total_qkv = q_per_kv + 2 # each group has 1+ queries, 1 key, and 1 value
qkv = qkv.view(
B, T, self.config.n_query_groups, total_qkv, self.config.head_size
)
qkv = qkv.permute(0, 2, 3, 1, 4) # (B, n_query_groups, total_qkv, T, hs)
# split batched computation into three
q, k, v = qkv.split((q_per_kv, 1, 1), dim=2)
# maybe repeat k and v if for the non multi-head attention cases
# training: flash attention requires it
# inference: multi-query would require a full kv cache so avoid it to limit its memory usage
if self.config.n_query_groups != self.config.n_head and (
input_pos is None or self.config.n_query_groups != 1
):
k = k.expand(
B, self.config.n_query_groups, q_per_kv, T, self.config.head_size
)
v = v.expand(
B, self.config.n_query_groups, q_per_kv, T, self.config.head_size
)
q = q.reshape(B, -1, T, self.config.head_size) # (B, nh_q, T, hs)
k = k.reshape(B, -1, T, self.config.head_size) # (B, nh_k, T, hs)
v = v.reshape(B, -1, T, self.config.head_size) # (B, nh_v, T, hs)
q_roped = apply_rope(q[..., : self.config.rope_n_elem], cos, sin)
k_roped = apply_rope(k[..., : self.config.rope_n_elem], cos, sin)
q = torch.cat((q_roped, q[..., self.config.rope_n_elem :]), dim=-1)
k = torch.cat((k_roped, k[..., self.config.rope_n_elem :]), dim=-1)
if input_pos is not None:
if not isinstance(self.kv_cache, KVCache):
raise TypeError("You need to call `gpt.set_kv_cache()`")
k, v = self.kv_cache(input_pos, k, v)
y = self.scaled_dot_product_attention(q, k, v, mask)
y = y.reshape(
B, T, self.config.head_size * self.config.n_head
) # re-assemble all head outputs side by side
# output projection
return self.proj(y)
def scaled_dot_product_attention(
self,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
scale = 1.0 / math.sqrt(self.config.head_size)
y = torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=mask, dropout_p=0.0, scale=scale, is_causal=mask is None
)
return y.transpose(1, 2)
def build_kv_cache(
self,
batch_size: int,
max_seq_length: int,
rope_cache_length: Optional[int] = None,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> "KVCache":
heads = 1 if self.config.n_query_groups == 1 else self.config.n_head
v_shape = (batch_size, heads, max_seq_length, self.config.head_size)
if rope_cache_length is None:
if self.config.rotary_percentage != 1.0:
raise TypeError(
"Please pass the `rope_cache_length=gpt.cos.size(-1)` value"
)
k_shape = v_shape
else:
k_shape = (
batch_size,
heads,
max_seq_length,
rope_cache_length + self.config.head_size - self.config.rope_n_elem,
)
return KVCache(k_shape, v_shape, device=device, dtype=dtype)
class GptNeoxMLP(nn.Module):
def __init__(self, config: Config) -> None:
super().__init__()
self.fc = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias)
self.proj = nn.Linear(config.intermediate_size, config.n_embd, bias=config.bias)
self.config = config
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.fc(x)
x = torch.nn.functional.gelu(x, approximate=self.config.gelu_approximate)
return self.proj(x)
class LLaMAMLP(nn.Module):
def __init__(self, config: Config) -> None:
super().__init__()
self.fc_1 = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias)
self.fc_2 = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias)
self.proj = nn.Linear(config.intermediate_size, config.n_embd, bias=config.bias)
self.config = config
def forward(self, x: torch.Tensor) -> torch.Tensor:
x_fc_1 = self.fc_1(x)
x_fc_2 = self.fc_2(x)
x = torch.nn.functional.silu(x_fc_1) * x_fc_2
return self.proj(x)
class whisperMLP(nn.Module):
def __init__(self, config: Config) -> None:
super().__init__()
self.fc_1 = nn.Linear(config.whisper_adapter_dim, config.intermediate_size, bias=config.bias)
self.fc_2 = nn.Linear(config.whisper_adapter_dim, config.intermediate_size, bias=config.bias)
self.proj = nn.Linear(config.intermediate_size, config.n_embd, bias=config.bias)
self.config = config
def forward(self, x: torch.Tensor) -> torch.Tensor:
x_fc_1 = self.fc_1(x)
x_fc_2 = self.fc_2(x)
x = torch.nn.functional.silu(x_fc_1) * x_fc_2
return self.proj(x)
class GemmaMLP(LLaMAMLP):
def forward(self, x: torch.Tensor) -> torch.Tensor:
x_fc_1 = self.fc_1(x)
x_fc_2 = self.fc_2(x)
x = (
torch.nn.functional.gelu(x_fc_1, approximate=self.config.gelu_approximate)
* x_fc_2
)
return self.proj(x)
class LLaMAMoE(nn.Module):
def __init__(self, config: Config) -> None:
super().__init__()
self.gate = nn.Linear(config.n_embd, config.n_expert, bias=False)
self.experts = nn.ModuleList(LLaMAMLP(config) for _ in range(config.n_expert))
self.config = config
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Derived from: https://github.com/mistralai/mistral-src/blob/b46d6/moe_one_file_ref.py#L203-L219
See also figure 1 in https://arxiv.org/abs/2211.15841
"""
B, T, C = (
x.size()
) # batch size, sequence length, embedding dimensionality (n_embd)
x = x.view(-1, C) # (B*T, C)
router = self.gate(x) # (B*T, n_expert)
probs, indices = torch.topk(
router, self.config.n_expert_per_token
) # (B*T, n_expert_per_token)
probs = probs.softmax(dim=1, dtype=torch.float).to(dtype=x.dtype)
masks = indices.unsqueeze(-1) == torch.arange(
self.config.n_expert, device=x.device
)
masks = masks.permute(2, 0, 1) # (n_expert, B*T, n_expert_per_token)
y = torch.zeros_like(x) # (B*T, C)
for mask, expert in zip(masks, self.experts):
token_idx, expert_idx = torch.where(mask)
y[token_idx] += probs[token_idx, expert_idx, None] * expert(x[token_idx])
return y.view(B, T, C)
def build_rope_cache(
seq_len: int,
n_elem: int,
device: Optional[torch.device] = None,
base: int = 10000,
condense_ratio: int = 1,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Enhanced Transformer with Rotary Position Embedding.
Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
transformers/rope/__init__.py. MIT License:
https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
"""
# $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, device=device).float() / n_elem))
# Create position indexes `[0, 1, ..., seq_len - 1]`
seq_idx = torch.arange(seq_len, device=device) / condense_ratio
# Calculate the product of position index and $\theta_i$
idx_theta = torch.outer(seq_idx, theta).repeat(1, 2)
return torch.cos(idx_theta), torch.sin(idx_theta)
def apply_rope(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
head_size = x.size(-1)
x1 = x[..., : head_size // 2] # (B, nh, T, hs/2)
x2 = x[..., head_size // 2 :] # (B, nh, T, hs/2)
rotated = torch.cat((-x2, x1), dim=-1) # (B, nh, T, hs)
roped = (x * cos) + (rotated * sin)
return roped.to(dtype=x.dtype)
class KVCache(nn.Module):
def __init__(
self,
k_shape: Tuple[int, int, int, int],
v_shape: Tuple[int, int, int, int],
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
super().__init__()
self.register_buffer(
"k", torch.zeros(k_shape, device=device, dtype=dtype), persistent=False
)
self.register_buffer(
"v", torch.zeros(v_shape, device=device, dtype=dtype), persistent=False
)
def forward(
self, input_pos: torch.Tensor, k: torch.Tensor, v: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
# move the buffer to the activation dtype for when AMP is used
self.k = self.k.to(k.dtype)
self.v = self.v.to(v.dtype)
# update the cache
k = self.k.index_copy_(2, input_pos, k)
v = self.v.index_copy_(2, input_pos, v)
return k, v
def reset_parameters(self) -> None:
torch.nn.init.zeros_(self.k)
torch.nn.init.zeros_(self.v)
def build_mask_cache(
max_seq_length: int, device: Optional[torch.device] = None
) -> torch.Tensor:
ones = torch.ones((max_seq_length, max_seq_length), device=device, dtype=torch.bool)
return torch.tril(ones).unsqueeze(0).unsqueeze(0)
class RMSNorm(torch.nn.Module):
"""Root Mean Square Layer Normalization.
Derived from https://github.com/bzhangGo/rmsnorm/blob/master/rmsnorm_torch.py. BSD 3-Clause License:
https://github.com/bzhangGo/rmsnorm/blob/master/LICENSE.
"""
def __init__(
self, size: int, dim: int = -1, eps: float = 1e-6, add_unit_offset: bool = False
) -> None:
super().__init__()
self.weight = torch.nn.Parameter(torch.ones(size))
self.eps = eps
self.dim = dim
self.add_unit_offset = add_unit_offset
def forward(self, x: torch.Tensor) -> torch.Tensor:
dtype = x.dtype
x = x.float()
# NOTE: the original RMSNorm paper implementation is not equivalent
norm_x = torch.mean(x * x, dim=self.dim, keepdim=True)
x_normed = x * torch.rsqrt(norm_x + self.eps)
x_normed = x_normed.to(dtype=dtype)
if self.add_unit_offset:
# Gemma model requires a unit offset
# https://github.com/google/gemma_pytorch/blob/main/gemma/model.py#L176
return x_normed * (1 + self.weight)
return x_normed * self.weight
def reset_parameters(self) -> None:
torch.nn.init.ones_(self.weight)
|