freddyaboulton's picture
60 second time limit
c3d833e
raw
history blame
7.97 kB
import base64
import io
import os
import tempfile
import time
import traceback
from dataclasses import dataclass
from queue import Queue
from threading import Thread
import gradio as gr
import librosa
import numpy as np
import requests
from gradio_webrtc import StreamHandler, WebRTC
from huggingface_hub import snapshot_download
from pydub import AudioSegment
from twilio.rest import Client
from server import serve
# from server import serve
from utils.vad import VadOptions, collect_chunks, get_speech_timestamps
repo_id = "gpt-omni/mini-omni"
snapshot_download(repo_id, local_dir="./checkpoint", revision="main")
IP = "0.0.0.0"
PORT = 60808
thread = Thread(target=serve, daemon=True)
thread.start()
API_URL = "http://0.0.0.0:60808/chat"
account_sid = os.environ.get("TWILIO_ACCOUNT_SID")
auth_token = os.environ.get("TWILIO_AUTH_TOKEN")
if account_sid and auth_token:
client = Client(account_sid, auth_token)
token = client.tokens.create()
rtc_configuration = {
"iceServers": token.ice_servers,
"iceTransportPolicy": "relay",
}
else:
rtc_configuration = None
# recording parameters
IN_CHANNELS = 1
IN_RATE = 24000
IN_CHUNK = 1024
IN_SAMPLE_WIDTH = 2
VAD_STRIDE = 0.5
# playing parameters
OUT_CHANNELS = 1
OUT_RATE = 24000
OUT_SAMPLE_WIDTH = 2
OUT_CHUNK = 20 * 4096
def run_vad(ori_audio, sr):
_st = time.time()
try:
audio = ori_audio
audio = audio.astype(np.float32) / 32768.0
sampling_rate = 16000
if sr != sampling_rate:
audio = librosa.resample(audio, orig_sr=sr, target_sr=sampling_rate)
vad_parameters = {}
vad_parameters = VadOptions(**vad_parameters)
speech_chunks = get_speech_timestamps(audio, vad_parameters)
audio = collect_chunks(audio, speech_chunks)
duration_after_vad = audio.shape[0] / sampling_rate
if sr != sampling_rate:
# resample to original sampling rate
vad_audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=sr)
else:
vad_audio = audio
vad_audio = np.round(vad_audio * 32768.0).astype(np.int16)
vad_audio_bytes = vad_audio.tobytes()
return duration_after_vad, vad_audio_bytes, round(time.time() - _st, 4)
except Exception as e:
msg = f"[asr vad error] audio_len: {len(ori_audio)/(sr*2):.3f} s, trace: {traceback.format_exc()}"
print(msg)
return -1, ori_audio, round(time.time() - _st, 4)
def warm_up():
frames = np.zeros((1, 1600)) # 1024 frames of 2 bytes each
_, frames, tcost = run_vad(frames, 16000)
print(f"warm up done, time_cost: {tcost:.3f} s")
# warm_up()
@dataclass
class AppState:
stream: np.ndarray | None = None
sampling_rate: int = 0
pause_detected: bool = False
started_talking: bool = False
responding: bool = False
stopped: bool = False
buffer: np.ndarray | None = None
def determine_pause(audio: np.ndarray, sampling_rate: int, state: AppState) -> bool:
"""Take in the stream, determine if a pause happened"""
duration = len(audio) / sampling_rate
dur_vad, _, _ = run_vad(audio, sampling_rate)
if duration >= 0.60:
if dur_vad > 0.2 and not state.started_talking:
print("started talking")
state.started_talking = True
if state.started_talking:
if state.stream is None:
state.stream = audio
else:
state.stream = np.concatenate((state.stream, audio))
state.buffer = None
if dur_vad < 0.1 and state.started_talking:
segment = AudioSegment(
state.stream.tobytes(),
frame_rate=sampling_rate,
sample_width=audio.dtype.itemsize,
channels=(1 if len(state.stream.shape) == 1 else state.stream.shape[1]),
)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
segment.export(f.name, format="wav")
print("input file written", f.name)
return True
return False
def speaking(audio_bytes: str):
base64_encoded = str(base64.b64encode(audio_bytes), encoding="utf-8")
files = {"audio": base64_encoded}
byte_buffer = b""
with requests.post(API_URL, json=files, stream=True) as response:
try:
for chunk in response.iter_content(chunk_size=OUT_CHUNK):
if chunk:
# Create an audio segment from the numpy array
byte_buffer += chunk
audio_segment = AudioSegment(
chunk + b"\x00" if len(chunk) % 2 != 0 else chunk,
frame_rate=OUT_RATE,
sample_width=OUT_SAMPLE_WIDTH,
channels=OUT_CHANNELS,
)
# Export the audio segment to a numpy array
audio_np = np.array(audio_segment.get_array_of_samples())
yield audio_np.reshape(1, -1)
all_output_audio = AudioSegment(
byte_buffer,
frame_rate=OUT_RATE,
sample_width=OUT_SAMPLE_WIDTH,
channels=1,
)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
all_output_audio.export(f.name, format="wav")
print("output file written", f.name)
except Exception as e:
raise gr.Error(f"Error during audio streaming: {e}")
def process_audio(audio: tuple, state: AppState) -> None:
frame_rate, array = audio
array = np.squeeze(array)
if not state.sampling_rate:
state.sampling_rate = frame_rate
if state.buffer is None:
state.buffer = array
else:
state.buffer = np.concatenate((state.buffer, array))
pause_detected = determine_pause(state.buffer, state.sampling_rate, state)
state.pause_detected = pause_detected
def response(state: AppState):
if not state.pause_detected and not state.started_talking:
return None
audio_buffer = io.BytesIO()
segment = AudioSegment(
state.stream.tobytes(),
frame_rate=state.sampling_rate,
sample_width=state.stream.dtype.itemsize,
channels=(1 if len(state.stream.shape) == 1 else state.stream.shape[1]),
)
segment.export(audio_buffer, format="wav")
for numpy_array in speaking(audio_buffer.getvalue()):
yield (OUT_RATE, numpy_array, "mono")
class OmniHandler(StreamHandler):
def __init__(self) -> None:
super().__init__(
expected_layout="mono", output_sample_rate=OUT_RATE, output_frame_size=480
)
self.chunk_queue = Queue()
self.state = AppState()
self.generator = None
self.duration = 0
def receive(self, frame: tuple[int, np.ndarray]) -> None:
if self.state.responding:
return
process_audio(frame, self.state)
if self.state.pause_detected:
self.chunk_queue.put(True)
def reset(self):
self.generator = None
self.state = AppState()
self.duration = 0
def emit(self):
if not self.generator:
self.chunk_queue.get()
self.state.responding = True
self.generator = response(self.state)
try:
return next(self.generator)
except StopIteration:
self.reset()
with gr.Blocks() as demo:
gr.HTML(
"""
<h1 style='text-align: center'>
Omni Chat (Powered by WebRTC ⚡️)
</h1>
"""
)
with gr.Column():
with gr.Group():
audio = WebRTC(
label="Stream",
rtc_configuration=rtc_configuration,
mode="send-receive",
modality="audio",
)
audio.stream(fn=OmniHandler(), inputs=[audio], outputs=[audio], time_limit=60)
demo.launch(ssr_mode=False)