Spaces:
Sleeping
Sleeping
# Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file. | |
import json | |
from pathlib import Path | |
from typing import Optional, Union | |
import torch | |
class Tokenizer: | |
def __init__(self, checkpoint_dir: Union[Path, str]) -> None: | |
checkpoint_dir = Path(checkpoint_dir) | |
if not checkpoint_dir.exists(): | |
raise NotADirectoryError( | |
f"The checkpoint directory does not exist: {str(checkpoint_dir)}" | |
) | |
self.use_bos = self.check_if_bos_token_used(checkpoint_dir) | |
self.bos_id = None | |
self.eos_id = None | |
# some checkpoints have both files, `.json` takes precedence | |
if (vocabulary_path := checkpoint_dir / "tokenizer.json").is_file(): | |
from tokenizers import Tokenizer as HFTokenizer | |
self.processor = HFTokenizer.from_file(str(vocabulary_path)) | |
self.backend = "huggingface" | |
if ( | |
special_tokens_path := checkpoint_dir / "tokenizer_config.json" | |
).is_file(): | |
with open(special_tokens_path, encoding="utf-8") as fp: | |
config = json.load(fp) | |
bos_token = config.get("bos_token") | |
eos_token = config.get("eos_token") | |
if bos_token is not None and isinstance(bos_token, dict): | |
bos_token = bos_token.get("content") | |
if eos_token is not None and isinstance(eos_token, dict): | |
eos_token = eos_token.get("content") | |
self.bos_id = ( | |
self.token_to_id(bos_token) if bos_token is not None else None | |
) | |
self.eos_id = ( | |
self.token_to_id(eos_token) if eos_token is not None else None | |
) | |
if ( | |
special_tokens_path := checkpoint_dir / "generation_config.json" | |
).is_file(): | |
with open(special_tokens_path, encoding="utf-8") as fp: | |
config = json.load(fp) | |
if self.bos_id is None: | |
self.bos_id = config.get("bos_token_id") | |
if self.eos_id is None: | |
self.eos_id = config.get("eos_token_id") | |
elif (vocabulary_path := checkpoint_dir / "tokenizer.model").is_file(): | |
from sentencepiece import SentencePieceProcessor | |
self.processor = SentencePieceProcessor(model_file=str(vocabulary_path)) | |
self.backend = "sentencepiece" | |
self.bos_id = self.processor.bos_id() | |
self.eos_id = self.processor.eos_id() | |
else: | |
raise NotImplementedError | |
def vocab_size(self) -> int: | |
if self.backend == "huggingface": | |
return self.processor.get_vocab_size(with_added_tokens=False) | |
if self.backend == "sentencepiece": | |
return self.processor.vocab_size() | |
raise RuntimeError | |
def token_to_id(self, token: str) -> int: | |
if self.backend == "huggingface": | |
id_ = self.processor.token_to_id(token) | |
elif self.backend == "sentencepiece": | |
id_ = self.processor.piece_to_id(token) | |
else: | |
raise RuntimeError | |
if id_ is None: | |
raise ValueError(f"token {token!r} not found in the collection.") | |
return id_ | |
def check_if_bos_token_used(self, checkpoint_dir: Path) -> bool: | |
if not ( | |
tokenizer_config_path := checkpoint_dir / "tokenizer_config.json" | |
).is_file(): | |
return False | |
with open(tokenizer_config_path, encoding="utf-8") as fp: | |
config = json.load(fp) | |
if "add_bos_token" in config: | |
return config["add_bos_token"] | |
# if `add_bos_token` isn't in the config file, but LLaMA tokenizer is used - return True. | |
# ex: https://huggingface.co/stabilityai/StableBeluga2/blob/main/tokenizer_config.json#L2 | |
return config.get("tokenizer_class") == "LlamaTokenizer" | |
def encode( | |
self, | |
string: str, | |
device: Optional[torch.device] = None, | |
bos: Optional[bool] = None, | |
eos: bool = False, | |
max_length: int = -1, | |
) -> torch.Tensor: | |
if self.backend == "huggingface": | |
tokens = self.processor.encode(string).ids | |
elif self.backend == "sentencepiece": | |
tokens = self.processor.encode(string) | |
else: | |
raise RuntimeError | |
if bos or (bos is None and self.use_bos): | |
bos_id = self.bos_id | |
if bos_id is None: | |
raise NotImplementedError( | |
"This tokenizer does not have a defined a bos token" | |
) | |
if tokens[0] != bos_id: | |
tokens = [bos_id] + tokens | |
if tokens is None: | |
raise ValueError("`tokens` is None") | |
if eos and (not tokens or tokens[-1] != self.eos_id): | |
tokens = tokens + [self.eos_id] | |
if max_length > 0: | |
tokens = tokens[:max_length] | |
return torch.tensor(tokens, dtype=torch.int, device=device) | |
def decode(self, tensor: torch.Tensor) -> str: | |
tokens = [tensor.item()] if tensor.ndim == 0 else tensor.tolist() | |
return self.processor.decode(tokens) | |