Spaces:
Sleeping
Sleeping
Commit
•
4e9b286
1
Parent(s):
5e3f570
let's try
Browse files- app.py +125 -109
- requirements.txt +1 -4
app.py
CHANGED
@@ -1,18 +1,26 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from huggingface_hub import snapshot_download
|
3 |
-
from threading import Thread
|
4 |
-
import time
|
5 |
import base64
|
6 |
-
import
|
7 |
-
import
|
|
|
8 |
import traceback
|
9 |
from dataclasses import dataclass, field
|
10 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
from pydub import AudioSegment
|
12 |
import librosa
|
13 |
from utils.vad import get_speech_timestamps, collect_chunks, VadOptions
|
14 |
import tempfile
|
15 |
|
|
|
|
|
|
|
16 |
|
17 |
from server import serve
|
18 |
|
@@ -22,11 +30,15 @@ snapshot_download(repo_id, local_dir="./checkpoint", revision="main")
|
|
22 |
IP = "0.0.0.0"
|
23 |
PORT = 60808
|
24 |
|
25 |
-
|
|
|
26 |
|
27 |
|
28 |
API_URL = "http://0.0.0.0:60808/chat"
|
29 |
|
|
|
|
|
|
|
30 |
# recording parameters
|
31 |
IN_CHANNELS = 1
|
32 |
IN_RATE = 24000
|
@@ -38,12 +50,7 @@ VAD_STRIDE = 0.5
|
|
38 |
OUT_CHANNELS = 1
|
39 |
OUT_RATE = 24000
|
40 |
OUT_SAMPLE_WIDTH = 2
|
41 |
-
OUT_CHUNK = 5760
|
42 |
-
|
43 |
-
|
44 |
OUT_CHUNK = 20 * 4096
|
45 |
-
OUT_RATE = 24000
|
46 |
-
OUT_CHANNELS = 1
|
47 |
|
48 |
|
49 |
def run_vad(ori_audio, sr):
|
@@ -77,94 +84,109 @@ def run_vad(ori_audio, sr):
|
|
77 |
|
78 |
|
79 |
def warm_up():
|
80 |
-
frames =
|
81 |
-
|
82 |
print(f"warm up done, time_cost: {tcost:.3f} s")
|
83 |
|
84 |
|
85 |
warm_up()
|
86 |
|
87 |
-
|
88 |
@dataclass
|
89 |
class AppState:
|
90 |
stream: np.ndarray | None = None
|
91 |
sampling_rate: int = 0
|
92 |
pause_detected: bool = False
|
93 |
-
started_talking: bool =
|
|
|
94 |
stopped: bool = False
|
95 |
-
|
|
|
96 |
|
97 |
|
98 |
def determine_pause(audio: np.ndarray, sampling_rate: int, state: AppState) -> bool:
|
99 |
"""Take in the stream, determine if a pause happened"""
|
100 |
-
|
101 |
-
temp_audio = audio
|
102 |
-
|
103 |
-
dur_vad, _, time_vad = run_vad(temp_audio, sampling_rate)
|
104 |
duration = len(audio) / sampling_rate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
print(f"duration_after_vad: {dur_vad:.3f} s, time_vad: {time_vad:.3f} s")
|
112 |
-
|
113 |
-
return (duration - dur_vad) > 1
|
114 |
|
115 |
|
116 |
def speaking(audio_bytes: str):
|
117 |
|
118 |
base64_encoded = str(base64.b64encode(audio_bytes), encoding="utf-8")
|
119 |
files = {"audio": base64_encoded}
|
|
|
120 |
with requests.post(API_URL, json=files, stream=True) as response:
|
121 |
try:
|
122 |
for chunk in response.iter_content(chunk_size=OUT_CHUNK):
|
123 |
if chunk:
|
124 |
# Create an audio segment from the numpy array
|
|
|
125 |
audio_segment = AudioSegment(
|
126 |
-
chunk,
|
127 |
frame_rate=OUT_RATE,
|
128 |
sample_width=OUT_SAMPLE_WIDTH,
|
129 |
channels=OUT_CHANNELS,
|
130 |
)
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
141 |
except Exception as e:
|
142 |
raise gr.Error(f"Error during audio streaming: {e}")
|
143 |
|
144 |
|
145 |
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
state.sampling_rate =
|
|
|
|
|
151 |
else:
|
152 |
-
state.
|
153 |
|
154 |
-
pause_detected = determine_pause(state.
|
155 |
state.pause_detected = pause_detected
|
156 |
|
157 |
-
if state.pause_detected and state.started_talking:
|
158 |
-
return gr.Audio(recording=False), state
|
159 |
-
return None, state
|
160 |
-
|
161 |
|
162 |
def response(state: AppState):
|
163 |
if not state.pause_detected and not state.started_talking:
|
164 |
-
return None
|
165 |
|
166 |
audio_buffer = io.BytesIO()
|
167 |
-
|
168 |
segment = AudioSegment(
|
169 |
state.stream.tobytes(),
|
170 |
frame_rate=state.sampling_rate,
|
@@ -172,68 +194,62 @@ def response(state: AppState):
|
|
172 |
channels=(1 if len(state.stream.shape) == 1 else state.stream.shape[1]),
|
173 |
)
|
174 |
segment.export(audio_buffer, format="wav")
|
175 |
-
|
176 |
-
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
|
177 |
-
f.write(audio_buffer.getvalue())
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
|
200 |
-
def start_recording_user(state: AppState):
|
201 |
-
if not state.stopped:
|
202 |
-
return gr.Audio(recording=True)
|
203 |
|
204 |
with gr.Blocks() as demo:
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
chatbot = gr.Chatbot(label="Conversation", type="messages")
|
212 |
-
output_audio = gr.Audio(label="Output Audio", streaming=True, autoplay=True)
|
213 |
-
state = gr.State(value=AppState())
|
214 |
-
|
215 |
-
stream = input_audio.stream(
|
216 |
-
process_audio,
|
217 |
-
[input_audio, state],
|
218 |
-
[input_audio, state],
|
219 |
-
stream_every=0.50,
|
220 |
-
time_limit=30,
|
221 |
-
)
|
222 |
-
respond = input_audio.stop_recording(
|
223 |
-
response,
|
224 |
-
[state],
|
225 |
-
[output_audio, state]
|
226 |
)
|
227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
|
229 |
-
restart = output_audio.stop(
|
230 |
-
start_recording_user,
|
231 |
-
[state],
|
232 |
-
[input_audio]
|
233 |
-
)
|
234 |
-
cancel = gr.Button("Stop Conversation", variant="stop")
|
235 |
-
cancel.click(lambda: (AppState(stopped=True), gr.Audio(recording=False)), None,
|
236 |
-
[state, input_audio], cancels=[respond, restart])
|
237 |
|
238 |
|
239 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
1 |
import base64
|
2 |
+
import io
|
3 |
+
import tempfile
|
4 |
+
import time
|
5 |
import traceback
|
6 |
from dataclasses import dataclass, field
|
7 |
+
from queue import Queue
|
8 |
+
from threading import Thread, Event
|
9 |
+
|
10 |
+
import gradio as gr
|
11 |
+
import librosa
|
12 |
+
import numpy as np
|
13 |
+
import requests
|
14 |
+
from gradio_webrtc import StreamHandler, WebRTC
|
15 |
+
from huggingface_hub import snapshot_download
|
16 |
from pydub import AudioSegment
|
17 |
import librosa
|
18 |
from utils.vad import get_speech_timestamps, collect_chunks, VadOptions
|
19 |
import tempfile
|
20 |
|
21 |
+
# from server import serve
|
22 |
+
from utils.vad import VadOptions, collect_chunks, get_speech_timestamps
|
23 |
+
|
24 |
|
25 |
from server import serve
|
26 |
|
|
|
30 |
IP = "0.0.0.0"
|
31 |
PORT = 60808
|
32 |
|
33 |
+
thread = Thread(target=serve, daemon=True)
|
34 |
+
thread.start()
|
35 |
|
36 |
|
37 |
API_URL = "http://0.0.0.0:60808/chat"
|
38 |
|
39 |
+
|
40 |
+
#API_URL = "https://freddyaboulton-omni-backend.hf.space/chat"
|
41 |
+
|
42 |
# recording parameters
|
43 |
IN_CHANNELS = 1
|
44 |
IN_RATE = 24000
|
|
|
50 |
OUT_CHANNELS = 1
|
51 |
OUT_RATE = 24000
|
52 |
OUT_SAMPLE_WIDTH = 2
|
|
|
|
|
|
|
53 |
OUT_CHUNK = 20 * 4096
|
|
|
|
|
54 |
|
55 |
|
56 |
def run_vad(ori_audio, sr):
|
|
|
84 |
|
85 |
|
86 |
def warm_up():
|
87 |
+
frames = np.zeros((1, 1600)) # 1024 frames of 2 bytes each
|
88 |
+
_, frames, tcost = run_vad(frames, 16000)
|
89 |
print(f"warm up done, time_cost: {tcost:.3f} s")
|
90 |
|
91 |
|
92 |
warm_up()
|
93 |
|
|
|
94 |
@dataclass
|
95 |
class AppState:
|
96 |
stream: np.ndarray | None = None
|
97 |
sampling_rate: int = 0
|
98 |
pause_detected: bool = False
|
99 |
+
started_talking: bool = False
|
100 |
+
responding: bool = False
|
101 |
stopped: bool = False
|
102 |
+
buffer: np.ndarray | None = None
|
103 |
+
|
104 |
|
105 |
|
106 |
def determine_pause(audio: np.ndarray, sampling_rate: int, state: AppState) -> bool:
|
107 |
"""Take in the stream, determine if a pause happened"""
|
|
|
|
|
|
|
|
|
108 |
duration = len(audio) / sampling_rate
|
109 |
+
|
110 |
+
dur_vad, _, _ = run_vad(audio, sampling_rate)
|
111 |
+
|
112 |
+
if duration >= 0.60:
|
113 |
+
if dur_vad > 0.2 and not state.started_talking:
|
114 |
+
print("started talking")
|
115 |
+
state.started_talking = True
|
116 |
+
if state.started_talking:
|
117 |
+
if state.stream is None:
|
118 |
+
state.stream = audio
|
119 |
+
else:
|
120 |
+
state.stream = np.concatenate((state.stream, audio))
|
121 |
+
state.buffer = None
|
122 |
+
if dur_vad < 0.1 and state.started_talking:
|
123 |
+
segment = AudioSegment(
|
124 |
+
state.stream.tobytes(),
|
125 |
+
frame_rate=sampling_rate,
|
126 |
+
sample_width=audio.dtype.itemsize,
|
127 |
+
channels=(1 if len(state.stream.shape) == 1 else state.stream.shape[1]),
|
128 |
+
)
|
129 |
|
130 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
|
131 |
+
segment.export(f.name, format="wav")
|
132 |
+
print("input file written", f.name)
|
133 |
+
return True
|
134 |
+
return False
|
|
|
|
|
|
|
135 |
|
136 |
|
137 |
def speaking(audio_bytes: str):
|
138 |
|
139 |
base64_encoded = str(base64.b64encode(audio_bytes), encoding="utf-8")
|
140 |
files = {"audio": base64_encoded}
|
141 |
+
byte_buffer = b""
|
142 |
with requests.post(API_URL, json=files, stream=True) as response:
|
143 |
try:
|
144 |
for chunk in response.iter_content(chunk_size=OUT_CHUNK):
|
145 |
if chunk:
|
146 |
# Create an audio segment from the numpy array
|
147 |
+
byte_buffer += chunk
|
148 |
audio_segment = AudioSegment(
|
149 |
+
chunk + b"\x00" if len(chunk) % 2 != 0 else chunk,
|
150 |
frame_rate=OUT_RATE,
|
151 |
sample_width=OUT_SAMPLE_WIDTH,
|
152 |
channels=OUT_CHANNELS,
|
153 |
)
|
154 |
+
# Export the audio segment to a numpy array
|
155 |
+
audio_np = np.array(audio_segment.get_array_of_samples())
|
156 |
+
yield audio_np.reshape(1, -1)
|
157 |
+
all_output_audio = AudioSegment(
|
158 |
+
byte_buffer,
|
159 |
+
frame_rate=OUT_RATE,
|
160 |
+
sample_width=OUT_SAMPLE_WIDTH,
|
161 |
+
channels=1,
|
162 |
+
)
|
163 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
|
164 |
+
all_output_audio.export(f.name, format="wav")
|
165 |
+
print("output file written", f.name)
|
166 |
except Exception as e:
|
167 |
raise gr.Error(f"Error during audio streaming: {e}")
|
168 |
|
169 |
|
170 |
|
171 |
+
def process_audio(audio: tuple, state: AppState) -> None:
|
172 |
+
frame_rate, array = audio
|
173 |
+
array = np.squeeze(array)
|
174 |
+
if not state.sampling_rate:
|
175 |
+
state.sampling_rate = frame_rate
|
176 |
+
if state.buffer is None:
|
177 |
+
state.buffer = array
|
178 |
else:
|
179 |
+
state.buffer = np.concatenate((state.buffer, array))
|
180 |
|
181 |
+
pause_detected = determine_pause(state.buffer, state.sampling_rate, state)
|
182 |
state.pause_detected = pause_detected
|
183 |
|
|
|
|
|
|
|
|
|
184 |
|
185 |
def response(state: AppState):
|
186 |
if not state.pause_detected and not state.started_talking:
|
187 |
+
return None
|
188 |
|
189 |
audio_buffer = io.BytesIO()
|
|
|
190 |
segment = AudioSegment(
|
191 |
state.stream.tobytes(),
|
192 |
frame_rate=state.sampling_rate,
|
|
|
194 |
channels=(1 if len(state.stream.shape) == 1 else state.stream.shape[1]),
|
195 |
)
|
196 |
segment.export(audio_buffer, format="wav")
|
|
|
|
|
|
|
197 |
|
198 |
+
for numpy_array in speaking(audio_buffer.getvalue()):
|
199 |
+
yield (OUT_RATE, numpy_array, "mono")
|
200 |
+
|
201 |
+
|
202 |
+
class OmniHandler(StreamHandler):
|
203 |
+
def __init__(self) -> None:
|
204 |
+
super().__init__(expected_layout="mono", output_sample_rate=OUT_RATE, output_frame_size=480)
|
205 |
+
self.chunk_queue = Queue()
|
206 |
+
self.state = AppState()
|
207 |
+
self.generator = None
|
208 |
+
self.duration = 0
|
209 |
+
|
210 |
+
def receive(self, frame: tuple[int, np.ndarray]) -> None:
|
211 |
+
if self.state.responding:
|
212 |
+
return
|
213 |
+
process_audio(frame, self.state)
|
214 |
+
if self.state.pause_detected:
|
215 |
+
self.chunk_queue.put(True)
|
216 |
|
217 |
+
def reset(self):
|
218 |
+
self.generator = None
|
219 |
+
self.state = AppState()
|
220 |
+
self.duration = 0
|
221 |
+
|
222 |
+
def emit(self):
|
223 |
+
if not self.generator:
|
224 |
+
self.chunk_queue.get()
|
225 |
+
self.state.responding = True
|
226 |
+
self.generator = response(self.state)
|
227 |
+
try:
|
228 |
+
return next(self.generator)
|
229 |
+
except StopIteration:
|
230 |
+
self.reset()
|
231 |
+
|
|
|
232 |
|
|
|
|
|
|
|
233 |
|
234 |
with gr.Blocks() as demo:
|
235 |
+
gr.HTML(
|
236 |
+
"""
|
237 |
+
<h1 style='text-align: center'>
|
238 |
+
Omni Chat (Powered by WebRTC ⚡️)
|
239 |
+
</h1>
|
240 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
)
|
242 |
+
with gr.Column():
|
243 |
+
with gr.Group():
|
244 |
+
audio = WebRTC(
|
245 |
+
label="Stream",
|
246 |
+
rtc_configuration=None,
|
247 |
+
mode="send-receive",
|
248 |
+
modality="audio",
|
249 |
+
)
|
250 |
+
audio.stream(fn=OmniHandler(), inputs=[audio], outputs=[audio], time_limit=300)
|
251 |
+
|
252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
|
255 |
demo.launch()
|
requirements.txt
CHANGED
@@ -6,13 +6,10 @@ snac==1.2.0
|
|
6 |
soundfile==0.12.1
|
7 |
openai-whisper
|
8 |
tokenizers==0.19.1
|
9 |
-
streamlit==1.37.1
|
10 |
-
# PyAudio==0.2.14
|
11 |
pydub==0.25.1
|
12 |
onnxruntime==1.19.0
|
13 |
-
# numpy==1.26.3
|
14 |
-
https://gradio-builds.s3.amazonaws.com/cffe9a7ab7f71e76d7214dc57c6278ffaf5bcdf9/gradio-5.0.0b1-py3-none-any.whl
|
15 |
fastapi==0.112.4
|
16 |
librosa==0.10.2.post1
|
17 |
flask==3.0.3
|
18 |
fire
|
|
|
|
6 |
soundfile==0.12.1
|
7 |
openai-whisper
|
8 |
tokenizers==0.19.1
|
|
|
|
|
9 |
pydub==0.25.1
|
10 |
onnxruntime==1.19.0
|
|
|
|
|
11 |
fastapi==0.112.4
|
12 |
librosa==0.10.2.post1
|
13 |
flask==3.0.3
|
14 |
fire
|
15 |
+
https://gradio-builds.s3.us-east-1.amazonaws.com/webrtc/08/gradio_webrtc-0.0.5-py3-none-any.whl
|