Commit
•
3d326ae
1
Parent(s):
fc1396e
Add app file
Browse files- app.py +57 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import shap
|
3 |
+
from transformers import pipeline
|
4 |
+
import matplotlib
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
matplotlib.use('Agg')
|
7 |
+
|
8 |
+
|
9 |
+
sentiment_classifier = pipeline("text-classification", return_all_scores=True)
|
10 |
+
|
11 |
+
|
12 |
+
def classifier(text):
|
13 |
+
pred = sentiment_classifier(text)
|
14 |
+
return {p["label"]: p["score"] for p in pred[0]}
|
15 |
+
|
16 |
+
|
17 |
+
def interpretation_function(text):
|
18 |
+
explainer = shap.Explainer(sentiment_classifier)
|
19 |
+
shap_values = explainer([text])
|
20 |
+
# Dimensions are (batch size, text size, number of classes)
|
21 |
+
# Since we care about positive sentiment, use index 1
|
22 |
+
scores = list(zip(shap_values.data[0], shap_values.values[0, :, 1]))
|
23 |
+
|
24 |
+
scores_desc = sorted(scores, key=lambda t: t[1])[::-1]
|
25 |
+
|
26 |
+
# Filter out empty string added by shap
|
27 |
+
scores_desc = [t for t in scores_desc if t[0] != ""]
|
28 |
+
|
29 |
+
fig_m = plt.figure()
|
30 |
+
plt.bar(x=[s[0] for s in scores_desc[:5]],
|
31 |
+
height=[s[1] for s in scores_desc[:5]])
|
32 |
+
plt.title("Top words contributing to positive sentiment")
|
33 |
+
plt.ylabel("Shap Value")
|
34 |
+
plt.xlabel("Word")
|
35 |
+
return {"original": text, "interpretation": scores}, fig_m
|
36 |
+
|
37 |
+
|
38 |
+
with gr.Blocks() as demo:
|
39 |
+
with gr.Row():
|
40 |
+
with gr.Column():
|
41 |
+
input_text = gr.Textbox(label="Input Text")
|
42 |
+
with gr.Row():
|
43 |
+
classify = gr.Button("Classify Sentiment")
|
44 |
+
interpret = gr.Button("Interpret")
|
45 |
+
with gr.Column():
|
46 |
+
label = gr.Label(label="Predicted Sentiment")
|
47 |
+
with gr.Column():
|
48 |
+
with gr.Tabs():
|
49 |
+
with gr.TabItem("Display interpretation with built-in component"):
|
50 |
+
interpretation = gr.components.Interpretation(input_text)
|
51 |
+
with gr.TabItem("Display interpretation with plot"):
|
52 |
+
interpretation_plot = gr.Plot()
|
53 |
+
|
54 |
+
classify.click(classifier, input_text, label)
|
55 |
+
interpret.click(interpretation_function, input_text, [interpretation, interpretation_plot])
|
56 |
+
|
57 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers==4.16.2
|
3 |
+
shap
|