import gradio as gr import shap from transformers import pipeline import matplotlib import matplotlib.pyplot as plt matplotlib.use('Agg') sentiment_classifier = pipeline("text-classification", return_all_scores=True) def classifier(text): pred = sentiment_classifier(text) return {p["label"]: p["score"] for p in pred[0]} def interpretation_function(text): explainer = shap.Explainer(sentiment_classifier) shap_values = explainer([text]) # Dimensions are (batch size, text size, number of classes) # Since we care about positive sentiment, use index 1 scores = list(zip(shap_values.data[0], shap_values.values[0, :, 1])) scores_desc = sorted(scores, key=lambda t: t[1])[::-1] # Filter out empty string added by shap scores_desc = [t for t in scores_desc if t[0] != ""] fig_m = plt.figure() plt.bar(x=[s[0] for s in scores_desc[:5]], height=[s[1] for s in scores_desc[:5]]) plt.title("Top words contributing to positive sentiment") plt.ylabel("Shap Value") plt.xlabel("Word") return {"original": text, "interpretation": scores}, fig_m with gr.Blocks() as demo: with gr.Row(): with gr.Column(): input_text = gr.Textbox(label="Input Text") with gr.Row(): classify = gr.Button("Classify Sentiment") interpret = gr.Button("Interpret") with gr.Column(): label = gr.Label(label="Predicted Sentiment") with gr.Column(): with gr.Tabs(): with gr.TabItem("Display interpretation with built-in component"): interpretation = gr.components.Interpretation(input_text) with gr.TabItem("Display interpretation with plot"): interpretation_plot = gr.Plot() classify.click(classifier, input_text, label) interpret.click(interpretation_function, input_text, [interpretation, interpretation_plot]) demo.launch()