freealise's picture
Update app.py
9352299 verified
raw
history blame
12.5 kB
import gradio as gr
import cv2
from PIL import Image
import numpy as np
from transformers import pipeline
import os
import torch
import torch.nn.functional as F
from torchvision import transforms
from torchvision.transforms import Compose
import trimesh
from geometry import create_triangles
import tempfile
from functools import partial
import spaces
from zipfile import ZipFile
from depth_anything.dpt import DepthAnything
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
from moviepy.editor import *
def zip_files(files_in, files_out):
with ZipFile("depth_result.zip", "w") as zipObj:
for idx, file in enumerate(files_in):
zipObj.write(file, file.split("/")[-1])
for idx, file in enumerate(files_out):
zipObj.write(file, file.split("/")[-1])
return "depth_result.zip"
def create_video(frames, fps, type):
print("building video result")
clip = ImageSequenceClip(frames, fps=fps)
clip.write_videofile(type + "_result.mp4", fps=fps)
return type + "_result.mp4"
@torch.no_grad()
def predict_depth(model, image):
return model(image)["depth"]
@spaces.GPU
def make_video(video_path, outdir='./vis_video_depth', encoder='vits'):
if encoder not in ["vitl","vitb","vits"]:
encoder = "vits"
mapper = {"vits":"small","vitb":"base","vitl":"large"}
# DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# model = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(DEVICE).eval()
# Define path for temporary processed frames
temp_frame_dir = tempfile.mkdtemp()
margin_width = 50
to_tensor_transform = transforms.ToTensor()
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_{}14'.format(encoder)).to(DEVICE).eval()
depth_anything = pipeline(task = "depth-estimation", model=f"nielsr/depth-anything-{mapper[encoder]}")
# total_params = sum(param.numel() for param in depth_anything.parameters())
# print('Total parameters: {:.2f}M'.format(total_params / 1e6))
transform = Compose([
Resize(
width=518,
height=518,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method='lower_bound',
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
])
if os.path.isfile(video_path):
if video_path.endswith('txt'):
with open(video_path, 'r') as f:
lines = f.read().splitlines()
else:
filenames = [video_path]
else:
filenames = os.listdir(video_path)
filenames = [os.path.join(video_path, filename) for filename in filenames if not filename.startswith('.')]
filenames.sort()
# os.makedirs(outdir, exist_ok=True)
for k, filename in enumerate(filenames):
file_size = os.path.getsize(filename)/1024/1024
if file_size > 128.0:
print(f'File size of {filename} larger than 128Mb, sorry!')
return filename
print('Progress {:}/{:},'.format(k+1, len(filenames)), 'Processing', filename)
raw_video = cv2.VideoCapture(filename)
frame_width, frame_height = int(raw_video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(raw_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_rate = int(raw_video.get(cv2.CAP_PROP_FPS))
if frame_rate < 1:
frame_rate = 1
cframes = int(raw_video.get(cv2.CAP_PROP_FRAME_COUNT))
print(f'frames: {cframes}, fps: {frame_rate}')
# output_width = frame_width * 2 + margin_width
#filename = os.path.basename(filename)
# output_path = os.path.join(outdir, filename[:filename.rfind('.')] + '_video_depth.mp4')
#with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmpfile:
# output_path = tmpfile.name
#out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"avc1"), frame_rate, (output_width, frame_height))
#fourcc = cv2.VideoWriter_fourcc(*'mp4v')
#out = cv2.VideoWriter(output_path, fourcc, frame_rate, (output_width, frame_height))
count=0
depth_frames = []
orig_frames = []
while raw_video.isOpened():
ret, raw_frame = raw_video.read()
if not ret:
break
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2RGB) / 255.0
frame_pil = Image.fromarray((frame * 255).astype(np.uint8))
frame = transform({'image': frame})['image']
frame = torch.from_numpy(frame).unsqueeze(0).to(DEVICE)
depth = to_tensor_transform(predict_depth(depth_anything, frame_pil))
depth = F.interpolate(depth[None], (frame_height, frame_width), mode='bilinear', align_corners=False)[0, 0]
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth = depth.cpu().numpy().astype(np.uint8)
depth_color = cv2.applyColorMap(depth, cv2.COLORMAP_BONE)
depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGBA2GRAY)
depth_color = cv2.cvtColor(depth_gray, cv2.COLOR_GRAY2RGB)
# Remove white border around map:
# define lower and upper limits of white
white_lo = np.array([250,250,250])
white_hi = np.array([255,255,255])
# mask image to only select white
mask = cv2.inRange(depth_color, white_lo, white_hi)
# change image to black where we found white
depth_color[mask>0] = (0,0,0)
# split_region = np.ones((frame_height, margin_width, 3), dtype=np.uint8) * 255
# combined_frame = cv2.hconcat([raw_frame, split_region, depth_color])
# out.write(combined_frame)
# frame_path = os.path.join(temp_frame_dir, f"frame_{count:05d}.png")
# cv2.imwrite(frame_path, combined_frame)
cv2.imwrite(f"f{count}.jpg", raw_frame)
orig_frames.append(f"f{count}.jpg")
cv2.imwrite(f"f{count}_dmap.jpg", depth_color)
depth_frames.append(f"f{count}_dmap.jpg")
count += 1
final_vid = create_video(depth_frames, frame_rate, "depth")
final_zip = zip_files(orig_frames, depth_frames)
raw_video.release()
# out.release()
cv2.destroyAllWindows()
return final_vid, final_zip, orig_frames[0], depth_frames[0] #output_path
def depth_edges_mask(depth):
"""Returns a mask of edges in the depth map.
Args:
depth: 2D numpy array of shape (H, W) with dtype float32.
Returns:
mask: 2D numpy array of shape (H, W) with dtype bool.
"""
# Compute the x and y gradients of the depth map.
depth_dx, depth_dy = np.gradient(depth)
# Compute the gradient magnitude.
depth_grad = np.sqrt(depth_dx ** 2 + depth_dy ** 2)
# Compute the edge mask.
mask = depth_grad > 0.05
return mask
def pano_depth_to_world_points(depth, scale):
"""
360 depth to world points
given 2D depth is an equirectangular projection of a spherical image
Treat depth as radius
longitude : -pi to pi
latitude : -pi/2 to pi/2
"""
# Convert depth to radius
radius = (255 - depth.flatten()) * scale
d_lon = (np.random.rand(depth.shape[0]*depth.shape[1]) - 0.5) * np.pi*2 / depth.shape[1]
d_lat = (np.random.rand(depth.shape[0]*depth.shape[1]) - 0.5) * np.pi / depth.shape[0]
lon = np.linspace(0, np.pi*2, depth.shape[1])
lat = np.linspace(0, np.pi, depth.shape[0])
lon, lat = np.meshgrid(lon, lat)
lon = lon.flatten() + d_lon
lat = lat.flatten() + d_lat
# Convert to cartesian coordinates
x = radius * np.cos(lon) * np.sin(lat)
y = radius * np.cos(lat)
z = radius * np.sin(lon) * np.sin(lat)
pts3d = np.stack([x, y, z], axis=1)
uv = np.stack([lon, lat], axis=1)
return [pts3d, uv]
def rgb2gray(rgb):
return np.dot(rgb[...,:3], [0.333, 0.333, 0.333])
def get_mesh(image, depth, scale):
gdepth = rgb2gray(depth)
print('depth to gray - ok')
points = pano_depth_to_world_points(gdepth, scale)
pts3d = points[0]
uv = points[1]
print('radius from depth - ok')
# Create a trimesh mesh from the points
# Each pixel is connected to its 4 neighbors
# colors are the RGB values of the image
verts = pts3d.reshape(-1, 3)
#triangles = create_triangles(image.shape[0], image.shape[1])
#print('triangles - ok')
rgba = cv2.cvtColor(image, cv2.COLOR_RGB2RGBA)
colors = rgba.reshape(-1, 4)
#mesh = trimesh.Trimesh(vertices=verts, faces=triangles, vertex_colors=colors)
mesh = trimesh.PointCloud(verts, colors=colors)
#material = trimesh.visual.texture.SimpleMaterial(image=image)
#texture = trimesh.visual.TextureVisuals(uv=uv, image=image, material=material)
#mesh.visual = texture
scene = trimesh.Scene([mesh])
print('mesh - ok')
# Save as glb
glb_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False)
glb_path = glb_file.name
scene.export(glb_path)
print('file - ok')
return glb_path
def loadurl(url):
return url
css = """
#img-display-container {
max-height: 100vh;
}
#img-display-input {
max-height: 80vh;
}
#img-display-output {
max-height: 80vh;
}
"""
title = "# Depth Anything Video Demo"
description = """Depth Anything on full video files.
Please refer to our [paper](https://arxiv.org/abs/2401.10891), [project page](https://depth-anything.github.io), or [github](https://github.com/LiheYoung/Depth-Anything) for more details.
Mesh rendering from [ZoeDepth](https://huggingface.co/spaces/shariqfarooq/ZoeDepth) ([github](https://github.com/isl-org/ZoeDepth/tree/main/ui))."""
transform = Compose([
Resize(
width=518,
height=518,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method='lower_bound',
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
])
# @torch.no_grad()
# def predict_depth(model, image):
# return model(image)
with gr.Blocks(css=css) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown("### Video Depth Prediction demo")
with gr.Row():
with gr.Column():
input_url = gr.Textbox(value="./examples/streetview.mp4", label="URL")
input_video = gr.Video(label="Input Video", format="mp4")
input_url.change(fn=loadurl, inputs=[input_url], outputs=[input_video])
submit = gr.Button("Submit")
output_frame = gr.Image(label="Frame", type='numpy')
output_depth = gr.Image(label="Depth", type='numpy')
scale = gr.Slider(label="Scale", minimum=0.03125, maximum=2, step=0.03125, value=0.5)
render = gr.Button("Render")
with gr.Column():
model_type = gr.Dropdown([("small", "vits"), ("base", "vitb"), ("large", "vitl")], type="value", value="vits", label='Model Type')
processed_video = gr.Video(label="Output Video", format="mp4")
processed_zip = gr.File(label="Output Archive")
result = gr.Model3D(label="3D Mesh", clear_color=[0.0, 0.0, 0.0, 0.0], camera_position=[0, 90, 0])
def on_submit(uploaded_video,model_type):
# Process the video and get the path of the output video
output_video_path = make_video(uploaded_video,encoder=model_type)
return output_video_path
submit.click(on_submit, inputs=[input_video, model_type], outputs=[processed_video, processed_zip, output_frame, output_depth])
render.click(partial(get_mesh), inputs=[output_frame, output_depth, scale], outputs=[result])
example_files = os.listdir('examples')
example_files.sort()
example_files = [os.path.join('examples', filename) for filename in example_files]
examples = gr.Examples(examples=example_files, inputs=[input_video], outputs=[processed_video, processed_zip, output_frame, output_depth], fn=on_submit, cache_examples=True)
if __name__ == '__main__':
demo.queue().launch()