import gradio as gr
import cv2
from PIL import Image
import numpy as np
from transformers import pipeline
import os
import torch
import torch.nn.functional as F
from torchvision import transforms
from torchvision.transforms import Compose
import trimesh
from geometry import create_triangles
import tempfile
from functools import partial
import spaces
from zipfile import ZipFile
from depth_anything.dpt import DepthAnything
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
from moviepy.editor import *
frame_selected = 0
def zip_files(files_in, files_out):
with ZipFile("depth_result.zip", "w") as zipObj:
for idx, file in enumerate(files_in):
zipObj.write(file, file.split("/")[-1])
for idx, file in enumerate(files_out):
zipObj.write(file, file.split("/")[-1])
return "depth_result.zip"
def create_video(frames, fps, type):
print("building video result")
clip = ImageSequenceClip(frames, fps=fps)
clip.write_videofile(type + "_result.mp4", fps=fps)
return type + "_result.mp4"
@torch.no_grad()
def predict_depth(model, image):
return model(image)["depth"]
@spaces.GPU
def make_video(video_path, outdir='./vis_video_depth', encoder='vits'):
if encoder not in ["vitl","vitb","vits"]:
encoder = "vits"
mapper = {"vits":"small","vitb":"base","vitl":"large"}
# DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# model = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(DEVICE).eval()
# Define path for temporary processed frames
temp_frame_dir = tempfile.mkdtemp()
margin_width = 50
to_tensor_transform = transforms.ToTensor()
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_{}14'.format(encoder)).to(DEVICE).eval()
depth_anything = pipeline(task = "depth-estimation", model=f"nielsr/depth-anything-{mapper[encoder]}")
# total_params = sum(param.numel() for param in depth_anything.parameters())
# print('Total parameters: {:.2f}M'.format(total_params / 1e6))
transform = Compose([
Resize(
width=518,
height=518,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method='lower_bound',
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
])
if os.path.isfile(video_path):
if video_path.endswith('txt'):
with open(video_path, 'r') as f:
lines = f.read().splitlines()
else:
filenames = [video_path]
else:
filenames = os.listdir(video_path)
filenames = [os.path.join(video_path, filename) for filename in filenames if not filename.startswith('.')]
filenames.sort()
# os.makedirs(outdir, exist_ok=True)
for k, filename in enumerate(filenames):
file_size = os.path.getsize(filename)/1024/1024
if file_size > 128.0:
print(f'File size of {filename} larger than 128Mb, sorry!')
return filename
print('Progress {:}/{:},'.format(k+1, len(filenames)), 'Processing', filename)
raw_video = cv2.VideoCapture(filename)
frame_width, frame_height = int(raw_video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(raw_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_rate = int(raw_video.get(cv2.CAP_PROP_FPS))
if frame_rate < 1:
frame_rate = 1
cframes = int(raw_video.get(cv2.CAP_PROP_FRAME_COUNT))
print(f'frames: {cframes}, fps: {frame_rate}')
# output_width = frame_width * 2 + margin_width
#filename = os.path.basename(filename)
# output_path = os.path.join(outdir, filename[:filename.rfind('.')] + '_video_depth.mp4')
#with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmpfile:
# output_path = tmpfile.name
#out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"avc1"), frame_rate, (output_width, frame_height))
#fourcc = cv2.VideoWriter_fourcc(*'mp4v')
#out = cv2.VideoWriter(output_path, fourcc, frame_rate, (output_width, frame_height))
count=0
depth_frames = []
orig_frames = []
while raw_video.isOpened():
ret, raw_frame = raw_video.read()
if not ret:
break
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2RGB) / 255.0
frame_pil = Image.fromarray((frame * 255).astype(np.uint8))
frame = transform({'image': frame})['image']
frame = torch.from_numpy(frame).unsqueeze(0).to(DEVICE)
depth = to_tensor_transform(predict_depth(depth_anything, frame_pil))
depth = F.interpolate(depth[None], (frame_height, frame_width), mode='bilinear', align_corners=False)[0, 0]
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth = depth.cpu().numpy().astype(np.uint8)
depth_color = cv2.applyColorMap(depth, cv2.COLORMAP_BONE)
depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGBA2GRAY)
depth_color = cv2.cvtColor(depth_gray, cv2.COLOR_GRAY2RGB)
# Remove white border around map:
# define lower and upper limits of white
white_lo = np.array([250,250,250])
white_hi = np.array([255,255,255])
# mask image to only select white
mask = cv2.inRange(depth_color, white_lo, white_hi)
# change image to black where we found white
depth_color[mask>0] = (0,0,0)
rgba_frame = cv2.cvtColor(raw_frame, cv2.COLOR_RGB2RGBA)
cv2.mixChannels([depth_color], [rgba_frame], [0,3])
blur_frame = rgba_frame.copy()
i = 240
l = 0
j = 1
while j <= 8:
blur_lo = np.array([i,i,i])
blur_hi = np.array([i+16,i+16,i+16])
blur_mask = cv2.inRange(depth_color, blur_lo, blur_hi)
print(f'kernel size {j}')
blur = cv2.GaussianBlur(rgba_frame, (j, j), 0)
blur_frame[blur_mask>0] = blur[blur_mask>0]
i = i - 16
l = l + 1
if l == 4:
l = 0
j = j + 2
# split_region = np.ones((frame_height, margin_width, 3), dtype=np.uint8) * 255
# combined_frame = cv2.hconcat([raw_frame, split_region, depth_color])
# out.write(combined_frame)
# frame_path = os.path.join(temp_frame_dir, f"frame_{count:05d}.png")
# cv2.imwrite(frame_path, combined_frame)
cv2.imwrite(f"f{count}.jpg", blur_frame)
orig_frames.append(f"f{count}.jpg")
cv2.imwrite(f"f{count}_dmap.jpg", depth_color)
depth_frames.append(f"f{count}_dmap.jpg")
count += 1
final_vid = create_video(depth_frames, frame_rate, "depth")
final_zip = zip_files(orig_frames, depth_frames)
raw_video.release()
# out.release()
cv2.destroyAllWindows()
return final_vid, final_zip, orig_frames, depth_frames #output_path
def depth_edges_mask(depth):
"""Returns a mask of edges in the depth map.
Args:
depth: 2D numpy array of shape (H, W) with dtype float32.
Returns:
mask: 2D numpy array of shape (H, W) with dtype bool.
"""
# Compute the x and y gradients of the depth map.
depth_dx, depth_dy = np.gradient(depth)
# Compute the gradient magnitude.
depth_grad = np.sqrt(depth_dx ** 2 + depth_dy ** 2)
# Compute the edge mask.
mask = depth_grad > 0.05
return mask
def pano_depth_to_world_points(depth, scale):
"""
360 depth to world points
given 2D depth is an equirectangular projection of a spherical image
Treat depth as radius
longitude : -pi to pi
latitude : -pi/2 to pi/2
"""
# Convert depth to radius
radius = (255 - depth.flatten()) * scale
lon = np.linspace(0, np.pi*2, depth.shape[1])
lat = np.linspace(0, np.pi, depth.shape[0])
lon, lat = np.meshgrid(lon, lat)
lon = lon.flatten()
lat = lat.flatten()
pts3d = [[0,0,0]]
uv = [[0,0]]
for i in range(0, 1): #(0,2)
for j in range(0, 1): #(0,2)
#rnd_lon = (np.random.rand(depth.shape[0]*depth.shape[1]) - 0.5) / 8
#rnd_lat = (np.random.rand(depth.shape[0]*depth.shape[1]) - 0.5) / 8
d_lon = lon + i/2 * np.pi*2 / depth.shape[1]
d_lat = lat + j/2 * np.pi / depth.shape[0]
# Convert to cartesian coordinates
x = radius * np.cos(d_lon) * np.sin(d_lat)
y = radius * np.cos(d_lat)
z = radius * np.sin(d_lon) * np.sin(d_lat)
pts = np.stack([x, y, z], axis=1)
uvs = np.stack([lon, lat], axis=1)
pts3d = np.concatenate((pts3d, pts), axis=0)
uv = np.concatenate((uv, uvs), axis=0)
#print(f'i: {i}, j: {j}')
j = j+1
i = i+1
return [pts3d, uv]
def rgb2gray(rgb):
return np.dot(rgb[...,:3], [0.333, 0.333, 0.333])
def get_mesh(image, depth):
fnum = frame_selected
gdepth = rgb2gray(depth[fnum][0])
print('depth to gray - ok')
points = pano_depth_to_world_points(gdepth, 1)
pts3d = points[0]
uv = points[1]
print('radius from depth - ok')
# Create a trimesh mesh from the points
# Each pixel is connected to its 4 neighbors
# colors are the RGB values of the image
verts = pts3d.reshape(-1, 3)
#triangles = create_triangles(image.shape[0], image.shape[1])
#print('triangles - ok')
rgba = cv2.cvtColor(image[fnum][0], cv2.COLOR_RGBA2RGB)
rgba = cv2.cvtColor(rgba, cv2.COLOR_RGB2RGBA)
colors = rgba.reshape(-1, 4)
clrs = [[128, 128, 128, 0]]
for i in range(0,1): #(0,4)
clrs = np.concatenate((clrs, colors), axis=0)
i = i+1
#mesh = trimesh.Trimesh(vertices=verts, faces=triangles, vertex_colors=colors)
mesh = trimesh.PointCloud(verts, colors=clrs)
#material = trimesh.visual.texture.SimpleMaterial(image=image)
#texture = trimesh.visual.TextureVisuals(uv=uv, image=image, material=material)
#mesh.visual = texture
scene = trimesh.Scene([mesh])
print('mesh - ok')
# Save as glb
glb_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False)
glb_path = glb_file.name
scene.export(glb_path)
print('file - ok')
return glb_path
def loadurl(url):
return url
def select_frame(evt: gr.SelectData):
global frame_selected
if evt.index != frame_selected:
frame_selected = evt.index
return gr.Gallery(selected_index=evt.index, preview=True)
css = """
#img-display-container {
max-height: 100vh;
}
#img-display-input {
max-height: 80vh;
}
#img-display-output {
max-height: 80vh;
}
"""
title = "# Depth Anything Video Demo"
description = """Depth Anything on full video files.
Please refer to our [paper](https://arxiv.org/abs/2401.10891), [project page](https://depth-anything.github.io), or [github](https://github.com/LiheYoung/Depth-Anything) for more details.
Mesh rendering from [ZoeDepth](https://huggingface.co/spaces/shariqfarooq/ZoeDepth) ([github](https://github.com/isl-org/ZoeDepth/tree/main/ui))."""
transform = Compose([
Resize(
width=518,
height=518,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method='lower_bound',
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
])
# @torch.no_grad()
# def predict_depth(model, image):
# return model(image)
with gr.Blocks(css=css) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown("### Video Depth Prediction demo")
with gr.Row():
with gr.Column():
input_url = gr.Textbox(value="./examples/streetview.mp4", label="URL")
input_video = gr.Video(label="Input Video", format="mp4")
input_url.change(fn=loadurl, inputs=[input_url], outputs=[input_video])
output_frame = gr.Gallery(label="Frame", type='numpy', preview=True, columns=8192)
output_depth = gr.Gallery(label="Depth", type='numpy', preview=True, columns=8192, interactive=False)
output_frame.select(fn=select_frame, inputs=None, outputs=[output_depth], show_progress='hidden')
output_depth.select(fn=select_frame, inputs=None, outputs=[output_frame], show_progress='hidden')
submit = gr.Button("Submit")
with gr.Column():
model_type = gr.Dropdown([("small", "vits"), ("base", "vitb"), ("large", "vitl")], type="value", value="vits", label='Model Type')
processed_video = gr.Video(label="Output Video", format="mp4")
processed_zip = gr.File(label="Output Archive")
result = gr.Model3D(label="3D Mesh", clear_color=[0.5, 0.5, 0.5, 0.0], camera_position=[0, 90, 0])
html = gr.HTML(value="""0.8""")
camera = gr.HTML(value="reset camera")
contrast = gr.HTML(value="""2.0""")
exposure = gr.HTML(value="""0.5""")
canvas = gr.HTML(value="""webgl2
""")
render = gr.Button("Render")
def on_submit(uploaded_video,model_type):
# Process the video and get the path of the output video
output_video_path = make_video(uploaded_video,encoder=model_type)
return output_video_path
submit.click(on_submit, inputs=[input_video, model_type], outputs=[processed_video, processed_zip, output_frame, output_depth])
render.click(partial(get_mesh), inputs=[output_frame, output_depth], outputs=[result])
example_files = os.listdir('examples')
example_files.sort()
example_files = [os.path.join('examples', filename) for filename in example_files]
examples = gr.Examples(examples=example_files, inputs=[input_video], outputs=[processed_video, processed_zip, output_frame, output_depth], fn=on_submit, cache_examples=True)
if __name__ == '__main__':
demo.queue().launch()