|
import gradio as gr |
|
import tensorflow as tf |
|
from PIL import Image |
|
import numpy as np |
|
|
|
labels = ['Birch Forest', 'Cave', 'Cherry Grove', 'Dark Forest', 'Deep Dark', 'Desert', 'End', 'Forest', 'Jungle', 'Mushroom Fields', 'Nether', 'Ocean', 'Plains', 'Savanna', 'Swamp', 'Taiga'] |
|
|
|
def predict_pokemon_type(uploaded_file): |
|
if uploaded_file is None: |
|
return "No file uploaded.", None, "No prediction" |
|
|
|
model = tf.keras.models.load_model('biomes-xception-model.keras') |
|
|
|
|
|
with Image.open(uploaded_file) as img: |
|
img = img.resize((150, 150)) |
|
img_array = np.array(img) |
|
|
|
prediction = model.predict(np.expand_dims(img_array, axis=0)) |
|
|
|
|
|
confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))} |
|
|
|
return img, confidences |
|
|
|
|
|
iface = gr.Interface( |
|
fn=predict_pokemon_type, |
|
inputs=gr.File(label="Upload File"), |
|
outputs=["image", "text"], |
|
title="Minecraft Biomes Classifier", |
|
description="Upload a picture of a Fruit (preferably a Birch Forest, Cave, Cherry Grove, Dark Forest, Deep Dark, Desert, End, Forest, Jungle, Mushroom Fields, Nether, Ocean, Plains, Savanna, Swamp or Taiga) to see what fruit it is and the models confidence level." |
|
) |
|
|
|
|
|
iface.launch() |
|
|