import gradio as gr import tensorflow as tf from PIL import Image import numpy as np labels = ['Birch Forest', 'Cave', 'Cherry Grove', 'Dark Forest', 'Deep Dark', 'Desert', 'End', 'Forest', 'Jungle', 'Mushroom Fields', 'Nether', 'Ocean', 'Plains', 'Savanna', 'Swamp', 'Taiga'] def predict_pokemon_type(uploaded_file): if uploaded_file is None: return "No file uploaded.", None, "No prediction" model = tf.keras.models.load_model('biomes-xception-model.keras') # Load the image from the file path with Image.open(uploaded_file) as img: img = img.resize((150, 150)) img_array = np.array(img) prediction = model.predict(np.expand_dims(img_array, axis=0)) # Identify the most confident prediction confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))} return img, confidences # Define the Gradio interface iface = gr.Interface( fn=predict_pokemon_type, # Function to process the input inputs=gr.File(label="Upload File"), # File upload widget outputs=["image", "text"], # Output types for image and text title="Minecraft Biomes Classifier", # Title of the interface description="Upload a picture of a Fruit (preferably a Birch Forest, Cave, Cherry Grove, Dark Forest, Deep Dark, Desert, End, Forest, Jungle, Mushroom Fields, Nether, Ocean, Plains, Savanna, Swamp or Taiga) to see what fruit it is and the models confidence level." # Description of the interface ) # Launch the interface iface.launch()