Spaces:
Running
Running
import streamlit as st | |
import streamlit as st | |
import tensorflow as tf | |
import numpy as np | |
from keras.models import load_model | |
from tensorflow.keras.backend import clear_session | |
import cv2 | |
import os | |
st.set_page_config( | |
page_title = 'Patacotrón', | |
initial_sidebar_state = 'collapsed', | |
menu_items = { | |
"About" : 'Proyecto ideado para la investigación de "Clasificación de imágenes de una sola clase con algortimos de Inteligencia Artificial".', | |
"Report a Bug" : 'https://docs.google.com/forms/d/e/1FAIpQLScH0ZxAV8aSqs7TPYi86u0nkxvQG3iuHCStWNB-BoQnSW2V0g/viewform?usp=sf_link' | |
} | |
) | |
st.title("Entorno de ejecución") | |
st.markdown("Los modelos no están en orden de eficacia, sino en orden de creación. En la pestaña de Estadísticas podrá encontrar más información.") | |
# Get the absolute path to the current directory | |
current_dir = os.path.abspath(os.path.dirname(__file__)) | |
# Get the absolute path to the parent directory of the current directory | |
root_dir = os.path.abspath(os.path.join(current_dir, os.pardir)) | |
# Join the path to the models folder | |
DIR = os.path.join(root_dir, "models") | |
models = os.listdir(DIR) | |
model_dict = dict() | |
#for model in models: | |
# model_name = model.split(DIR) | |
# model_dict[model_name] = 0 | |
#model_list = [] | |
for model in models: | |
model_name = model.split(DIR) | |
model_name = str(model.split('.h5')[0]) | |
model_dir = os.path.join(DIR, model) | |
model_dict[model_name] = model_dir | |
#model_list.append(os.path.join(DIR, model)) | |
# Create a dropdown menu to select the model | |
model_choice = st.multiselect("Seleccione un modelo de clasificación", model_dict.keys()) | |
selected_models = [] | |
for model in model_choice: | |
selected_models.append(model) | |
def ensemble_model(model_list, img): | |
average = len(model_list) | |
y_gorrito = np.zeros((1, 1)) | |
for model in model_list: | |
instance_model = load_model(model_dict[model]) | |
y_gorrito += float(instance_model.predict(np.expand_dims(img, 0))) | |
clear_session() | |
return y_gorrito/average | |
# Set the image dimensions | |
IMAGE_WIDTH = IMAGE_HEIGHT = 224 | |
# Create a file uploader widget | |
uploaded_file = st.file_uploader("Elige una imagen...", type= ['jpg','png', 'jpeg', 'jfif', 'webp', 'heic']) | |
if uploaded_file is not None: | |
# Load the image and resize it to the required dimensions | |
img = np.frombuffer(uploaded_file.read(), np.uint8) | |
img = cv2.imdecode(img, cv2.IMREAD_COLOR) | |
raw_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
img = cv2.resize(img, (IMAGE_WIDTH, IMAGE_HEIGHT)) | |
# Convert the image to RGB and preprocess it for the model | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
img = img / 255 | |
# Pass the image to the model and get the prediction | |
with st.spinner('Cargando predicción...'): | |
y_gorrito = ensemble_model(selected_models, img) | |
#y_gorrito = model.predict(np.expand_dims(img, 0)) | |
# Show the image | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
st.write(' ') | |
with col2: | |
#check_type = isinstance(y_gorrito, (int, float)) | |
#if not check_type: | |
#st.write('No se ha escogido ningún modelo.') | |
#else: | |
st.write(f'La probabilidad de que la imagen tenga un patacón es del: {round(float(y_gorrito), 2)*100}%') | |
with col3: | |
st.write('Si los resultados no fueron los esperados, por favor, despliga la barra lateral y entra al botón "Report a Bug"') | |
st.image(raw_img) | |