Spaces:
Running
Running
import streamlit as st | |
import tensorflow as tf | |
from keras.models import load_model | |
#from tensorflow.keras.backend import clear_session | |
#import cv2 | |
import os | |
st.set_page_config( | |
page_title = 'Patacotrón', | |
initial_sidebar_state = 'collapsed', | |
menu_items = { | |
"About" : 'Proyecto ideado para la investigación de "Clasificación de imágenes de una sola clase con algortimos de Inteligencia Artificial".', | |
"Report a Bug" : 'https://docs.google.com/forms/d/e/1FAIpQLScH0ZxAV8aSqs7TPYi86u0nkxvQG3iuHCStWNB-BoQnSW2V0g/viewform?usp=sf_link' | |
} | |
) | |
col_a, col_b, = st.columns(2) | |
with col_a: | |
st.title("Entorno de ejecución") | |
st.caption("Los modelos no están en orden de eficacia, sino en orden de creación.") | |
# Get the absolute path to the current directory | |
current_dir = os.path.abspath(os.path.dirname(__file__)) | |
# Get the absolute path to the parent directory of the current directory | |
root_dir = os.path.abspath(os.path.join(current_dir, os.pardir)) | |
# Join the path to the models folder | |
DIR = os.path.join(root_dir, "models") | |
threshold = .8 | |
models = os.listdir(DIR) | |
model_dict = dict() | |
for model in models: | |
model_name = model.split(DIR) | |
model_name = str(model.split('.h5')[0]) | |
model_dir = os.path.join(DIR, model) | |
model_dict[model_name] = model_dir | |
ultraversions = ['ptctrn_v1.4', 'ptctrn_v1.5', 'ptctrn_v1.6', 'ptctrn_v1.12'] | |
ultra_button = st.checkbox('Ultra-Patacotrón (mejores resultados)') | |
ultra_flag = False | |
if ultra_button: | |
ultra_flag = True | |
# Create a dropdown menu to select the model | |
model_choice = st.multiselect("Seleccione uno o varios modelos de clasificación", model_dict.keys()) | |
selected_models = [] | |
def ensemble_model(model_list, img): | |
y_gorrito = np.zeros((1, 1)) | |
for model in model_list: | |
instance_model = load_model(model_dict[model]) | |
y_gorrito += float(instance_model.predict(np.expand_dims(img/255., 0))) | |
#clear_session() | |
return y_gorrito/len(model_list) | |
def predict(model_list, img): | |
y_gorrito = 0 | |
for model in model_list: | |
y_gorrito += tf.cast(model(tf.expand_dims(img/255., 0)), dtype=tf.float32) | |
return y_gorrito / len(model_list) | |
# Set the image dimensions | |
IMAGE_WIDTH = IMAGE_HEIGHT = 224 | |
uploaded_file = st.file_uploader(label = '',type= ['jpg','png', 'jpeg', 'jfif', 'webp', 'heic']) | |
executed = False | |
with col_b: | |
if st.button('¿Hay un patacón en la imagen?'): | |
if len(selected_models) > 0 and ultra_flag: | |
st.write('Debe elegir un solo método: Ultra-Patacotrón o selección múltiple.') | |
elif uploaded_file is not None: | |
raw_img = tf.image.decode_image(uploaded_file.read(), channels=3) | |
img = tf.image.resize(raw_img,(IMAGE_WIDTH, IMAGE_HEIGHT)) | |
# Pass the image to the model and get the prediction | |
if ultra_flag: | |
with st.spinner('Cargando ultra-predicción...'): | |
if not executed: | |
ultraptctrn = [load_model(model_dict[model]) for model in ultraversions] | |
executed = True | |
y_gorrito = predict(ultraptctrn, img) | |
else: | |
with st.spinner('Cargando predicción...'): | |
selected_models = [load_model(model_dict[model]) for model in model_choice] | |
y_gorrito = predict(selected_models, img) | |
if y_gorrito > threshold: | |
st.success("¡Patacón Detectado!") | |
else: | |
st.error("No se encontró rastro de patacón.") | |
st.caption(f'La probabilidad de que la imagen tenga un patacón es del: {round(float(y_gorrito), 2)*100}%') | |
st.image(raw_img.numpy()) | |
st.caption('Si los resultados no fueron los esperados, por favor, [haz click aquí](https://docs.google.com/forms/d/e/1FAIpQLScH0ZxAV8aSqs7TPYi86u0nkxvQG3iuHCStWNB-BoQnSW2V0g/viewform?usp=sf_link)') | |
else: | |
st.write('Revisa haber seleccionado los modelos y la imagen correctamente.') |