Spaces:
Running
Running
import streamlit as st | |
import tensorflow as tf | |
from tensorflow.keras.models import load_model | |
import os | |
import cv2 | |
import numpy as np | |
st.set_page_config( | |
page_title = 'Patacotrón', | |
layout = 'wide', | |
menu_items = { | |
"About" : 'Proyecto ideado para la investigación de "Clasificación de imágenes de una sola clase con algortimos de Inteligencia Artificial".', | |
"Report a Bug" : 'https://docs.google.com/forms/d/e/1FAIpQLScH0ZxAV8aSqs7TPYi86u0nkxvQG3iuHCStWNB-BoQnSW2V0g/viewform?usp=sf_link' | |
} | |
) | |
st.sidebar.write("[email protected]") | |
cnn, autoencoder, svm, iforest, gan, vit = st.tabs(["CNN", "Autoencoder", "OC-SVM", 'iForest', 'GAN', 'ViT']) | |
with cnn: | |
col_a, col_b, = st.columns(2) | |
with col_a: | |
st.title("Redes neuronales convolucionales") | |
st.caption("Los modelos no están en orden de eficacia, sino en orden de creación.") | |
current_dir = os.getcwd() | |
root_dir = os.path.dirname(current_dir) | |
# Join the path to the models folder | |
DIR = os.path.join(current_dir, "models") | |
models = os.listdir(DIR) | |
common_root = r"/home/user/app/models/ptctrn_v" | |
common_end = ".h5" | |
model_dict = dict() | |
for model in models: #preprocessing of strings so the name is readable in the multiselect bar | |
model_dir = os.path.join(DIR, model) | |
model_name = 'Patacotrón ' + model_dir.split(common_root)[-1].split(common_end)[0] | |
model_dict[model_name] = model_dir | |
#ultraversions = ['Patacotrón 1.5', 'Patacotrón 1.7', 'Patacotrón 1.8', 'Patacotrón 1.12', 'Patacotrón 1.12.2', 'Patacotrón 1.12.3'] | |
ultraversions = ['Patacotrón 1.5', 'Patacotrón 1.6', 'Patacotrón 1.12.2', 'Patacotrón 1.8', 'Patacotrón 1.12']#, 'Patacotrón 1.13.20', 'Patacotrón 1.13.38'] | |
#['Patacotrón 1.5', 'Patacotrón 1.6', 'Patacotrón 1.7', 'Patacotrón 1.12'] # | |
ultra_button = st.checkbox('Ultra-Patacotrón (en construcción, no es la mejor versión)') | |
ultra_flag = False | |
weight_list = [] | |
if ultra_button: | |
ultra_flag = True | |
#weight_list = [3, 1, 4.5, 1, .8, 1] [.5, 1.75, 4, .5, 2] | |
weight_list = [2.4, 2, 1.5, 3.5, 1.8] #.2, 2] | |
#[1, 2, 3, 2.5] # | |
# Create a dropdown menu to select the model | |
model_choice = st.multiselect("Seleccione uno o varios modelos de clasificación", model_dict.keys()) | |
threshold = st.slider('¿Cuál va a ser el límite donde se considere patacón? (el valor recomendado para Ultra-Patacotrón es 60%, para los demás, 75%-80%)', 0, 100, 75) | |
selected_models = [] | |
def tf_predict(model_list, weights, img): #faster, but for few formats | |
y_gorrito = 0 | |
raw_img = tf.image.decode_image(img, channels=3) | |
img = tf.image.resize(raw_img,(IMAGE_WIDTH, IMAGE_HEIGHT)) | |
for model, weight in zip(model_list, weights): | |
y_gorrito += tf.cast(model(tf.expand_dims(img/255., 0)), dtype=tf.float32)*weight | |
return [y_gorrito / sum(weights), raw_img.numpy()] | |
def basic_predict(model_list, weights, img): #for non-supported formats | |
y_gorrito = 0 | |
raw_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
img = cv2.resize(img, (IMAGE_WIDTH, IMAGE_HEIGHT)) | |
for model, weight in zip(model_list, weights): | |
y_gorrito += tf.cast(model(tf.expand_dims(img/255., 0)), dtype=tf.float32)*weight | |
return [y_gorrito / sum(weights), raw_img] | |
def preprocess(file_uploader): #makes the uploaded image readable | |
img = np.frombuffer(uploaded_file.read(), np.uint8) | |
img = cv2.imdecode(img, cv2.IMREAD_COLOR) | |
return img | |
# Set the image dimensions | |
IMAGE_WIDTH = IMAGE_HEIGHT = 224 | |
executed = False | |
with col_b: | |
uploaded_file = st.file_uploader(label = '',type= ['jpg','png', 'jpeg', 'jfif', 'webp', 'heic']) | |
if st.button('¿Hay un patacón en la imagen?'): | |
if len(model_choice) > 0 and ultra_flag: | |
st.write('Debe elegir un solo método: Ultra-Patacotrón o selección múltiple.') | |
elif uploaded_file is not None: | |
img = preprocess(uploaded_file) | |
if ultra_flag: | |
with st.spinner('Cargando ultra-predicción...'): | |
if not executed: | |
ultraptctrn = [load_model(model_dict[model]) for model in ultraversions] | |
executed = True | |
final_weights = weight_list if len(weight_list) >= 1 else [1 for i in range(len(ultraptctrn))] | |
try: | |
y_gorrito, raw_img = tf_predict(ultraptctrn, final_weights, img) | |
except: | |
y_gorrito, raw_img = basic_predict(ultraptctrn, final_weights, img) | |
else: | |
with st.spinner('Cargando predicción...'): | |
selected_models = [load_model(model_dict[model]) for model in model_choice if model not in selected_models] | |
final_weights = weight_list if len(weight_list) >= 1 else [1 for i in range(len(selected_models))] | |
try: | |
y_gorrito, raw_img = tf_predict(selected_models, final_weights, img) | |
except: | |
y_gorrito, raw_img = basic_predict(selected_models, final_weights, img) | |
if round(float(y_gorrito*100)) >= threshold: | |
st.success("¡Patacón Detectado!") | |
else: | |
st.error("No se considera que haya un patacón en la imagen") | |
st.caption(f'La probabilidad de que la imagen tenga un patacón es del: {round(float(y_gorrito * 100), 2)}%') | |
st.caption('Si los resultados no fueron los esperados, por favor, [haz click aquí](https://docs.google.com/forms/d/e/1FAIpQLScH0ZxAV8aSqs7TPYi86u0nkxvQG3iuHCStWNB-BoQnSW2V0g/viewform?usp=sf_link)') | |
st.image(raw_img) | |
else: | |
st.write('Revisa haber seleccionado los modelos y la imagen correctamente.') | |
with autoencoder: | |
st.write('Próximamente') | |
with svm: | |
st.write('Próximamente') | |
with iforest: | |
st.write('Próximamente') | |
with gan: | |
st.write('Próximamente') | |
with vit: | |
st.write('Próximamente') |