frncscp commited on
Commit
6f50e65
1 Parent(s): 93f658a

Update pages/Entorno de Ejecución.py

Browse files
Files changed (1) hide show
  1. pages/Entorno de Ejecución.py +6 -3
pages/Entorno de Ejecución.py CHANGED
@@ -1,7 +1,7 @@
1
  import streamlit as st
2
  import tensorflow as tf
3
  from tensorflow.keras.models import load_model
4
- from transformers import AutoConfig, AutoModel, pipeline#, AutoProcessor, AutoModelForZeroShotImageClassification
5
  from PIL import Image
6
  import os
7
  import torch
@@ -170,7 +170,7 @@ with vit:
170
  'microsoft/swin-tiny-patch4-window7-224' : 'frncscp/patacoswin'
171
  }
172
 
173
- model_choice = st.multiselect("Seleccione un modelo de clasificación", model_dict.keys(), key = 'ViT_multiselect')
174
 
175
  uploaded_file = st.file_uploader(key = 'ViT_upload', label = 'Sube la imagen a clasificar',type= ['jpg','png', 'jpeg', 'jfif', 'webp', 'heic'])
176
  flag = False
@@ -186,7 +186,10 @@ with vit:
186
 
187
  #y_gorritoo = query(uploaded_file.read(), model_dict[model_choice[0]])
188
  #st.write(y_gorritoo)
189
- classifiers = [pipeline("image-classification", model= model_dict[model_choice[i]]) for i in range(len(model_choice))]
 
 
 
190
 
191
  #classifier = pipeline("image-classification", model= model_dict[model_choice[0]])
192
  img = preprocess(uploaded_file, module = 'pil')
 
1
  import streamlit as st
2
  import tensorflow as tf
3
  from tensorflow.keras.models import load_model
4
+ from transformers import AutoConfig, AutoModel, pipeline, Dinov2Model#, AutoProcessor, AutoModelForZeroShotImageClassification
5
  from PIL import Image
6
  import os
7
  import torch
 
170
  'microsoft/swin-tiny-patch4-window7-224' : 'frncscp/patacoswin'
171
  }
172
 
173
+ model_choice = st.selectbox("Seleccione un modelo de clasificación", model_dict.keys(), key = 'ViT_select')
174
 
175
  uploaded_file = st.file_uploader(key = 'ViT_upload', label = 'Sube la imagen a clasificar',type= ['jpg','png', 'jpeg', 'jfif', 'webp', 'heic'])
176
  flag = False
 
186
 
187
  #y_gorritoo = query(uploaded_file.read(), model_dict[model_choice[0]])
188
  #st.write(y_gorritoo)
189
+ if "frncscp/dinotron" in model_choice.values():
190
+ classifiers = [Dinov2Model.from_pretrained("frncscp/dinotron")]
191
+ else:
192
+ classifiers = [pipeline("image-classification", model= model_dict[model_choice[i]]) for i in range(len(model_choice))]
193
 
194
  #classifier = pipeline("image-classification", model= model_dict[model_choice[0]])
195
  img = preprocess(uploaded_file, module = 'pil')