Spaces:
Sleeping
Sleeping
TheStinger
commited on
Commit
•
82d966b
1
Parent(s):
aa7549b
Upload 9 files
Browse files- configs/__pycache__/config.cpython-39.pyc +0 -0
- configs/config.json +1 -0
- configs/config.py +251 -0
- configs/v1/32k.json +46 -0
- configs/v1/40k.json +46 -0
- configs/v1/48k.json +46 -0
- configs/v2/32k.json +46 -0
- configs/v2/40k.json +46 -0
- configs/v2/48k.json +46 -0
configs/__pycache__/config.cpython-39.pyc
ADDED
Binary file (5.69 kB). View file
|
|
configs/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"pth_path": "assets/weights/kikiV1.pth", "index_path": "logs/kikiV1.index", "sg_input_device": "VoiceMeeter Output (VB-Audio Vo (MME)", "sg_output_device": "VoiceMeeter Input (VB-Audio Voi (MME)", "threhold": -45.0, "pitch": 2.0, "rms_mix_rate": 0.0, "index_rate": 0.0, "block_time": 0.52, "crossfade_length": 0.15, "extra_time": 2.46, "n_cpu": 6.0, "use_jit": false, "f0method": "rmvpe"}
|
configs/config.py
ADDED
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
import json
|
5 |
+
from multiprocessing import cpu_count
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
try:
|
10 |
+
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
|
11 |
+
|
12 |
+
if torch.xpu.is_available():
|
13 |
+
from infer.modules.ipex import ipex_init
|
14 |
+
|
15 |
+
ipex_init()
|
16 |
+
except Exception: # pylint: disable=broad-exception-caught
|
17 |
+
pass
|
18 |
+
import logging
|
19 |
+
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
version_config_list = [
|
24 |
+
"v1/32k.json",
|
25 |
+
"v1/40k.json",
|
26 |
+
"v1/48k.json",
|
27 |
+
"v2/48k.json",
|
28 |
+
"v2/32k.json",
|
29 |
+
]
|
30 |
+
|
31 |
+
|
32 |
+
def singleton_variable(func):
|
33 |
+
def wrapper(*args, **kwargs):
|
34 |
+
if not wrapper.instance:
|
35 |
+
wrapper.instance = func(*args, **kwargs)
|
36 |
+
return wrapper.instance
|
37 |
+
|
38 |
+
wrapper.instance = None
|
39 |
+
return wrapper
|
40 |
+
|
41 |
+
|
42 |
+
@singleton_variable
|
43 |
+
class Config:
|
44 |
+
def __init__(self):
|
45 |
+
self.device = "cuda:0"
|
46 |
+
self.is_half = True
|
47 |
+
self.use_jit = False
|
48 |
+
self.n_cpu = 0
|
49 |
+
self.gpu_name = None
|
50 |
+
self.json_config = self.load_config_json()
|
51 |
+
self.gpu_mem = None
|
52 |
+
(
|
53 |
+
self.python_cmd,
|
54 |
+
self.listen_port,
|
55 |
+
self.iscolab,
|
56 |
+
self.noparallel,
|
57 |
+
self.noautoopen,
|
58 |
+
self.dml,
|
59 |
+
) = self.arg_parse()
|
60 |
+
self.instead = ""
|
61 |
+
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
|
62 |
+
|
63 |
+
@staticmethod
|
64 |
+
def load_config_json() -> dict:
|
65 |
+
d = {}
|
66 |
+
for config_file in version_config_list:
|
67 |
+
with open(f"configs/{config_file}", "r") as f:
|
68 |
+
d[config_file] = json.load(f)
|
69 |
+
return d
|
70 |
+
|
71 |
+
@staticmethod
|
72 |
+
def arg_parse() -> tuple:
|
73 |
+
exe = sys.executable or "python"
|
74 |
+
parser = argparse.ArgumentParser()
|
75 |
+
parser.add_argument("--port", type=int, default=7865, help="Listen port")
|
76 |
+
parser.add_argument("--pycmd", type=str, default=exe, help="Python command")
|
77 |
+
parser.add_argument("--colab", action="store_true", help="Launch in colab")
|
78 |
+
parser.add_argument(
|
79 |
+
"--noparallel", action="store_true", help="Disable parallel processing"
|
80 |
+
)
|
81 |
+
parser.add_argument(
|
82 |
+
"--noautoopen",
|
83 |
+
action="store_true",
|
84 |
+
help="Do not open in browser automatically",
|
85 |
+
)
|
86 |
+
parser.add_argument(
|
87 |
+
"--dml",
|
88 |
+
action="store_true",
|
89 |
+
help="torch_dml",
|
90 |
+
)
|
91 |
+
cmd_opts = parser.parse_args()
|
92 |
+
|
93 |
+
cmd_opts.port = cmd_opts.port if 0 <= cmd_opts.port <= 65535 else 7865
|
94 |
+
|
95 |
+
return (
|
96 |
+
cmd_opts.pycmd,
|
97 |
+
cmd_opts.port,
|
98 |
+
cmd_opts.colab,
|
99 |
+
cmd_opts.noparallel,
|
100 |
+
cmd_opts.noautoopen,
|
101 |
+
cmd_opts.dml,
|
102 |
+
)
|
103 |
+
|
104 |
+
# has_mps is only available in nightly pytorch (for now) and MasOS 12.3+.
|
105 |
+
# check `getattr` and try it for compatibility
|
106 |
+
@staticmethod
|
107 |
+
def has_mps() -> bool:
|
108 |
+
if not torch.backends.mps.is_available():
|
109 |
+
return False
|
110 |
+
try:
|
111 |
+
torch.zeros(1).to(torch.device("mps"))
|
112 |
+
return True
|
113 |
+
except Exception:
|
114 |
+
return False
|
115 |
+
|
116 |
+
@staticmethod
|
117 |
+
def has_xpu() -> bool:
|
118 |
+
if hasattr(torch, "xpu") and torch.xpu.is_available():
|
119 |
+
return True
|
120 |
+
else:
|
121 |
+
return False
|
122 |
+
|
123 |
+
def use_fp32_config(self):
|
124 |
+
for config_file in version_config_list:
|
125 |
+
self.json_config[config_file]["train"]["fp16_run"] = False
|
126 |
+
with open(f"configs/{config_file}", "r") as f:
|
127 |
+
strr = f.read().replace("true", "false")
|
128 |
+
with open(f"configs/{config_file}", "w") as f:
|
129 |
+
f.write(strr)
|
130 |
+
with open("infer/modules/train/preprocess.py", "r") as f:
|
131 |
+
strr = f.read().replace("3.7", "3.0")
|
132 |
+
with open("infer/modules/train/preprocess.py", "w") as f:
|
133 |
+
f.write(strr)
|
134 |
+
print("overwrite preprocess and configs.json")
|
135 |
+
|
136 |
+
def device_config(self) -> tuple:
|
137 |
+
if torch.cuda.is_available():
|
138 |
+
if self.has_xpu():
|
139 |
+
self.device = self.instead = "xpu:0"
|
140 |
+
self.is_half = True
|
141 |
+
i_device = int(self.device.split(":")[-1])
|
142 |
+
self.gpu_name = torch.cuda.get_device_name(i_device)
|
143 |
+
if (
|
144 |
+
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
|
145 |
+
or "P40" in self.gpu_name.upper()
|
146 |
+
or "P10" in self.gpu_name.upper()
|
147 |
+
or "1060" in self.gpu_name
|
148 |
+
or "1070" in self.gpu_name
|
149 |
+
or "1080" in self.gpu_name
|
150 |
+
):
|
151 |
+
logger.info("Found GPU %s, force to fp32", self.gpu_name)
|
152 |
+
self.is_half = False
|
153 |
+
self.use_fp32_config()
|
154 |
+
else:
|
155 |
+
logger.info("Found GPU %s", self.gpu_name)
|
156 |
+
self.gpu_mem = int(
|
157 |
+
torch.cuda.get_device_properties(i_device).total_memory
|
158 |
+
/ 1024
|
159 |
+
/ 1024
|
160 |
+
/ 1024
|
161 |
+
+ 0.4
|
162 |
+
)
|
163 |
+
if self.gpu_mem <= 4:
|
164 |
+
with open("infer/modules/train/preprocess.py", "r") as f:
|
165 |
+
strr = f.read().replace("3.7", "3.0")
|
166 |
+
with open("infer/modules/train/preprocess.py", "w") as f:
|
167 |
+
f.write(strr)
|
168 |
+
elif self.has_mps():
|
169 |
+
logger.info("No supported Nvidia GPU found")
|
170 |
+
self.device = self.instead = "mps"
|
171 |
+
self.is_half = False
|
172 |
+
self.use_fp32_config()
|
173 |
+
else:
|
174 |
+
logger.info("No supported Nvidia GPU found")
|
175 |
+
self.device = self.instead = "cpu"
|
176 |
+
self.is_half = False
|
177 |
+
self.use_fp32_config()
|
178 |
+
|
179 |
+
if self.n_cpu == 0:
|
180 |
+
self.n_cpu = cpu_count()
|
181 |
+
|
182 |
+
if self.is_half:
|
183 |
+
# 6G显存配置
|
184 |
+
x_pad = 3
|
185 |
+
x_query = 10
|
186 |
+
x_center = 60
|
187 |
+
x_max = 65
|
188 |
+
else:
|
189 |
+
# 5G显存配置
|
190 |
+
x_pad = 1
|
191 |
+
x_query = 6
|
192 |
+
x_center = 38
|
193 |
+
x_max = 41
|
194 |
+
|
195 |
+
if self.gpu_mem is not None and self.gpu_mem <= 4:
|
196 |
+
x_pad = 1
|
197 |
+
x_query = 5
|
198 |
+
x_center = 30
|
199 |
+
x_max = 32
|
200 |
+
if self.dml:
|
201 |
+
logger.info("Use DirectML instead")
|
202 |
+
if (
|
203 |
+
os.path.exists(
|
204 |
+
"runtime\Lib\site-packages\onnxruntime\capi\DirectML.dll"
|
205 |
+
)
|
206 |
+
== False
|
207 |
+
):
|
208 |
+
try:
|
209 |
+
os.rename(
|
210 |
+
"runtime\Lib\site-packages\onnxruntime",
|
211 |
+
"runtime\Lib\site-packages\onnxruntime-cuda",
|
212 |
+
)
|
213 |
+
except:
|
214 |
+
pass
|
215 |
+
try:
|
216 |
+
os.rename(
|
217 |
+
"runtime\Lib\site-packages\onnxruntime-dml",
|
218 |
+
"runtime\Lib\site-packages\onnxruntime",
|
219 |
+
)
|
220 |
+
except:
|
221 |
+
pass
|
222 |
+
# if self.device != "cpu":
|
223 |
+
import torch_directml
|
224 |
+
|
225 |
+
self.device = torch_directml.device(torch_directml.default_device())
|
226 |
+
self.is_half = False
|
227 |
+
else:
|
228 |
+
if self.instead:
|
229 |
+
logger.info(f"Use {self.instead} instead")
|
230 |
+
if (
|
231 |
+
os.path.exists(
|
232 |
+
"runtime\Lib\site-packages\onnxruntime\capi\onnxruntime_providers_cuda.dll"
|
233 |
+
)
|
234 |
+
== False
|
235 |
+
):
|
236 |
+
try:
|
237 |
+
os.rename(
|
238 |
+
"runtime\Lib\site-packages\onnxruntime",
|
239 |
+
"runtime\Lib\site-packages\onnxruntime-dml",
|
240 |
+
)
|
241 |
+
except:
|
242 |
+
pass
|
243 |
+
try:
|
244 |
+
os.rename(
|
245 |
+
"runtime\Lib\site-packages\onnxruntime-cuda",
|
246 |
+
"runtime\Lib\site-packages\onnxruntime",
|
247 |
+
)
|
248 |
+
except:
|
249 |
+
pass
|
250 |
+
print("is_half:%s, device:%s" % (self.is_half, self.device))
|
251 |
+
return x_pad, x_query, x_center, x_max
|
configs/v1/32k.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"seed": 1234,
|
5 |
+
"epochs": 20000,
|
6 |
+
"learning_rate": 1e-4,
|
7 |
+
"betas": [0.8, 0.99],
|
8 |
+
"eps": 1e-9,
|
9 |
+
"batch_size": 4,
|
10 |
+
"fp16_run": true,
|
11 |
+
"lr_decay": 0.999875,
|
12 |
+
"segment_size": 12800,
|
13 |
+
"init_lr_ratio": 1,
|
14 |
+
"warmup_epochs": 0,
|
15 |
+
"c_mel": 45,
|
16 |
+
"c_kl": 1.0
|
17 |
+
},
|
18 |
+
"data": {
|
19 |
+
"max_wav_value": 32768.0,
|
20 |
+
"sampling_rate": 32000,
|
21 |
+
"filter_length": 1024,
|
22 |
+
"hop_length": 320,
|
23 |
+
"win_length": 1024,
|
24 |
+
"n_mel_channels": 80,
|
25 |
+
"mel_fmin": 0.0,
|
26 |
+
"mel_fmax": null
|
27 |
+
},
|
28 |
+
"model": {
|
29 |
+
"inter_channels": 192,
|
30 |
+
"hidden_channels": 192,
|
31 |
+
"filter_channels": 768,
|
32 |
+
"n_heads": 2,
|
33 |
+
"n_layers": 6,
|
34 |
+
"kernel_size": 3,
|
35 |
+
"p_dropout": 0,
|
36 |
+
"resblock": "1",
|
37 |
+
"resblock_kernel_sizes": [3,7,11],
|
38 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
39 |
+
"upsample_rates": [10,4,2,2,2],
|
40 |
+
"upsample_initial_channel": 512,
|
41 |
+
"upsample_kernel_sizes": [16,16,4,4,4],
|
42 |
+
"use_spectral_norm": false,
|
43 |
+
"gin_channels": 256,
|
44 |
+
"spk_embed_dim": 109
|
45 |
+
}
|
46 |
+
}
|
configs/v1/40k.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"seed": 1234,
|
5 |
+
"epochs": 20000,
|
6 |
+
"learning_rate": 1e-4,
|
7 |
+
"betas": [0.8, 0.99],
|
8 |
+
"eps": 1e-9,
|
9 |
+
"batch_size": 4,
|
10 |
+
"fp16_run": true,
|
11 |
+
"lr_decay": 0.999875,
|
12 |
+
"segment_size": 12800,
|
13 |
+
"init_lr_ratio": 1,
|
14 |
+
"warmup_epochs": 0,
|
15 |
+
"c_mel": 45,
|
16 |
+
"c_kl": 1.0
|
17 |
+
},
|
18 |
+
"data": {
|
19 |
+
"max_wav_value": 32768.0,
|
20 |
+
"sampling_rate": 40000,
|
21 |
+
"filter_length": 2048,
|
22 |
+
"hop_length": 400,
|
23 |
+
"win_length": 2048,
|
24 |
+
"n_mel_channels": 125,
|
25 |
+
"mel_fmin": 0.0,
|
26 |
+
"mel_fmax": null
|
27 |
+
},
|
28 |
+
"model": {
|
29 |
+
"inter_channels": 192,
|
30 |
+
"hidden_channels": 192,
|
31 |
+
"filter_channels": 768,
|
32 |
+
"n_heads": 2,
|
33 |
+
"n_layers": 6,
|
34 |
+
"kernel_size": 3,
|
35 |
+
"p_dropout": 0,
|
36 |
+
"resblock": "1",
|
37 |
+
"resblock_kernel_sizes": [3,7,11],
|
38 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
39 |
+
"upsample_rates": [10,10,2,2],
|
40 |
+
"upsample_initial_channel": 512,
|
41 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
42 |
+
"use_spectral_norm": false,
|
43 |
+
"gin_channels": 256,
|
44 |
+
"spk_embed_dim": 109
|
45 |
+
}
|
46 |
+
}
|
configs/v1/48k.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"seed": 1234,
|
5 |
+
"epochs": 20000,
|
6 |
+
"learning_rate": 1e-4,
|
7 |
+
"betas": [0.8, 0.99],
|
8 |
+
"eps": 1e-9,
|
9 |
+
"batch_size": 4,
|
10 |
+
"fp16_run": true,
|
11 |
+
"lr_decay": 0.999875,
|
12 |
+
"segment_size": 11520,
|
13 |
+
"init_lr_ratio": 1,
|
14 |
+
"warmup_epochs": 0,
|
15 |
+
"c_mel": 45,
|
16 |
+
"c_kl": 1.0
|
17 |
+
},
|
18 |
+
"data": {
|
19 |
+
"max_wav_value": 32768.0,
|
20 |
+
"sampling_rate": 48000,
|
21 |
+
"filter_length": 2048,
|
22 |
+
"hop_length": 480,
|
23 |
+
"win_length": 2048,
|
24 |
+
"n_mel_channels": 128,
|
25 |
+
"mel_fmin": 0.0,
|
26 |
+
"mel_fmax": null
|
27 |
+
},
|
28 |
+
"model": {
|
29 |
+
"inter_channels": 192,
|
30 |
+
"hidden_channels": 192,
|
31 |
+
"filter_channels": 768,
|
32 |
+
"n_heads": 2,
|
33 |
+
"n_layers": 6,
|
34 |
+
"kernel_size": 3,
|
35 |
+
"p_dropout": 0,
|
36 |
+
"resblock": "1",
|
37 |
+
"resblock_kernel_sizes": [3,7,11],
|
38 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
39 |
+
"upsample_rates": [10,6,2,2,2],
|
40 |
+
"upsample_initial_channel": 512,
|
41 |
+
"upsample_kernel_sizes": [16,16,4,4,4],
|
42 |
+
"use_spectral_norm": false,
|
43 |
+
"gin_channels": 256,
|
44 |
+
"spk_embed_dim": 109
|
45 |
+
}
|
46 |
+
}
|
configs/v2/32k.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 50,
|
4 |
+
"seed": 1234,
|
5 |
+
"epochs": 20000,
|
6 |
+
"learning_rate": 1e-4,
|
7 |
+
"betas": [0.8, 0.99],
|
8 |
+
"eps": 1e-9,
|
9 |
+
"batch_size": 4,
|
10 |
+
"fp16_run": true,
|
11 |
+
"lr_decay": 0.99975,
|
12 |
+
"segment_size": 12800,
|
13 |
+
"init_lr_ratio": 1,
|
14 |
+
"warmup_epochs": 100,
|
15 |
+
"c_mel": 45,
|
16 |
+
"c_kl": 1.0
|
17 |
+
},
|
18 |
+
"data": {
|
19 |
+
"max_wav_value": 32768.0,
|
20 |
+
"sampling_rate": 32000,
|
21 |
+
"filter_length": 1024,
|
22 |
+
"hop_length": 320,
|
23 |
+
"win_length": 1024,
|
24 |
+
"n_mel_channels": 80,
|
25 |
+
"mel_fmin": 0.0,
|
26 |
+
"mel_fmax": null
|
27 |
+
},
|
28 |
+
"model": {
|
29 |
+
"inter_channels": 192,
|
30 |
+
"hidden_channels": 192,
|
31 |
+
"filter_channels": 768,
|
32 |
+
"n_heads": 2,
|
33 |
+
"n_layers": 6,
|
34 |
+
"kernel_size": 3,
|
35 |
+
"p_dropout": 0,
|
36 |
+
"resblock": "1",
|
37 |
+
"resblock_kernel_sizes": [3,7,11],
|
38 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
39 |
+
"upsample_rates": [10,8,2,2],
|
40 |
+
"upsample_initial_channel": 512,
|
41 |
+
"upsample_kernel_sizes": [20,16,4,4],
|
42 |
+
"use_spectral_norm": false,
|
43 |
+
"gin_channels": 256,
|
44 |
+
"spk_embed_dim": 109
|
45 |
+
}
|
46 |
+
}
|
configs/v2/40k.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 50,
|
4 |
+
"seed": 1234,
|
5 |
+
"epochs": 20000,
|
6 |
+
"learning_rate": 1e-4,
|
7 |
+
"betas": [0.8, 0.99],
|
8 |
+
"eps": 1e-9,
|
9 |
+
"batch_size": 4,
|
10 |
+
"fp16_run": true,
|
11 |
+
"lr_decay": 0.99975,
|
12 |
+
"segment_size": 12800,
|
13 |
+
"init_lr_ratio": 1,
|
14 |
+
"warmup_epochs": 100,
|
15 |
+
"c_mel": 45,
|
16 |
+
"c_kl": 1.0
|
17 |
+
},
|
18 |
+
"data": {
|
19 |
+
"max_wav_value": 32768.0,
|
20 |
+
"sampling_rate": 40000,
|
21 |
+
"filter_length": 2048,
|
22 |
+
"hop_length": 400,
|
23 |
+
"win_length": 2048,
|
24 |
+
"n_mel_channels": 125,
|
25 |
+
"mel_fmin": 0.0,
|
26 |
+
"mel_fmax": null
|
27 |
+
},
|
28 |
+
"model": {
|
29 |
+
"inter_channels": 192,
|
30 |
+
"hidden_channels": 192,
|
31 |
+
"filter_channels": 768,
|
32 |
+
"n_heads": 2,
|
33 |
+
"n_layers": 6,
|
34 |
+
"kernel_size": 3,
|
35 |
+
"p_dropout": 0,
|
36 |
+
"resblock": "1",
|
37 |
+
"resblock_kernel_sizes": [3,7,11],
|
38 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
39 |
+
"upsample_rates": [10,10,2,2],
|
40 |
+
"upsample_initial_channel": 512,
|
41 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
42 |
+
"use_spectral_norm": false,
|
43 |
+
"gin_channels": 256,
|
44 |
+
"spk_embed_dim": 109
|
45 |
+
}
|
46 |
+
}
|
configs/v2/48k.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 50,
|
4 |
+
"seed": 1234,
|
5 |
+
"epochs": 20000,
|
6 |
+
"learning_rate": 1e-4,
|
7 |
+
"betas": [0.8, 0.99],
|
8 |
+
"eps": 1e-9,
|
9 |
+
"batch_size": 4,
|
10 |
+
"fp16_run": true,
|
11 |
+
"lr_decay": 0.99975,
|
12 |
+
"segment_size": 17280,
|
13 |
+
"init_lr_ratio": 2,
|
14 |
+
"warmup_epochs": 100,
|
15 |
+
"c_mel": 45,
|
16 |
+
"c_kl": 1.0
|
17 |
+
},
|
18 |
+
"data": {
|
19 |
+
"max_wav_value": 32768.0,
|
20 |
+
"sampling_rate": 48000,
|
21 |
+
"filter_length": 2048,
|
22 |
+
"hop_length": 480,
|
23 |
+
"win_length": 2048,
|
24 |
+
"n_mel_channels": 128,
|
25 |
+
"mel_fmin": 0.0,
|
26 |
+
"mel_fmax": null
|
27 |
+
},
|
28 |
+
"model": {
|
29 |
+
"inter_channels": 192,
|
30 |
+
"hidden_channels": 192,
|
31 |
+
"filter_channels": 768,
|
32 |
+
"n_heads": 2,
|
33 |
+
"n_layers": 6,
|
34 |
+
"kernel_size": 3,
|
35 |
+
"p_dropout": 0,
|
36 |
+
"resblock": "1",
|
37 |
+
"resblock_kernel_sizes": [3,7,11],
|
38 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
39 |
+
"upsample_rates": [12,10,2,2],
|
40 |
+
"upsample_initial_channel": 512,
|
41 |
+
"upsample_kernel_sizes": [24,20,4,4],
|
42 |
+
"use_spectral_norm": false,
|
43 |
+
"gin_channels": 256,
|
44 |
+
"spk_embed_dim": 109
|
45 |
+
}
|
46 |
+
}
|