fspecii commited on
Commit
834dc95
1 Parent(s): a7ad4ed

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +136 -97
app.py CHANGED
@@ -12,35 +12,61 @@ from huggingface_hub import hf_hub_download
12
  import MIDI
13
  from midi_synthesizer import synthesis
14
  from midi_tokenizer import MIDITokenizer
 
15
  in_space = os.getenv("SYSTEM") == "spaces"
16
- @torch.inference_mode()
17
- def generate(prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20,
18
- disable_patch_change=False, disable_control_change=False, disable_channels=None, amp=True):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  if disable_channels is not None:
20
  disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels]
21
  else:
22
  disable_channels = []
23
  max_token_seq = tokenizer.max_token_seq
24
  if prompt is None:
25
- input_tensor = torch.full((1, max_token_seq), tokenizer.pad_id, dtype=torch.long, device=model.device)
26
  input_tensor[0, 0] = tokenizer.bos_id # bos
27
  else:
28
  prompt = prompt[:, :max_token_seq]
29
  if prompt.shape[-1] < max_token_seq:
30
  prompt = np.pad(prompt, ((0, 0), (0, max_token_seq - prompt.shape[-1])),
31
  mode="constant", constant_values=tokenizer.pad_id)
32
- input_tensor = torch.from_numpy(prompt).to(dtype=torch.long, device=model.device)
33
- input_tensor = input_tensor.unsqueeze(0)
34
  cur_len = input_tensor.shape[1]
35
- bar = tqdm.tqdm(desc="generating", total=max_len - cur_len)
36
- with bar, torch.cuda.amp.autocast(enabled=amp):
37
  while cur_len < max_len:
38
  end = False
39
- hidden = model.forward(input_tensor)[0, -1].unsqueeze(0)
40
- next_token_seq = None
41
  event_name = ""
42
  for i in range(max_token_seq):
43
- mask = torch.zeros(tokenizer.vocab_size, dtype=torch.int64, device=model.device)
44
  if i == 0:
45
  mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id]
46
  if disable_patch_change:
@@ -54,9 +80,9 @@ def generate(prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20,
54
  if param_name == "channel":
55
  mask_ids = [i for i in mask_ids if i not in disable_channels]
56
  mask[mask_ids] = 1
57
- logits = model.forward_token(hidden, next_token_seq)[:, -1:]
58
- scores = torch.softmax(logits / temp, dim=-1) * mask
59
- sample = model.sample_top_p_k(scores, top_p, top_k)
60
  if i == 0:
61
  next_token_seq = sample
62
  eid = sample.item()
@@ -65,58 +91,29 @@ def generate(prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20,
65
  break
66
  event_name = tokenizer.id_events[eid]
67
  else:
68
- next_token_seq = torch.cat([next_token_seq, sample], dim=1)
69
  if len(tokenizer.events[event_name]) == i:
70
  break
71
  if next_token_seq.shape[1] < max_token_seq:
72
- next_token_seq = F.pad(next_token_seq, (0, max_token_seq - next_token_seq.shape[1]),
73
- "constant", value=tokenizer.pad_id)
74
- next_token_seq = next_token_seq.unsqueeze(1)
75
- input_tensor = torch.cat([input_tensor, next_token_seq], dim=1)
76
  cur_len += 1
77
  bar.update(1)
78
- yield next_token_seq.reshape(-1).cpu().numpy()
79
  if end:
80
  break
81
 
82
 
83
- def run(tab, instruments, drum_kit, mid, midi_events, gen_events, temp, top_p, top_k, allow_cc, amp):
 
 
 
 
84
  mid_seq = []
85
- max_len = int(gen_events)
86
- img_len = 1024
87
- img = np.full((128 * 2, img_len, 3), 255, dtype=np.uint8)
88
- state = {"t1": 0, "t": 0, "cur_pos": 0}
89
- rand = np.random.RandomState(0)
90
- colors = {(i, j): rand.randint(0, 200, 3) for i in range(128) for j in range(16)}
91
-
92
- def draw_event(tokens):
93
- if tokens[0] in tokenizer.id_events:
94
- name = tokenizer.id_events[tokens[0]]
95
- if len(tokens) <= len(tokenizer.events[name]):
96
- return
97
- params = tokens[1:]
98
- params = [params[i] - tokenizer.parameter_ids[p][0] for i, p in enumerate(tokenizer.events[name])]
99
- if not all([0 <= params[i] < tokenizer.event_parameters[p] for i, p in enumerate(tokenizer.events[name])]):
100
- return
101
- event = [name] + params
102
- state["t1"] += event[1]
103
- t = state["t1"] * 16 + event[2]
104
- state["t"] = t
105
- if name == "note":
106
- tr, d, c, p = event[3:7]
107
- shift = t + d - (state["cur_pos"] + img_len)
108
- if shift > 0:
109
- img[:, :-shift] = img[:, shift:]
110
- img[:, -shift:] = 255
111
- state["cur_pos"] += shift
112
- t = t - state["cur_pos"]
113
- img[p * 2:(p + 1) * 2, t: t + d] = colors[(tr, c)]
114
-
115
- def get_img():
116
- t = state["t"] - state["cur_pos"]
117
- img_new = img.copy()
118
- img_new[:, t: t + 2] = 0
119
- return PIL.Image.fromarray(np.flip(img_new, 0))
120
 
121
  disable_patch_change = False
122
  disable_channels = None
@@ -133,7 +130,7 @@ def run(tab, instruments, drum_kit, mid, midi_events, gen_events, temp, top_p, t
133
  mid.append(tokenizer.event2tokens(["patch_change", 0, 0, i, c, p]))
134
  mid_seq = mid
135
  mid = np.asarray(mid, dtype=np.int64)
136
- if len(instruments) > 0 or drum_kit != "None":
137
  disable_patch_change = True
138
  disable_channels = [i for i in range(16) if i not in patches]
139
  elif mid is not None:
@@ -142,41 +139,67 @@ def run(tab, instruments, drum_kit, mid, midi_events, gen_events, temp, top_p, t
142
  mid = mid[:int(midi_events)]
143
  max_len += len(mid)
144
  for token_seq in mid:
145
- mid_seq.append(token_seq)
146
- draw_event(token_seq)
147
- generator = generate(mid, max_len=max_len, temp=temp, top_p=top_p, top_k=top_k,
 
 
 
 
148
  disable_patch_change=disable_patch_change, disable_control_change=not allow_cc,
149
- disable_channels=disable_channels, amp=amp)
150
- for token_seq in generator:
 
151
  mid_seq.append(token_seq)
152
- draw_event(token_seq)
153
- yield mid_seq, get_img(), None, None
154
  mid = tokenizer.detokenize(mid_seq)
155
  with open(f"output.mid", 'wb') as f:
156
  f.write(MIDI.score2midi(mid))
157
  audio = synthesis(MIDI.score2opus(mid), soundfont_path)
158
- yield mid_seq, get_img(), "output.mid", (44100, audio)
159
 
160
 
161
  def cancel_run(mid_seq):
 
 
162
  mid = tokenizer.detokenize(mid_seq)
163
  with open(f"output.mid", 'wb') as f:
164
  f.write(MIDI.score2midi(mid))
165
  audio = synthesis(MIDI.score2opus(mid), soundfont_path)
166
- return "output.mid", (44100, audio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167
 
 
168
 
169
- def load_model(path):
170
- ckpt = torch.load(path, map_location="cpu")
171
- state_dict = ckpt.get("state_dict", ckpt)
172
- model.load_state_dict(state_dict, strict=False)
173
- model.eval()
174
- return "success"
175
 
 
176
 
177
- def get_model_path():
178
- model_paths = sorted(glob.glob("**/*.ckpt", recursive=True))
179
- return model_path_input.update(choices=model_paths)
 
 
 
 
 
 
 
180
 
181
 
182
  number2drum_kits = {-1: "None", 0: "Standard", 8: "Room", 16: "Power", 24: "Electric", 25: "TR-808", 32: "Jazz",
@@ -186,24 +209,38 @@ drum_kits2number = {v: k for k, v in number2drum_kits.items()}
186
 
187
  if __name__ == "__main__":
188
  parser = argparse.ArgumentParser()
 
189
  parser.add_argument("--port", type=int, default=7860, help="gradio server port")
190
- parser.add_argument("--device", type=str, default="cuda", help="device to run model")
191
- soundfont_path = hf_hub_download(repo_id="skytnt/midi-model", filename="soundfont.sf2")
192
  opt = parser.parse_args()
 
 
 
 
 
193
  tokenizer = MIDITokenizer()
194
- model = MIDIModel(tokenizer).to(device=opt.device)
 
 
 
 
 
 
195
 
 
196
  app = gr.Blocks()
197
  with app:
198
- with gr.Accordion(label="Model option", open=False):
199
- load_model_path_btn = gr.Button("Get Models")
200
- model_path_input = gr.Dropdown(label="model")
201
- load_model_path_btn.click(get_model_path, [], model_path_input)
202
- load_model_btn = gr.Button("Load")
203
- model_msg = gr.Textbox()
204
- load_model_btn.click(
205
- load_model, model_path_input, model_msg
206
- )
 
 
207
  tab_select = gr.Variable(value=0)
208
  with gr.Tabs():
209
  with gr.TabItem("instrument prompt") as tab1:
@@ -227,26 +264,28 @@ if __name__ == "__main__":
227
  input_midi_events = gr.Slider(label="use first n midi events as prompt", minimum=1, maximum=512,
228
  step=1,
229
  value=128)
 
 
230
 
231
  tab1.select(lambda: 0, None, tab_select, queue=False)
232
  tab2.select(lambda: 1, None, tab_select, queue=False)
233
- input_gen_events = gr.Slider(label="generate n midi events", minimum=1, maximum=4096, step=1, value=512)
 
234
  with gr.Accordion("options", open=False):
235
  input_temp = gr.Slider(label="temperature", minimum=0.1, maximum=1.2, step=0.01, value=1)
236
  input_top_p = gr.Slider(label="top p", minimum=0.1, maximum=1, step=0.01, value=0.98)
237
  input_top_k = gr.Slider(label="top k", minimum=1, maximum=20, step=1, value=12)
238
  input_allow_cc = gr.Checkbox(label="allow midi cc event", value=True)
239
- input_amp = gr.Checkbox(label="enable amp", value=True)
240
  example3 = gr.Examples([[1, 0.98, 12], [1.2, 0.95, 8]], [input_temp, input_top_p, input_top_k])
241
  run_btn = gr.Button("generate", variant="primary")
242
  stop_btn = gr.Button("stop and output")
243
  output_midi_seq = gr.Variable()
244
- output_midi_img = gr.Image(label="output image")
 
245
  output_midi = gr.File(label="output midi", file_types=[".mid"])
246
- output_audio = gr.Audio(label="output audio", format="mp3")
247
- run_event = run_btn.click(run, [tab_select, input_instruments, input_drum_kit, input_midi, input_midi_events,
248
- input_gen_events, input_temp, input_top_p, input_top_k,
249
- input_allow_cc, input_amp],
250
- [output_midi_seq, output_midi_img, output_midi, output_audio])
251
- stop_btn.click(cancel_run, output_midi_seq, [output_midi, output_audio], cancels=run_event, queue=False)
252
- app.queue(1).launch(server_port=opt.port)
 
12
  import MIDI
13
  from midi_synthesizer import synthesis
14
  from midi_tokenizer import MIDITokenizer
15
+
16
  in_space = os.getenv("SYSTEM") == "spaces"
17
+
18
+
19
+ def softmax(x, axis):
20
+ x_max = np.amax(x, axis=axis, keepdims=True)
21
+ exp_x_shifted = np.exp(x - x_max)
22
+ return exp_x_shifted / np.sum(exp_x_shifted, axis=axis, keepdims=True)
23
+
24
+
25
+ def sample_top_p_k(probs, p, k):
26
+ probs_idx = np.argsort(-probs, axis=-1)
27
+ probs_sort = np.take_along_axis(probs, probs_idx, -1)
28
+ probs_sum = np.cumsum(probs_sort, axis=-1)
29
+ mask = probs_sum - probs_sort > p
30
+ probs_sort[mask] = 0.0
31
+ mask = np.zeros(probs_sort.shape[-1])
32
+ mask[:k] = 1
33
+ probs_sort = probs_sort * mask
34
+ probs_sort /= np.sum(probs_sort, axis=-1, keepdims=True)
35
+ shape = probs_sort.shape
36
+ probs_sort_flat = probs_sort.reshape(-1, shape[-1])
37
+ probs_idx_flat = probs_idx.reshape(-1, shape[-1])
38
+ next_token = np.stack([np.random.choice(idxs, p=pvals) for pvals, idxs in zip(probs_sort_flat, probs_idx_flat)])
39
+ next_token = next_token.reshape(*shape[:-1])
40
+ return next_token
41
+
42
+
43
+ def generate(model, prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20,
44
+ disable_patch_change=False, disable_control_change=False, disable_channels=None):
45
  if disable_channels is not None:
46
  disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels]
47
  else:
48
  disable_channels = []
49
  max_token_seq = tokenizer.max_token_seq
50
  if prompt is None:
51
+ input_tensor = np.full((1, max_token_seq), tokenizer.pad_id, dtype=np.int64)
52
  input_tensor[0, 0] = tokenizer.bos_id # bos
53
  else:
54
  prompt = prompt[:, :max_token_seq]
55
  if prompt.shape[-1] < max_token_seq:
56
  prompt = np.pad(prompt, ((0, 0), (0, max_token_seq - prompt.shape[-1])),
57
  mode="constant", constant_values=tokenizer.pad_id)
58
+ input_tensor = prompt
59
+ input_tensor = input_tensor[None, :, :]
60
  cur_len = input_tensor.shape[1]
61
+ bar = tqdm.tqdm(desc="generating", total=max_len - cur_len, disable=in_space)
62
+ with bar:
63
  while cur_len < max_len:
64
  end = False
65
+ hidden = model[0].run(None, {'x': input_tensor})[0][:, -1]
66
+ next_token_seq = np.empty((1, 0), dtype=np.int64)
67
  event_name = ""
68
  for i in range(max_token_seq):
69
+ mask = np.zeros(tokenizer.vocab_size, dtype=np.int64)
70
  if i == 0:
71
  mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id]
72
  if disable_patch_change:
 
80
  if param_name == "channel":
81
  mask_ids = [i for i in mask_ids if i not in disable_channels]
82
  mask[mask_ids] = 1
83
+ logits = model[1].run(None, {'x': next_token_seq, "hidden": hidden})[0][:, -1:]
84
+ scores = softmax(logits / temp, -1) * mask
85
+ sample = sample_top_p_k(scores, top_p, top_k)
86
  if i == 0:
87
  next_token_seq = sample
88
  eid = sample.item()
 
91
  break
92
  event_name = tokenizer.id_events[eid]
93
  else:
94
+ next_token_seq = np.concatenate([next_token_seq, sample], axis=1)
95
  if len(tokenizer.events[event_name]) == i:
96
  break
97
  if next_token_seq.shape[1] < max_token_seq:
98
+ next_token_seq = np.pad(next_token_seq, ((0, 0), (0, max_token_seq - next_token_seq.shape[-1])),
99
+ mode="constant", constant_values=tokenizer.pad_id)
100
+ next_token_seq = next_token_seq[None, :, :]
101
+ input_tensor = np.concatenate([input_tensor, next_token_seq], axis=1)
102
  cur_len += 1
103
  bar.update(1)
104
+ yield next_token_seq.reshape(-1)
105
  if end:
106
  break
107
 
108
 
109
+ def create_msg(name, data):
110
+ return {"name": name, "data": data}
111
+
112
+
113
+ def run(model_name, tab, instruments, drum_kit, mid, midi_events, gen_events, temp, top_p, top_k, allow_cc):
114
  mid_seq = []
115
+ gen_events = int(gen_events)
116
+ max_len = gen_events
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117
 
118
  disable_patch_change = False
119
  disable_channels = None
 
130
  mid.append(tokenizer.event2tokens(["patch_change", 0, 0, i, c, p]))
131
  mid_seq = mid
132
  mid = np.asarray(mid, dtype=np.int64)
133
+ if len(instruments) > 0:
134
  disable_patch_change = True
135
  disable_channels = [i for i in range(16) if i not in patches]
136
  elif mid is not None:
 
139
  mid = mid[:int(midi_events)]
140
  max_len += len(mid)
141
  for token_seq in mid:
142
+ mid_seq.append(token_seq.tolist())
143
+ init_msgs = [create_msg("visualizer_clear", None)]
144
+ for tokens in mid_seq:
145
+ init_msgs.append(create_msg("visualizer_append", tokenizer.tokens2event(tokens)))
146
+ yield mid_seq, None, None, init_msgs
147
+ model = models[model_name]
148
+ generator = generate(model, mid, max_len=max_len, temp=temp, top_p=top_p, top_k=top_k,
149
  disable_patch_change=disable_patch_change, disable_control_change=not allow_cc,
150
+ disable_channels=disable_channels)
151
+ for i, token_seq in enumerate(generator):
152
+ token_seq = token_seq.tolist()
153
  mid_seq.append(token_seq)
154
+ event = tokenizer.tokens2event(token_seq)
155
+ yield mid_seq, None, None, [create_msg("visualizer_append", event), create_msg("progress", [i + 1, gen_events])]
156
  mid = tokenizer.detokenize(mid_seq)
157
  with open(f"output.mid", 'wb') as f:
158
  f.write(MIDI.score2midi(mid))
159
  audio = synthesis(MIDI.score2opus(mid), soundfont_path)
160
+ yield mid_seq, "output.mid", (44100, audio), [create_msg("visualizer_end", None)]
161
 
162
 
163
  def cancel_run(mid_seq):
164
+ if mid_seq is None:
165
+ return None, None
166
  mid = tokenizer.detokenize(mid_seq)
167
  with open(f"output.mid", 'wb') as f:
168
  f.write(MIDI.score2midi(mid))
169
  audio = synthesis(MIDI.score2opus(mid), soundfont_path)
170
+ return "output.mid", (44100, audio), [create_msg("visualizer_end", None)]
171
+
172
+
173
+ def load_javascript(dir="javascript"):
174
+ scripts_list = glob.glob(f"{dir}/*.js")
175
+ javascript = ""
176
+ for path in scripts_list:
177
+ with open(path, "r", encoding="utf8") as jsfile:
178
+ javascript += f"\n<!-- {path} --><script>{jsfile.read()}</script>"
179
+ template_response_ori = gr.routes.templates.TemplateResponse
180
+
181
+ def template_response(*args, **kwargs):
182
+ res = template_response_ori(*args, **kwargs)
183
+ res.body = res.body.replace(
184
+ b'</head>', f'{javascript}</head>'.encode("utf8"))
185
+ res.init_headers()
186
+ return res
187
 
188
+ gr.routes.templates.TemplateResponse = template_response
189
 
 
 
 
 
 
 
190
 
191
+ class JSMsgReceiver(gr.HTML):
192
 
193
+ def __init__(self, **kwargs):
194
+ super().__init__(elem_id="msg_receiver", visible=False, **kwargs)
195
+
196
+ def postprocess(self, y):
197
+ if y:
198
+ y = f"<p>{json.dumps(y)}</p>"
199
+ return super().postprocess(y)
200
+
201
+ def get_block_name(self) -> str:
202
+ return "html"
203
 
204
 
205
  number2drum_kits = {-1: "None", 0: "Standard", 8: "Room", 16: "Power", 24: "Electric", 25: "TR-808", 32: "Jazz",
 
209
 
210
  if __name__ == "__main__":
211
  parser = argparse.ArgumentParser()
212
+ parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
213
  parser.add_argument("--port", type=int, default=7860, help="gradio server port")
214
+ parser.add_argument("--max-gen", type=int, default=1024, help="max")
 
215
  opt = parser.parse_args()
216
+ soundfont_path = hf_hub_download(repo_id="skytnt/midi-model", filename="soundfont.sf2")
217
+ models_info = {"generic pretrain model": ["skytnt/midi-model", ""],
218
+ "j-pop finetune model": ["skytnt/midi-model-ft", "jpop/"],
219
+ "touhou finetune model": ["fspecii/ambp", "ambsd/"]}
220
+ models = {}
221
  tokenizer = MIDITokenizer()
222
+ providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
223
+ for name, (repo_id, path) in models_info.items():
224
+ model_base_path = hf_hub_download(repo_id=repo_id, filename=f"{path}onnx/model_base.onnx")
225
+ model_token_path = hf_hub_download(repo_id=repo_id, filename=f"{path}onnx/model_token.onnx")
226
+ model_base = rt.InferenceSession(model_base_path, providers=providers)
227
+ model_token = rt.InferenceSession(model_token_path, providers=providers)
228
+ models[name] = [model_base, model_token]
229
 
230
+ load_javascript()
231
  app = gr.Blocks()
232
  with app:
233
+ gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Midi Composer</h1>")
234
+ gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=skytnt.midi-composer&style=flat)\n\n"
235
+ "Midi event transformer for music generation\n\n"
236
+ "Demo for [SkyTNT/midi-model](https://github.com/SkyTNT/midi-model)\n\n"
237
+ "[Open In Colab]"
238
+ "(https://colab.research.google.com/github/SkyTNT/midi-model/blob/main/demo.ipynb)"
239
+ " for faster running and longer generation"
240
+ )
241
+ js_msg = JSMsgReceiver()
242
+ input_model = gr.Dropdown(label="select model", choices=list(models.keys()),
243
+ type="value", value=list(models.keys())[0])
244
  tab_select = gr.Variable(value=0)
245
  with gr.Tabs():
246
  with gr.TabItem("instrument prompt") as tab1:
 
264
  input_midi_events = gr.Slider(label="use first n midi events as prompt", minimum=1, maximum=512,
265
  step=1,
266
  value=128)
267
+ example2 = gr.Examples([[file, 128] for file in glob.glob("example/*.mid")],
268
+ [input_midi, input_midi_events])
269
 
270
  tab1.select(lambda: 0, None, tab_select, queue=False)
271
  tab2.select(lambda: 1, None, tab_select, queue=False)
272
+ input_gen_events = gr.Slider(label="generate n midi events", minimum=1, maximum=opt.max_gen,
273
+ step=1, value=opt.max_gen // 2)
274
  with gr.Accordion("options", open=False):
275
  input_temp = gr.Slider(label="temperature", minimum=0.1, maximum=1.2, step=0.01, value=1)
276
  input_top_p = gr.Slider(label="top p", minimum=0.1, maximum=1, step=0.01, value=0.98)
277
  input_top_k = gr.Slider(label="top k", minimum=1, maximum=20, step=1, value=12)
278
  input_allow_cc = gr.Checkbox(label="allow midi cc event", value=True)
 
279
  example3 = gr.Examples([[1, 0.98, 12], [1.2, 0.95, 8]], [input_temp, input_top_p, input_top_k])
280
  run_btn = gr.Button("generate", variant="primary")
281
  stop_btn = gr.Button("stop and output")
282
  output_midi_seq = gr.Variable()
283
+ output_midi_visualizer = gr.HTML(elem_id="midi_visualizer_container")
284
+ output_audio = gr.Audio(label="output audio", format="mp3", elem_id="midi_audio")
285
  output_midi = gr.File(label="output midi", file_types=[".mid"])
286
+ run_event = run_btn.click(run, [input_model, tab_select, input_instruments, input_drum_kit, input_midi,
287
+ input_midi_events, input_gen_events, input_temp, input_top_p, input_top_k,
288
+ input_allow_cc],
289
+ [output_midi_seq, output_midi, output_audio, js_msg])
290
+ stop_btn.click(cancel_run, output_midi_seq, [output_midi, output_audio, js_msg], cancels=run_event, queue=False)
291
+ app.queue(2).launch(server_port=opt.port, share=opt.share, inbrowser=True)