furquan commited on
Commit
2ccd029
1 Parent(s): 56b19de

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -6
app.py CHANGED
@@ -6,16 +6,13 @@ from peft import PeftModel
6
 
7
  #pipe = pipeline("text-generation", model="furquan/opt_2_7_b_prompt_tuned_sentiment_analysis", trust_remote_code=True, cache_dir="/local/home/furquanh/myProjects/week12/").to('cuda')
8
 
9
- # tokenizer = AutoTokenizer.from_pretrained("furquan/opt-1-3b-prompt-tuned-sentiment-analysis", trust_remote_code=True)
10
- # model = AutoModel.from_pretrained("furquan/opt-1-3b-prompt-tuned-sentiment-analysis", trust_remote_code=True)
11
- model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", token="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")
12
- tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
13
 
14
- model = PeftModel.from_pretrained(model, "furquan/llama2-sentiment-prompt-tuned")
15
 
16
 
17
  title = "OPT-1.3B"
18
- description = "This demo uses meta's LLama-2-7b Causal LM as base model that was prompt tuned on the mteb/tweet_sentiment_extraction dataset to only output the sentiment of a given text."
19
  article = "<p style='text-align: center'><a href='https://arxiv.org/pdf/2104.08691.pdf' target='_blank'>The Power of Scale for Parameter-Efficient Prompt Tuning</a></p>"
20
 
21
 
 
6
 
7
  #pipe = pipeline("text-generation", model="furquan/opt_2_7_b_prompt_tuned_sentiment_analysis", trust_remote_code=True, cache_dir="/local/home/furquanh/myProjects/week12/").to('cuda')
8
 
9
+ tokenizer = AutoTokenizer.from_pretrained("furquan/opt-1-3b-prompt-tuned-sentiment-analysis", trust_remote_code=True)
10
+ model = AutoModel.from_pretrained("furquan/opt-1-3b-prompt-tuned-sentiment-analysis", trust_remote_code=True)
 
 
11
 
 
12
 
13
 
14
  title = "OPT-1.3B"
15
+ description = "This demo uses meta's OPT-1.3B Causal LM as base model that was prompt tuned on the Stanford Sentiment Treebank dataset to only output the sentiment of a given text."
16
  article = "<p style='text-align: center'><a href='https://arxiv.org/pdf/2104.08691.pdf' target='_blank'>The Power of Scale for Parameter-Efficient Prompt Tuning</a></p>"
17
 
18