Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,18 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
|
4 |
-
from transformers import pipeline, AutoTokenizer, AutoModel
|
5 |
|
6 |
#pipe = pipeline("text-generation", model="furquan/opt_2_7_b_prompt_tuned_sentiment_analysis", trust_remote_code=True, cache_dir="/local/home/furquanh/myProjects/week12/").to('cuda')
|
7 |
|
8 |
-
tokenizer = AutoTokenizer.from_pretrained("furquan/opt-1-3b-prompt-tuned-sentiment-analysis", trust_remote_code=True)
|
9 |
-
model = AutoModel.from_pretrained("furquan/opt-1-3b-prompt-tuned-sentiment-analysis", trust_remote_code=True)
|
|
|
|
|
10 |
|
11 |
|
12 |
title = "OPT-1.3B"
|
13 |
-
description = "This demo uses meta's
|
14 |
article = "<p style='text-align: center'><a href='https://arxiv.org/pdf/2104.08691.pdf' target='_blank'>The Power of Scale for Parameter-Efficient Prompt Tuning</a></p>"
|
15 |
|
16 |
|
@@ -20,9 +22,9 @@ def sentiment(text):
|
|
20 |
tokenized = tokenizer(text, return_tensors='pt')
|
21 |
with torch.no_grad():
|
22 |
outputs = model.generate(
|
23 |
-
input_ids=tokenized["input_ids"], attention_mask=tokenized["attention_mask"]
|
24 |
)
|
25 |
-
return f"text: {text} Sentiment: {tokenizer.decode(outputs[0]
|
26 |
|
27 |
iface = gr.Interface(fn=sentiment, inputs="text", outputs="text", title=title,
|
28 |
description=description, article=article)
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
|
4 |
+
from transformers import pipeline, AutoTokenizer, AutoModel, LlamaForCausalLM
|
5 |
|
6 |
#pipe = pipeline("text-generation", model="furquan/opt_2_7_b_prompt_tuned_sentiment_analysis", trust_remote_code=True, cache_dir="/local/home/furquanh/myProjects/week12/").to('cuda')
|
7 |
|
8 |
+
# tokenizer = AutoTokenizer.from_pretrained("furquan/opt-1-3b-prompt-tuned-sentiment-analysis", trust_remote_code=True)
|
9 |
+
# model = AutoModel.from_pretrained("furquan/opt-1-3b-prompt-tuned-sentiment-analysis", trust_remote_code=True)
|
10 |
+
model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
|
12 |
|
13 |
|
14 |
title = "OPT-1.3B"
|
15 |
+
description = "This demo uses meta's LLama-2-7b Causal LM as base model that was prompt tuned on the Stanford Sentiment Treebank-5 way dataset to only output the sentiment of a given text."
|
16 |
article = "<p style='text-align: center'><a href='https://arxiv.org/pdf/2104.08691.pdf' target='_blank'>The Power of Scale for Parameter-Efficient Prompt Tuning</a></p>"
|
17 |
|
18 |
|
|
|
22 |
tokenized = tokenizer(text, return_tensors='pt')
|
23 |
with torch.no_grad():
|
24 |
outputs = model.generate(
|
25 |
+
input_ids=tokenized["input_ids"], attention_mask=tokenized["attention_mask"], max_new_tokens=1
|
26 |
)
|
27 |
+
return f"text: {text} Sentiment: {tokenizer.decode(outputs[0], skip_special_tokens=True).split(' ')[-1]}"
|
28 |
|
29 |
iface = gr.Interface(fn=sentiment, inputs="text", outputs="text", title=title,
|
30 |
description=description, article=article)
|