|
import json |
|
import requests |
|
import os |
|
import traceback |
|
import gradio as gr |
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN", None) |
|
API_URL = "https://api-inference.huggingface.co/models/" |
|
|
|
def s2t(audio, model_name): |
|
with open(audio, "rb") as f: |
|
data = f.read() |
|
try: |
|
url = API_URL + model_name |
|
headers = {"Authorization": f"Bearer {HF_TOKEN}"} |
|
response = requests.request("POST", url, headers=headers, data=data) |
|
text = json.loads(response.content.decode("utf-8")) |
|
text = text['text'] |
|
except: |
|
text = f"Transcription failed with error:\n{traceback.format_exc()}" |
|
|
|
yield text |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
voice = gr.Microphone(source="microphone", type="filepath", label="Voice", |
|
interactive=True, streaming=False) |
|
audio = gr.Audio(source="upload", type="filepath", label="Audio file") |
|
model_name = gr.Dropdown( |
|
label="Models:", |
|
choices=[ |
|
"openai/whisper-large-v3", |
|
"openai/whisper-large-v2", |
|
"openai/whisper-large", |
|
"openai/whisper-medium", |
|
"openai/whisper-small", |
|
"openai/whisper-base", |
|
"openai/whisper-tiny", |
|
], |
|
value="openai/whisper-large-v3", |
|
) |
|
with gr.Column(): |
|
output = gr.Textbox(label="Transcription results") |
|
|
|
voice.change(s2t, inputs=[voice, model_name], outputs=output) |
|
audio.upload(s2t, inputs=[audio, model_name], outputs=output) |
|
|
|
demo.queue(concurrency_count=8).launch() |