S2T / app.py
futranbg's picture
Update app.py
add7e1d
raw
history blame
1.82 kB
import json
import requests
import os
import traceback
import gradio as gr # Imports the Gradio library, which is used to create user interfaces for machine learning models.
HF_TOKEN = os.environ.get("HF_TOKEN", None)
API_URL = "https://api-inference.huggingface.co/models/"
def s2t(audio, model_name):
with open(audio, "rb") as f:
data = f.read()
try:
url = API_URL + model_name
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
response = requests.request("POST", url, headers=headers, data=data)
text = json.loads(response.content.decode("utf-8"))
text = text['text']
except:
text = f"Transcription failed with error:\n{traceback.format_exc()}"
yield text
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
voice = gr.Microphone(source="microphone", type="filepath", label="Voice",
interactive=True, streaming=False)
audio = gr.Audio(source="upload", type="filepath", label="Audio file")
model_name = gr.Dropdown(
label="Models:",
choices=[
"openai/whisper-large-v3",
"openai/whisper-large-v2",
"openai/whisper-large",
"openai/whisper-medium",
"openai/whisper-small",
"openai/whisper-base",
"openai/whisper-tiny",
],
value="openai/whisper-large-v3",
)
with gr.Column():
output = gr.Textbox(label="Transcription results")
voice.change(s2t, inputs=[voice, model_name], outputs=output)
audio.upload(s2t, inputs=[audio, model_name], outputs=output)
demo.queue(concurrency_count=8).launch()