Spaces:
Running
Running
File size: 6,275 Bytes
46ef3d8 bf38ec8 590064e bf38ec8 590064e 46ef3d8 bf38ec8 fd7914e bf38ec8 fd7914e 35e3254 fd7914e 64721de 590064e 17ca086 590064e 17ca086 590064e 17ca086 590064e 35e3254 64721de 35e3254 bf38ec8 35e3254 bf38ec8 64721de bf38ec8 35e3254 bf38ec8 64721de 35e3254 64721de bf38ec8 64721de bf38ec8 64721de 35e3254 bf38ec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import gradio as gr
import json
import math
from backend import get_message_single, get_message_spam, send_single, send_spam, tokenizer
from defaults import (
ADDRESS_BETTERTRANSFORMER,
ADDRESS_VANILLA,
defaults_bt_single,
defaults_bt_spam,
defaults_vanilla_single,
defaults_vanilla_spam,
BATCH_SIZE,
)
import datasets
import torch
def dispatch_single(input_model_single, address_input_vanilla, address_input_bettertransformer):
result_vanilla = send_single(input_model_single, address_input_vanilla)
result_bettertransformer = send_single(input_model_single, address_input_bettertransformer)
return result_vanilla, result_bettertransformer
def dispatch_spam(input_n_spam, address_input_vanilla, address_input_bettertransformer):
input_n_spam = int(input_n_spam)
assert input_n_spam <= len(data)
inp = data.shuffle().select(range(input_n_spam))
result_vanilla = send_spam(inp, address_input_vanilla)
result_bettertransformer = send_spam(inp, address_input_bettertransformer)
return result_vanilla, result_bettertransformer
def dispatch_spam_artif(input_n_spam_artif, sequence_length, padding_ratio, address_input_vanilla, address_input_bettertransformer):
sequence_length = int(sequence_length)
input_n_spam_artif = int(input_n_spam_artif)
inp_tokens = torch.randint(tokenizer.vocab_size - 1, (sequence_length,)) + 1
n_pads = max(int(padding_ratio * len(inp_tokens)), 1)
inp_tokens[- n_pads:] = 0
inp_tokens[0] = 101
inp_tokens[- n_pads - 1] = 102
#inp_tokens = inp_tokens.unsqueeze(0).repeat(BATCH_SIZE, 1)
attention_mask = torch.zeros((sequence_length,), dtype=torch.int64)
attention_mask[:- n_pads] = 1
str_input = json.dumps({
"input_ids": inp_tokens.cpu().tolist(),
"attention_mask": attention_mask.cpu().tolist(),
"pre_tokenized": True,
})
input_dataset = datasets.Dataset.from_dict(
{"sentence": [str_input for _ in range(input_n_spam_artif)]}
)
result_vanilla = send_spam(input_dataset, address_input_vanilla)
result_bettertransformer = send_spam(input_dataset, address_input_bettertransformer)
return result_vanilla, result_bettertransformer
TTILE_IMAGE = """
<div
style="
display: block;
margin-left: auto;
margin-right: auto;
width: 50%;
"
>
<img src="https://huggingface.co/spaces/fxmarty/bettertransformer-demo/resolve/main/header.webp"/>
</div>
"""
TITLE = """
<div
style="
display: inline-flex;
align-items: center;
text-align: center;
max-width: 1400px;
gap: 0.8rem;
font-size: 2.2rem;
"
>
<h1 style="font-weight: 500; margin-bottom: 10px; margin-top: 10px;">
Speed up your inference and support more workload with PyTorch's BetterTransformer 🤗
</h1>
</div>
"""
with gr.Blocks() as demo:
gr.HTML(TTILE_IMAGE)
gr.HTML(TITLE)
gr.Markdown(
"""
Let's try out TorchServe + BetterTransformer!
BetterTransformer is a stable feature made available with [PyTorch 1.13](https://pytorch.org/blog/PyTorch-1.13-release/) allowing to use a fastpath execution for encoder attention blocks.
As a one-liner, you can convert your 🤗 Transformers models to use BetterTransformer thanks to the [🤗 Optimum](https://huggingface.co/docs/optimum/main/en/index) library:
```
from optimum.bettertransformer import BetterTransformer
better_model = BetterTransformer.transform(model)
```
This Space is a demo of an **end-to-end** deployement of PyTorch eager-mode models, both with and without BetterTransformer. The goal is to see what are the benefits server-side and client-side of using BetterTransformer.
## Inference using...
"""
)
with gr.Row():
with gr.Column(scale=50):
gr.Markdown("### Vanilla Transformers + TorchServe")
with gr.Column(scale=50):
gr.Markdown("### BetterTransformer + TorchServe")
address_input_vanilla = gr.Textbox(
max_lines=1, label="ip vanilla", value=ADDRESS_VANILLA, visible=False
)
address_input_bettertransformer = gr.Textbox(
max_lines=1,
label="ip bettertransformer",
value=ADDRESS_BETTERTRANSFORMER,
visible=False,
)
input_model_single = gr.Textbox(
max_lines=1,
label="Text",
value="Expectations were low, enjoyment was high",
)
btn_single = gr.Button("Send single text request")
with gr.Row():
with gr.Column(scale=50):
output_single_vanilla = gr.Markdown(
label="Output single vanilla",
value=get_message_single(**defaults_vanilla_single),
)
with gr.Column(scale=50):
output_single_bt = gr.Markdown(
label="Output single bt", value=get_message_single(**defaults_bt_single)
)
btn_single.click(
fn=dispatch_single,
inputs=[input_model_single, address_input_vanilla, address_input_bettertransformer],
outputs=[output_single_vanilla, output_single_bt],
)
input_n_spam_artif = gr.Number(
label="Number of inputs to send",
value=8,
)
sequence_length = gr.Number(
label="Sequence length (in tokens)",
value=128,
)
padding_ratio = gr.Number(
label="Padding ratio",
value=0.5,
)
btn_spam_artif = gr.Button(
"Spam text requests (using artificial data)"
)
with gr.Row():
with gr.Column(scale=50):
output_spam_vanilla_artif = gr.Markdown(
label="Output spam vanilla",
value=get_message_spam(**defaults_vanilla_spam),
)
with gr.Column(scale=50):
output_spam_bt_artif = gr.Markdown(
label="Output spam bt", value=get_message_spam(**defaults_bt_spam)
)
btn_spam_artif.click(
fn=dispatch_spam_artif,
inputs=[input_n_spam_artif, sequence_length, padding_ratio, address_input_vanilla, address_input_bettertransformer],
outputs=[output_spam_vanilla_artif, output_spam_bt_artif],
)
demo.queue(concurrency_count=1)
demo.launch() |