Spaces:
Running
Running
Felix Marty
commited on
Commit
•
f5a63b8
1
Parent(s):
bf38ec8
fix throughput measure
Browse files- app.py +1 -15
- backend.py +14 -10
- utils.py +0 -26
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
import json
|
4 |
-
import math
|
5 |
from backend import get_message_single, get_message_spam, send_single, send_spam, tokenizer
|
6 |
from defaults import (
|
7 |
ADDRESS_BETTERTRANSFORMER,
|
@@ -10,7 +9,6 @@ from defaults import (
|
|
10 |
defaults_bt_spam,
|
11 |
defaults_vanilla_single,
|
12 |
defaults_vanilla_spam,
|
13 |
-
BATCH_SIZE,
|
14 |
)
|
15 |
|
16 |
import datasets
|
@@ -22,17 +20,6 @@ def dispatch_single(input_model_single, address_input_vanilla, address_input_bet
|
|
22 |
|
23 |
return result_vanilla, result_bettertransformer
|
24 |
|
25 |
-
def dispatch_spam(input_n_spam, address_input_vanilla, address_input_bettertransformer):
|
26 |
-
input_n_spam = int(input_n_spam)
|
27 |
-
assert input_n_spam <= len(data)
|
28 |
-
|
29 |
-
inp = data.shuffle().select(range(input_n_spam))
|
30 |
-
|
31 |
-
result_vanilla = send_spam(inp, address_input_vanilla)
|
32 |
-
result_bettertransformer = send_spam(inp, address_input_bettertransformer)
|
33 |
-
|
34 |
-
return result_vanilla, result_bettertransformer
|
35 |
-
|
36 |
def dispatch_spam_artif(input_n_spam_artif, sequence_length, padding_ratio, address_input_vanilla, address_input_bettertransformer):
|
37 |
sequence_length = int(sequence_length)
|
38 |
input_n_spam_artif = int(input_n_spam_artif)
|
@@ -44,7 +31,6 @@ def dispatch_spam_artif(input_n_spam_artif, sequence_length, padding_ratio, addr
|
|
44 |
|
45 |
inp_tokens[0] = 101
|
46 |
inp_tokens[- n_pads - 1] = 102
|
47 |
-
#inp_tokens = inp_tokens.unsqueeze(0).repeat(BATCH_SIZE, 1)
|
48 |
|
49 |
attention_mask = torch.zeros((sequence_length,), dtype=torch.int64)
|
50 |
attention_mask[:- n_pads] = 1
|
@@ -63,7 +49,7 @@ def dispatch_spam_artif(input_n_spam_artif, sequence_length, padding_ratio, addr
|
|
63 |
result_bettertransformer = send_spam(input_dataset, address_input_bettertransformer)
|
64 |
|
65 |
return result_vanilla, result_bettertransformer
|
66 |
-
|
67 |
TTILE_IMAGE = """
|
68 |
<div
|
69 |
style="
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
import json
|
|
|
4 |
from backend import get_message_single, get_message_spam, send_single, send_spam, tokenizer
|
5 |
from defaults import (
|
6 |
ADDRESS_BETTERTRANSFORMER,
|
|
|
9 |
defaults_bt_spam,
|
10 |
defaults_vanilla_single,
|
11 |
defaults_vanilla_spam,
|
|
|
12 |
)
|
13 |
|
14 |
import datasets
|
|
|
20 |
|
21 |
return result_vanilla, result_bettertransformer
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
def dispatch_spam_artif(input_n_spam_artif, sequence_length, padding_ratio, address_input_vanilla, address_input_bettertransformer):
|
24 |
sequence_length = int(sequence_length)
|
25 |
input_n_spam_artif = int(input_n_spam_artif)
|
|
|
31 |
|
32 |
inp_tokens[0] = 101
|
33 |
inp_tokens[- n_pads - 1] = 102
|
|
|
34 |
|
35 |
attention_mask = torch.zeros((sequence_length,), dtype=torch.int64)
|
36 |
attention_mask[:- n_pads] = 1
|
|
|
49 |
result_bettertransformer = send_spam(input_dataset, address_input_bettertransformer)
|
50 |
|
51 |
return result_vanilla, result_bettertransformer
|
52 |
+
|
53 |
TTILE_IMAGE = """
|
54 |
<div
|
55 |
style="
|
backend.py
CHANGED
@@ -6,11 +6,11 @@ from defaults import (
|
|
6 |
HEADERS,
|
7 |
MODEL_NAME,
|
8 |
)
|
9 |
-
from
|
10 |
|
11 |
from transformers import AutoTokenizer
|
12 |
|
13 |
-
import
|
14 |
|
15 |
RETURN_MESSAGE_SINGLE = """
|
16 |
Inference statistics:
|
@@ -68,18 +68,20 @@ def get_message_spam(
|
|
68 |
)
|
69 |
|
70 |
|
71 |
-
SESSION =
|
72 |
|
73 |
def send_single(input_model_vanilla, address: str):
|
74 |
assert address in [ADDRESS_VANILLA, ADDRESS_BETTERTRANSFORMER]
|
75 |
|
76 |
# should not take more than 10 s, so timeout if that's the case
|
|
|
77 |
promise = SESSION.post(
|
78 |
address, headers=HEADERS, data=input_model_vanilla.encode("utf-8"), timeout=10
|
79 |
)
|
80 |
|
81 |
try:
|
82 |
response = promise.result() # resolve ASAP
|
|
|
83 |
except Exception as e:
|
84 |
return f"{e}"
|
85 |
|
@@ -89,7 +91,7 @@ def send_single(input_model_vanilla, address: str):
|
|
89 |
prediction = response_text[0]
|
90 |
inf_latency = response_text[1]
|
91 |
peak_gpu_memory = response_text[2]
|
92 |
-
end_to_end_latency =
|
93 |
|
94 |
return get_message_single(
|
95 |
status, prediction, inf_latency, peak_gpu_memory, end_to_end_latency
|
@@ -99,8 +101,6 @@ def send_single(input_model_vanilla, address: str):
|
|
99 |
def send_spam(inp, address: str):
|
100 |
assert address in [ADDRESS_VANILLA, ADDRESS_BETTERTRANSFORMER]
|
101 |
|
102 |
-
# data = "this is positive lol" #TODO: use dynamic data with padding
|
103 |
-
max_resolution_time = 0
|
104 |
mean_inference_latency = 0
|
105 |
mean_peak_gpu_memory = 0
|
106 |
|
@@ -113,6 +113,7 @@ def send_spam(inp, address: str):
|
|
113 |
|
114 |
n_inputs = len(inp)
|
115 |
|
|
|
116 |
for i in range(n_inputs):
|
117 |
input_data = inp[i]["sentence"].encode("utf-8")
|
118 |
|
@@ -121,18 +122,21 @@ def send_spam(inp, address: str):
|
|
121 |
SESSION.post(address, headers=HEADERS, data=input_data, timeout=15)
|
122 |
)
|
123 |
|
|
|
|
|
124 |
for promise in promises:
|
125 |
try:
|
126 |
response = promise.result() # resolve ASAP
|
127 |
except Exception as e:
|
128 |
return f"{e}"
|
|
|
|
|
129 |
|
|
|
|
|
130 |
response = promise.result()
|
131 |
-
|
132 |
response_text = json.loads(response.text)
|
133 |
|
134 |
-
max_resolution_time = max(max_resolution_time, response.elapsed)
|
135 |
-
|
136 |
mean_inference_latency += response_text[1]
|
137 |
mean_peak_gpu_memory += response_text[2]
|
138 |
n_pads += response_text[3]
|
@@ -140,7 +144,7 @@ def send_spam(inp, address: str):
|
|
140 |
sequence_length += response_text[5]
|
141 |
effective_batch_size += response_text[6]
|
142 |
|
143 |
-
throughput = n_inputs / (
|
144 |
mean_padding_ratio = f"{n_pads / n_elems * 100:.2f}"
|
145 |
mean_sequence_length = sequence_length / n_inputs
|
146 |
effective_batch_size = effective_batch_size / n_inputs
|
|
|
6 |
HEADERS,
|
7 |
MODEL_NAME,
|
8 |
)
|
9 |
+
from requests_futures.sessions import FuturesSession
|
10 |
|
11 |
from transformers import AutoTokenizer
|
12 |
|
13 |
+
import time
|
14 |
|
15 |
RETURN_MESSAGE_SINGLE = """
|
16 |
Inference statistics:
|
|
|
68 |
)
|
69 |
|
70 |
|
71 |
+
SESSION = FuturesSession()
|
72 |
|
73 |
def send_single(input_model_vanilla, address: str):
|
74 |
assert address in [ADDRESS_VANILLA, ADDRESS_BETTERTRANSFORMER]
|
75 |
|
76 |
# should not take more than 10 s, so timeout if that's the case
|
77 |
+
start = time.time()
|
78 |
promise = SESSION.post(
|
79 |
address, headers=HEADERS, data=input_model_vanilla.encode("utf-8"), timeout=10
|
80 |
)
|
81 |
|
82 |
try:
|
83 |
response = promise.result() # resolve ASAP
|
84 |
+
end = time.time()
|
85 |
except Exception as e:
|
86 |
return f"{e}"
|
87 |
|
|
|
91 |
prediction = response_text[0]
|
92 |
inf_latency = response_text[1]
|
93 |
peak_gpu_memory = response_text[2]
|
94 |
+
end_to_end_latency = round((end - start) * 1e3, 2)
|
95 |
|
96 |
return get_message_single(
|
97 |
status, prediction, inf_latency, peak_gpu_memory, end_to_end_latency
|
|
|
101 |
def send_spam(inp, address: str):
|
102 |
assert address in [ADDRESS_VANILLA, ADDRESS_BETTERTRANSFORMER]
|
103 |
|
|
|
|
|
104 |
mean_inference_latency = 0
|
105 |
mean_peak_gpu_memory = 0
|
106 |
|
|
|
113 |
|
114 |
n_inputs = len(inp)
|
115 |
|
116 |
+
start = time.time()
|
117 |
for i in range(n_inputs):
|
118 |
input_data = inp[i]["sentence"].encode("utf-8")
|
119 |
|
|
|
122 |
SESSION.post(address, headers=HEADERS, data=input_data, timeout=15)
|
123 |
)
|
124 |
|
125 |
+
# to measure throughput first
|
126 |
+
end = 0
|
127 |
for promise in promises:
|
128 |
try:
|
129 |
response = promise.result() # resolve ASAP
|
130 |
except Exception as e:
|
131 |
return f"{e}"
|
132 |
+
|
133 |
+
end = max(time.time(), end)
|
134 |
|
135 |
+
# then other metrics
|
136 |
+
for promise in promises:
|
137 |
response = promise.result()
|
|
|
138 |
response_text = json.loads(response.text)
|
139 |
|
|
|
|
|
140 |
mean_inference_latency += response_text[1]
|
141 |
mean_peak_gpu_memory += response_text[2]
|
142 |
n_pads += response_text[3]
|
|
|
144 |
sequence_length += response_text[5]
|
145 |
effective_batch_size += response_text[6]
|
146 |
|
147 |
+
throughput = n_inputs / (end - start)
|
148 |
mean_padding_ratio = f"{n_pads / n_elems * 100:.2f}"
|
149 |
mean_sequence_length = sequence_length / n_inputs
|
150 |
effective_batch_size = effective_batch_size / n_inputs
|
utils.py
CHANGED
@@ -1,26 +0,0 @@
|
|
1 |
-
import time
|
2 |
-
|
3 |
-
from requests_futures.sessions import FuturesSession
|
4 |
-
|
5 |
-
|
6 |
-
class ElapsedFuturesSession(FuturesSession):
|
7 |
-
def request(self, method, url, hooks=None, *args, **kwargs):
|
8 |
-
start = time.time()
|
9 |
-
if hooks is None:
|
10 |
-
hooks = {}
|
11 |
-
|
12 |
-
def timing(r, *args, **kwargs):
|
13 |
-
r.elapsed = round((time.time() - start) * 1000, 2)
|
14 |
-
|
15 |
-
try:
|
16 |
-
if isinstance(hooks["response"], (list, tuple)):
|
17 |
-
# needs to be first so we don't time other hooks execution
|
18 |
-
hooks["response"].insert(0, timing)
|
19 |
-
else:
|
20 |
-
hooks["response"] = [timing, hooks["response"]]
|
21 |
-
except KeyError:
|
22 |
-
hooks["response"] = timing
|
23 |
-
|
24 |
-
return super(ElapsedFuturesSession, self).request(
|
25 |
-
method, url, hooks=hooks, *args, **kwargs
|
26 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|