gabrielabueg commited on
Commit
d727a02
1 Parent(s): a096f66

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -4
app.py CHANGED
@@ -1,9 +1,33 @@
1
  import gradio as gr
2
 
3
- description = "Gradio demo for Tagalog Roberta, A Robustly Optimized BERT Pretraining Approach. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
4
- article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1907.11692'>RoBERTa: A Robustly Optimized BERT Pretraining Approach</a> | <a href='https://github.com/pytorch/fairseq/'>Github Repo</a></p>"
5
 
6
- default_text = "Si Biboy ay may alagang baka. Ang pangalan ng baka ay Biko. Malusog at mataba ang alagang baka ni Biboy."
7
 
8
- gr.Interface.load("huggingface/jcblaise/roberta-tagalog-large", title=None, inputs=[gr.inputs.Textbox(label="Context", lines=5, default=default_text[0]), gr.inputs.Textbox(label="Question", default=default_text[1])]).launch()
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
 
3
+ title = "RoBERTa"
 
4
 
5
+ description = "Gradio Demo for RoBERTa. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
6
 
7
+ article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1907.11692' target='_blank'>RoBERTa: A Robustly Optimized BERT Pretraining Approach</a></p>"
8
 
9
+ examples = [
10
+ ['The goal of life is <mask>.','roberta-base']
11
+ ]
12
+
13
+ io1 = gr.Interface.load("huggingface/roberta-base")
14
+
15
+ io2 = gr.Interface.load("huggingface/jcblaise/roberta-tagalog-large")
16
+
17
+
18
+ def inference(inputtext, model):
19
+ if model == "roberta-base":
20
+ outlabel = io1(inputtext)
21
+ else:
22
+ outlabel = io2(inputtext)
23
+ return outlabel
24
+
25
+
26
+ gr.Interface(
27
+ inference,
28
+ [gr.inputs.Textbox(label="Context",lines=10),gr.inputs.Dropdown(choices=["roberta-base","roberta-tagalog-large"], type="value", default="roberta-base", label="model")],
29
+ [gr.outputs.Label(label="Output")],
30
+ examples=examples,
31
+ article=article,
32
+ title=title,
33
+ description=description).launch(enable_queue=True)