Spaces:
Sleeping
Sleeping
File size: 8,386 Bytes
9e85aff 3774152 9e85aff 3774152 9e85aff 3774152 9e85aff 3774152 9e85aff 3774152 9e85aff 3774152 9e85aff 3774152 9e85aff e4bccbf 32fdb6f e4bccbf 9e85aff 32fdb6f 9e85aff 32fdb6f 9e85aff 32fdb6f 9e85aff 32fdb6f 9e85aff 32fdb6f 9e85aff e4bccbf 9e85aff e4bccbf 9e85aff e4bccbf 9e85aff e4bccbf 9e85aff e4bccbf 9e85aff 3774152 9e85aff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import gradio as gr
import inseq
import captum
import torch
import os
# import nltk
import argparse
import random
import numpy as np
from argparse import Namespace
from tqdm.notebook import tqdm
from torch.utils.data import DataLoader
from functools import partial
from transformers import AutoTokenizer, MarianTokenizer, AutoModel, AutoModelForSeq2SeqLM, MarianMTModel
model_es = "Helsinki-NLP/opus-mt-en-es"
model_fr = "Helsinki-NLP/opus-mt-en-fr"
model_zh = "Helsinki-NLP/opus-mt-en-zh"
model_sw = "Helsinki-NLP/opus-mt-en-sw"
tokenizer_es = AutoTokenizer.from_pretrained(model_es)
tokenizer_fr = AutoTokenizer.from_pretrained(model_fr)
tokenizer_zh = AutoTokenizer.from_pretrained(model_zh)
tokenizer_sw = AutoTokenizer.from_pretrained(model_sw)
model_tr_es = MarianMTModel.from_pretrained(model_es)
model_tr_fr = MarianMTModel.from_pretrained(model_fr)
model_tr_zh = MarianMTModel.from_pretrained(model_zh)
model_tr_sw = MarianMTModel.from_pretrained(model_sw)
model_es = inseq.load_model("Helsinki-NLP/opus-mt-en-es", "input_x_gradient")
model_fr = inseq.load_model("Helsinki-NLP/opus-mt-en-fr", "input_x_gradient")
model_zh = inseq.load_model("Helsinki-NLP/opus-mt-en-zh", "input_x_gradient")
model_sw = inseq.load_model("Helsinki-NLP/opus-mt-en-sw", "input_x_gradient")
dict_models = {
'en-es': model_es,
'en-fr': model_fr,
'en-zh': model_zh,
'en-sw': model_sw,
}
dict_models_tr = {
'en-es': model_tr_es,
'en-fr': model_tr_fr,
'en-zh': model_tr_zh,
'en-sw': model_tr_sw,
}
dict_tokenizer_tr = {
'en-es': tokenizer_es,
'en-fr': tokenizer_fr,
'en-zh': tokenizer_zh,
'en-sw': tokenizer_sw,
}
saliency_examples = [
"Peace of Mind: Protection for consumers.",
"The sustainable development goals report: towards a rescue plan for people and planet",
"We will leave no stone unturned to hold those responsible to account.",
"The clock is now ticking on our work to finalise the remaining key legislative proposals presented by this Commission to ensure that citizens and businesses can reap the benefits of our policy actions.",
"Pumpkins, squash and gourds, fresh or chilled, excluding courgettes",
"The labour market participation of mothers with infants has even deteriorated over the past two decades, often impacting their career and incomes for years.",
]
contrastive_examples = [
["Peace of Mind: Protection for consumers.",
"Paz mental: protección de los consumidores",
"Paz de la mente: protección de los consumidores"],
["the slaughterer has finished his work.",
"l'abatteur a terminé son travail.",
"l'abatteuse a terminé son travail."],
['A fundamental shift is needed - in commitment, solidarity, financing and action - to put the world on a better path.',
'需要在承诺、团结、筹资和行动方面进行根本转变,使世界走上更美好的道路。',
'我们需要从根本上转变承诺、团结、资助和行动,使世界走上更美好的道路。',]
]
def get_k_prob_tokens(transition_scores, result, model, k_values=5):
tokenizer_tr = dict_tokenizer_tr[model]
gen_sequences = result.sequences[:, 1:]
result_output = []
# First beam only...
bs = 0
text = ' '
for tok, score, i_step in zip(gen_sequences[bs], transition_scores[bs],range(len(gen_sequences[bs]))):
beam_i = result.beam_indices[0][i_step]
if beam_i < 0:
beam_i = bs
bs_alt = [tokenizer_tr.decode(tok) for tok in result.scores[i_step][beam_i].topk(k_values).indices ]
bs_alt_scores = np.exp(result.scores[i_step][beam_i].topk(k_values).values)
result_output.append([np.array(result.scores[i_step][beam_i].topk(k_values).indices), np.array(bs_alt_scores),bs_alt])
return result_output
def split_token_from_sequences(sequences, model) -> dict :
n_sentences = len(sequences)
gen_sequences_texts = []
for bs in range(n_sentences):
# gen_sequences_texts.append(dict_tokenizer_tr[model].decode(sequences[:, 1:][bs], skip_special_tokens=True).split(' '))
#### decoder per token.
seq_bs = []
for token in sequences[:, 1:][bs]:
seq_bs.append(dict_tokenizer_tr[model].decode(token, skip_special_tokens=True))
gen_sequences_texts.append(seq_bs)
score = 0
#raw dict is bos
text = 'bos'
new_id = text +'--1'
dict_parent = [{'id': new_id, 'parentId': None , 'text': text, 'name': 'bos', 'prob': score }]
id_dict_pos = {}
step_i = 0
cont = True
words_by_step = [] #[['bos' for i in range(n_sentences)]]
while cont:
# append to dict_parent for all beams of step_i
cont = False
step_words = []
for beam in range(n_sentences):
app_text = ''
if step_i < len(gen_sequences_texts[beam]):
app_text = gen_sequences_texts[beam][step_i]
cont = True
step_words.append(app_text)
words_by_step.append(step_words)
print(words_by_step)
for i_bs, step_w in enumerate(step_words):
if step_w != '':
#new id if the same word is not in another beam (?) [beam[i] was a token id]
#parent id = previous word and previous step.
# new_parent_id = "-".join([str(beam[i]) for i in range(step_i)])
new_id = "-".join([str(words_by_step[i][i_bs])+ '-' + str(i) for i in range(step_i+1)])
parent_id = "-".join([words_by_step[i][i_bs] + '-' + str(i) for i in range(step_i) ])
# new_id = step_w +'-' + str(step_i)
# parent_id = words_by_step[step_i-1][i_bs] + '-' + str(step_i -1)
if step_i == 0 :
parent_id = 'bos--1'
## if the dict already exists remove it, if it is not a root...
## root?? then next is ''
next_word_flag = len(gen_sequences_texts[i_bs][step_i]) > step_i
if next_word_flag:
if not (new_id in id_dict_pos):
dict_parent.append({'id': new_id, 'parentId': parent_id , 'text': step_w, 'name': step_w, 'prob' : score })
id_dict_pos[new_id] = len(dict_parent) - 1
else:
if not (new_id in id_dict_pos):
dict_parent.append({'id': new_id, 'parentId': parent_id , 'text': step_w, 'name': step_w, 'prob' : score })
id_dict_pos[new_id] = len(dict_parent) - 1
step_i += 1
return dict_parent
html = """
<html>
<script async src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.6/require.min.js"></script>
<body>
<p id="demo"></p>
<p id="viz"></p>
<p id="demo2"></p>
<h4> Exploring top-k probable tokens </h4>
<div id="d3_text_grid">... top 10 tokens generated at each step ...</div>
<h4> Exploring the Beam Search sequence generation</h4>
<div id="d3_beam_search">... top 4 generated sequences using Beam Search...</div>
</body>
</html>
"""
def sentence_maker(w1, model, var2={}):
#translate and get internal values
# src_text = saliency_examples[0]
inputs = dict_tokenizer_tr[model](w1, return_tensors="pt")
num_ret_seq = 4
translated = dict_models_tr[model].generate(**inputs,
num_beams=4,
num_return_sequences=num_ret_seq,
return_dict_in_generate=True,
output_attentions =True,
output_hidden_states = True,
output_scores=True,)
beam_dict = split_token_from_sequences(translated.sequences,model )
tgt_text = dict_tokenizer_tr[model].decode(translated.sequences[0], skip_special_tokens=True)
transition_scores = dict_models_tr[model].compute_transition_scores(
translated.sequences, translated.scores, translated.beam_indices , normalize_logits=True
)
prob_tokens = get_k_prob_tokens(transition_scores, translated, model, k_values=10)
return [tgt_text,[beam_dict,prob_tokens]]
def sentence_maker2(w1,j2):
print(w1,j2)
return "in sentence22..."
with gr.Blocks(js="plotsjs.js") as demo:
gr.Markdown(
"""
# MAKE NMT Workshop \t `BeamSearch`
""")
in_text = gr.Textbox(label="source text")
out_text = gr.Textbox(label="target text")
out_text2 = gr.Textbox(visible=False)
var2 = gr.JSON(visible=False)
radio_c = gr.Radio(choices=['en-zh', 'en-es', 'en-fr', 'en-sw'], value="en-zh", label= '', container=False)
btn = gr.Button("Translate")
input_mic = gr.HTML(html)
btn.click(sentence_maker, [in_text, radio_c], [out_text,var2], js="(in_text,radio_c) => testFn_out(in_text,radio_c)") #should return an output comp.
out_text.change(sentence_maker2, [out_text, var2], out_text2, js="(out_text,var2) => testFn_out_json(var2)") #
# run script function on load,
# demo.load(None,None,None,js="plotsjs.js")
if __name__ == "__main__":
demo.launch() |