Spaces:
Running
Running
Gabriel CHUA
commited on
Commit
β’
1e4764f
1
Parent(s):
b9ce40a
first commit
Browse files
README.md
CHANGED
@@ -1 +1,40 @@
|
|
1 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Gradio Canvas π€
|
2 |
+
|
3 |
+
Gradio Canvas is a web application inspired by ChatGPT's Canvas. This project combines the capabilities of Fireworks AI and Instructor to create a seamless code generation experience.
|
4 |
+
|
5 |
+
Built with:
|
6 |
+
- Llama 3.1 405B via [Fireworks AI](https://fireworks.ai)
|
7 |
+
- [Instructor](https://github.com/instructor-ai/instructor) for structured output parsing
|
8 |
+
- [Gradio](https://github.com/gradio-app/gradio) for the web interface
|
9 |
+
|
10 |
+
## Getting Started
|
11 |
+
|
12 |
+
### Prerequisites
|
13 |
+
|
14 |
+
- Fireworks AI API key
|
15 |
+
|
16 |
+
### Installation
|
17 |
+
|
18 |
+
1. Clone the repository:
|
19 |
+
```bash
|
20 |
+
git clone https://github.com/yourusername/gradio-canvas.git
|
21 |
+
cd gradio-canvas
|
22 |
+
```
|
23 |
+
|
24 |
+
2. Install the required dependencies:
|
25 |
+
```bash
|
26 |
+
pip install -r requirements.txt
|
27 |
+
```
|
28 |
+
|
29 |
+
3. Set up your Fireworks AI API key as an environment variable:
|
30 |
+
```bash
|
31 |
+
export FIREWORKS_API_KEY=your_api_key_here
|
32 |
+
```
|
33 |
+
|
34 |
+
### Usage
|
35 |
+
|
36 |
+
Run the application:
|
37 |
+
|
38 |
+
```bash
|
39 |
+
gradio app.py
|
40 |
+
```
|
app.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
app.py
|
3 |
+
"""
|
4 |
+
|
5 |
+
# Standard library imports
|
6 |
+
import json
|
7 |
+
from typing import Tuple
|
8 |
+
|
9 |
+
# Third-party imports
|
10 |
+
import gradio as gr
|
11 |
+
import instructor
|
12 |
+
from fireworks.client import Fireworks
|
13 |
+
from pydantic import BaseModel, ValidationError
|
14 |
+
|
15 |
+
# Local imports
|
16 |
+
from config import (
|
17 |
+
APP_HEADER,
|
18 |
+
APP_TITLE,
|
19 |
+
FIREWORKS_API_KEY,
|
20 |
+
LLM_MAX_TOKENS,
|
21 |
+
LLM_MODEL,
|
22 |
+
LLM_SYSTEM_PROMPT,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
# Initialize Instructor with the Fireworks client
|
27 |
+
client = Fireworks(api_key=FIREWORKS_API_KEY)
|
28 |
+
client = instructor.from_fireworks(client)
|
29 |
+
|
30 |
+
|
31 |
+
# Define response models for feedback and code using Pydantic
|
32 |
+
class CodeResponse(BaseModel):
|
33 |
+
"""Code Response"""
|
34 |
+
|
35 |
+
planning: str
|
36 |
+
full_python_code: str
|
37 |
+
commentary: str
|
38 |
+
|
39 |
+
|
40 |
+
def get_llm_responses(
|
41 |
+
user_input: str, conversation: list, current_code: str = None
|
42 |
+
) -> Tuple[list, str, str]:
|
43 |
+
"""
|
44 |
+
Generates feedback and code based on user input using the Instructor LLM.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
user_input (str): The input text from the user.
|
48 |
+
conversation (list): The conversation history.
|
49 |
+
current_code (str, optional): Existing code if any.
|
50 |
+
|
51 |
+
Returns:
|
52 |
+
Tuple[list, str, str]: A tuple containing updated conversation, generated code, and formatted conversation history.
|
53 |
+
"""
|
54 |
+
try:
|
55 |
+
# Update conversation history with user input
|
56 |
+
conversation.append(
|
57 |
+
{
|
58 |
+
"role": "user",
|
59 |
+
"content": (
|
60 |
+
user_input
|
61 |
+
if current_code is None
|
62 |
+
else f"{user_input} And here is the existing code: {current_code}"
|
63 |
+
),
|
64 |
+
}
|
65 |
+
)
|
66 |
+
|
67 |
+
# Generate Feedback
|
68 |
+
feedback_resp = client.chat.completions.create(
|
69 |
+
model=LLM_MODEL,
|
70 |
+
response_model=CodeResponse,
|
71 |
+
max_tokens=LLM_MAX_TOKENS,
|
72 |
+
messages=conversation,
|
73 |
+
)
|
74 |
+
|
75 |
+
code = feedback_resp.full_python_code
|
76 |
+
|
77 |
+
# Update conversation history with assistant response
|
78 |
+
conversation.append(
|
79 |
+
{
|
80 |
+
"role": "assistant",
|
81 |
+
"content": feedback_resp.model_dump_json(),
|
82 |
+
}
|
83 |
+
)
|
84 |
+
|
85 |
+
# Format conversation history for display
|
86 |
+
conversation_text = ""
|
87 |
+
|
88 |
+
conversation_to_print = conversation[1:]
|
89 |
+
|
90 |
+
round_number = (
|
91 |
+
len(conversation_to_print) // 2
|
92 |
+
) # Assuming each round has a user and assistant message
|
93 |
+
|
94 |
+
# Add the latest conversation pair to the top
|
95 |
+
if len(conversation_to_print) >= 2:
|
96 |
+
latest_pair = conversation_to_print[-2:]
|
97 |
+
conversation_text += f"## Version {round_number}\n\n"
|
98 |
+
for message in latest_pair:
|
99 |
+
if message["role"] != "system":
|
100 |
+
role = message["role"].capitalize()
|
101 |
+
try:
|
102 |
+
content = json.loads(message["content"])
|
103 |
+
content = content["commentary"]
|
104 |
+
except:
|
105 |
+
content = message["content"].split(
|
106 |
+
" And here is the existing code:"
|
107 |
+
)[0]
|
108 |
+
if content == "":
|
109 |
+
content = "_User edited the code directly_"
|
110 |
+
|
111 |
+
emoji = "π€" if role == "User" else "π€"
|
112 |
+
conversation_text += f"**{emoji} {role}:** {content}\n\n"
|
113 |
+
|
114 |
+
# Add the rest of the conversation history
|
115 |
+
for i, message in enumerate(conversation_to_print[:-2]):
|
116 |
+
if message["role"] != "system":
|
117 |
+
if i % 2 == 0:
|
118 |
+
round_number = (len(conversation_to_print) - i) // 2
|
119 |
+
conversation_text += f"## Version {round_number-1}\n\n"
|
120 |
+
|
121 |
+
role = message["role"].capitalize()
|
122 |
+
try:
|
123 |
+
content = json.loads(message["content"])
|
124 |
+
content = content["commentary"]
|
125 |
+
except:
|
126 |
+
content = message["content"].split(
|
127 |
+
" And here is the existing code:"
|
128 |
+
)[0]
|
129 |
+
if content == "":
|
130 |
+
content = "_User edited the code directly_"
|
131 |
+
|
132 |
+
emoji = "π€" if role == "User" else "π€"
|
133 |
+
conversation_text += f"**{emoji} {role}:** {content}\n\n"
|
134 |
+
|
135 |
+
return conversation, code, conversation_text
|
136 |
+
|
137 |
+
except ValidationError as ve:
|
138 |
+
error_msg = f"Response validation error: {ve}"
|
139 |
+
raise gr.Error(error_msg)
|
140 |
+
except Exception as e:
|
141 |
+
error_msg = f"An error occurred: {e}"
|
142 |
+
raise gr.Error(error_msg)
|
143 |
+
|
144 |
+
|
145 |
+
# Define the Gradio interface
|
146 |
+
with gr.Blocks(
|
147 |
+
title=APP_TITLE, theme=gr.themes.Ocean(), fill_width=True, fill_height=True
|
148 |
+
) as demo:
|
149 |
+
gr.HTML(APP_HEADER)
|
150 |
+
|
151 |
+
with gr.Row():
|
152 |
+
with gr.Column(scale=1):
|
153 |
+
conversation_output = gr.Markdown(label="Chat History", height=500)
|
154 |
+
|
155 |
+
with gr.Column(scale=2):
|
156 |
+
code_output = gr.Code(
|
157 |
+
label="LLM Generated Code",
|
158 |
+
interactive=True,
|
159 |
+
language="python",
|
160 |
+
lines=30,
|
161 |
+
)
|
162 |
+
with gr.Row():
|
163 |
+
add_comments_btn = gr.Button("Add Comments π¬")
|
164 |
+
refactor_btn = gr.Button("Refactor π¨")
|
165 |
+
|
166 |
+
with gr.Row():
|
167 |
+
with gr.Column(scale=9):
|
168 |
+
user_input = gr.Textbox(
|
169 |
+
label="Enter Your Request here",
|
170 |
+
placeholder="Type something here...",
|
171 |
+
lines=2,
|
172 |
+
)
|
173 |
+
with gr.Column(scale=1):
|
174 |
+
submit_btn = gr.Button("Submit π")
|
175 |
+
reset_btn = gr.Button("Reset π")
|
176 |
+
|
177 |
+
# Initialize conversation history with system prompt using Gradio State
|
178 |
+
initial_conversation = [
|
179 |
+
{
|
180 |
+
"role": "system",
|
181 |
+
"content": LLM_SYSTEM_PROMPT,
|
182 |
+
}
|
183 |
+
]
|
184 |
+
|
185 |
+
conversation_state = gr.State(
|
186 |
+
initial_conversation
|
187 |
+
) # Define a single State instance
|
188 |
+
|
189 |
+
# Define the button click event
|
190 |
+
def on_submit(user_input, conversation, current_code):
|
191 |
+
result = get_llm_responses(user_input, conversation, current_code)
|
192 |
+
return [""] + list(result) # Clear the textbox by returning an empty string
|
193 |
+
|
194 |
+
submit_btn.click(
|
195 |
+
fn=on_submit,
|
196 |
+
inputs=[user_input, conversation_state, code_output],
|
197 |
+
outputs=[user_input, conversation_state, code_output, conversation_output],
|
198 |
+
)
|
199 |
+
|
200 |
+
def add_comments_fn(conversation, current_code):
|
201 |
+
return on_submit(
|
202 |
+
"Please add more comments to the code. Make it production ready.",
|
203 |
+
conversation,
|
204 |
+
current_code,
|
205 |
+
)
|
206 |
+
|
207 |
+
add_comments_btn.click(
|
208 |
+
fn=add_comments_fn,
|
209 |
+
inputs=[conversation_state, code_output],
|
210 |
+
outputs=[user_input, conversation_state, code_output, conversation_output],
|
211 |
+
)
|
212 |
+
|
213 |
+
def refactor_fn(conversation, current_code):
|
214 |
+
return on_submit(
|
215 |
+
"Please refactor the code. Make it more efficient.",
|
216 |
+
conversation,
|
217 |
+
current_code,
|
218 |
+
)
|
219 |
+
|
220 |
+
refactor_btn.click(
|
221 |
+
fn=refactor_fn,
|
222 |
+
inputs=[conversation_state, code_output],
|
223 |
+
outputs=[user_input, conversation_state, code_output, conversation_output],
|
224 |
+
)
|
225 |
+
|
226 |
+
def reset_fn():
|
227 |
+
return "", initial_conversation, "", ""
|
228 |
+
|
229 |
+
reset_btn.click(
|
230 |
+
fn=reset_fn,
|
231 |
+
outputs=[user_input, conversation_state, code_output, conversation_output],
|
232 |
+
)
|
233 |
+
|
234 |
+
# Launch the Gradio app
|
235 |
+
if __name__ == "__main__":
|
236 |
+
demo.launch()
|
config.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
constants.py
|
3 |
+
"""
|
4 |
+
|
5 |
+
import os
|
6 |
+
|
7 |
+
APP_TITLE = "π€ Gradio Canvas"
|
8 |
+
|
9 |
+
APP_HEADER = """
|
10 |
+
<div style="text-align: center;">
|
11 |
+
<h1>π€ Gradio Canvas</h1>
|
12 |
+
<p> Powered by <a href="https://fireworks.ai">Fireworks AI</a> π and <a href="https://github.com/instructor-ai/instructor">Instructor</a> π¨βπ«</p>
|
13 |
+
</div>
|
14 |
+
"""
|
15 |
+
|
16 |
+
FIREWORKS_API_KEY = os.getenv("FIREWORKS_API_KEY")
|
17 |
+
|
18 |
+
LLM_MAX_TOKENS = 16_384
|
19 |
+
|
20 |
+
LLM_MODEL = "accounts/fireworks/models/llama-v3p1-405b-instruct"
|
21 |
+
|
22 |
+
LLM_SYSTEM_PROMPT = """
|
23 |
+
Your goal is to generate Python code based on the user's request.
|
24 |
+
|
25 |
+
You will receive a user request and optionally some existing code.
|
26 |
+
|
27 |
+
You MUST return your response as a JSON with the following fields: `planning`, `full_python_code`, `commentary`.
|
28 |
+
|
29 |
+
The `full_python_code` should be a complete Python script that can be executed - no code blocks or other formatting.
|
30 |
+
"""
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
fireworks-ai==0.15.6
|
2 |
+
gradio==5.1.0
|
3 |
+
instructor==1.6.3
|