Spaces:
Running
on
Zero
Running
on
Zero
gabrielchua
commited on
Commit
•
4e757f3
1
Parent(s):
9f78eb1
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import spaces
|
6 |
+
from PIL import Image
|
7 |
+
from transformers import AutoModelForCausalLM
|
8 |
+
from janus.models import MultiModalityCausalLM, VLChatProcessor
|
9 |
+
from janus.utils.io import load_pil_images
|
10 |
+
|
11 |
+
# Specify the path to the model
|
12 |
+
model_path = "deepseek-ai/Janus-1.3B"
|
13 |
+
|
14 |
+
# Load the VLChatProcessor and tokenizer
|
15 |
+
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
|
16 |
+
tokenizer = vl_chat_processor.tokenizer
|
17 |
+
|
18 |
+
# Load the MultiModalityCausalLM model
|
19 |
+
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(
|
20 |
+
model_path, trust_remote_code=True
|
21 |
+
)
|
22 |
+
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()
|
23 |
+
|
24 |
+
@spaces.GPU(duration=120)
|
25 |
+
def image_to_latex(image: Image.Image) -> str:
|
26 |
+
"""
|
27 |
+
Convert an uploaded image of a formula into LaTeX code.
|
28 |
+
"""
|
29 |
+
# Define the conversation with the uploaded image
|
30 |
+
conversation = [
|
31 |
+
{
|
32 |
+
"role": "User",
|
33 |
+
"content": "<image_placeholder>\nConvert the formula into latex code.",
|
34 |
+
"images": [image],
|
35 |
+
},
|
36 |
+
{"role": "Assistant", "content": ""},
|
37 |
+
]
|
38 |
+
|
39 |
+
# Load the PIL images from the conversation
|
40 |
+
pil_images = load_pil_images(conversation)
|
41 |
+
|
42 |
+
# Prepare the inputs for the model
|
43 |
+
prepare_inputs = vl_chat_processor(
|
44 |
+
conversations=conversation, images=pil_images, force_batchify=True
|
45 |
+
).to(vl_gpt.device)
|
46 |
+
|
47 |
+
# Prepare input embeddings
|
48 |
+
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
|
49 |
+
|
50 |
+
# Generate the response from the model
|
51 |
+
outputs = vl_gpt.language_model.generate(
|
52 |
+
inputs_embeds=inputs_embeds,
|
53 |
+
attention_mask=prepare_inputs.attention_mask,
|
54 |
+
pad_token_id=tokenizer.eos_token_id,
|
55 |
+
bos_token_id=tokenizer.bos_token_id,
|
56 |
+
eos_token_id=tokenizer.eos_token_id,
|
57 |
+
max_new_tokens=512,
|
58 |
+
do_sample=False,
|
59 |
+
use_cache=True,
|
60 |
+
)
|
61 |
+
|
62 |
+
# Decode the generated tokens to get the answer
|
63 |
+
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
|
64 |
+
|
65 |
+
return answer
|
66 |
+
|
67 |
+
@spaces.GPU(duration=120)
|
68 |
+
def text_to_image(prompt: str) -> Image.Image:
|
69 |
+
"""
|
70 |
+
Generate an image based on the input text prompt.
|
71 |
+
"""
|
72 |
+
# Define the conversation with the user prompt
|
73 |
+
conversation = [
|
74 |
+
{
|
75 |
+
"role": "User",
|
76 |
+
"content": prompt,
|
77 |
+
},
|
78 |
+
{"role": "Assistant", "content": ""},
|
79 |
+
]
|
80 |
+
|
81 |
+
# Apply the SFT template to format the prompt
|
82 |
+
sft_format = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
|
83 |
+
conversations=conversation,
|
84 |
+
sft_format=vl_chat_processor.sft_format,
|
85 |
+
system_prompt="",
|
86 |
+
)
|
87 |
+
prompt_text = sft_format + vl_chat_processor.image_start_tag
|
88 |
+
|
89 |
+
# Encode the prompt
|
90 |
+
input_ids = vl_chat_processor.tokenizer.encode(prompt_text)
|
91 |
+
input_ids = torch.LongTensor(input_ids)
|
92 |
+
|
93 |
+
# Prepare tokens for generation
|
94 |
+
tokens = torch.zeros((2, len(input_ids)), dtype=torch.int).cuda()
|
95 |
+
tokens[0, :] = input_ids
|
96 |
+
tokens[1, :] = vl_chat_processor.pad_id
|
97 |
+
|
98 |
+
# Get input embeddings
|
99 |
+
inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
|
100 |
+
|
101 |
+
# Generation parameters
|
102 |
+
image_token_num_per_image = 576
|
103 |
+
img_size = 384
|
104 |
+
patch_size = 16
|
105 |
+
cfg_weight = 5
|
106 |
+
temperature = 1
|
107 |
+
|
108 |
+
# Initialize tensor to store generated tokens
|
109 |
+
generated_tokens = torch.zeros((1, image_token_num_per_image), dtype=torch.int).cuda()
|
110 |
+
|
111 |
+
for i in range(image_token_num_per_image):
|
112 |
+
if i == 0:
|
113 |
+
outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True)
|
114 |
+
else:
|
115 |
+
outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=outputs.past_key_values)
|
116 |
+
|
117 |
+
hidden_states = outputs.last_hidden_state
|
118 |
+
|
119 |
+
# Get logits and apply classifier-free guidance
|
120 |
+
logits = vl_gpt.gen_head(hidden_states[:, -1, :])
|
121 |
+
logit_cond = logits[0::2, :]
|
122 |
+
logit_uncond = logits[1::2, :]
|
123 |
+
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
|
124 |
+
|
125 |
+
# Sample the next token
|
126 |
+
probs = torch.softmax(logits / temperature, dim=-1)
|
127 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
128 |
+
generated_tokens[:, i] = next_token.squeeze(dim=-1)
|
129 |
+
|
130 |
+
# Prepare for the next step
|
131 |
+
next_token_combined = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
|
132 |
+
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token_combined)
|
133 |
+
inputs_embeds = img_embeds.unsqueeze(dim=1)
|
134 |
+
|
135 |
+
# Decode the generated tokens to get the image
|
136 |
+
dec = vl_gpt.gen_vision_model.decode_code(
|
137 |
+
generated_tokens.to(dtype=torch.int),
|
138 |
+
shape=[1, 8, img_size//patch_size, img_size//patch_size]
|
139 |
+
)
|
140 |
+
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
|
141 |
+
dec = np.clip((dec + 1) / 2 * 255, 0, 255).astype(np.uint8)
|
142 |
+
|
143 |
+
# Convert to PIL Image
|
144 |
+
visual_img = dec[0]
|
145 |
+
image = Image.fromarray(visual_img)
|
146 |
+
|
147 |
+
return image
|
148 |
+
|
149 |
+
# Create the Gradio interface
|
150 |
+
with gr.Blocks() as demo:
|
151 |
+
gr.Markdown(
|
152 |
+
"""
|
153 |
+
# Janus-1.3B Gradio Demo
|
154 |
+
This demo showcases two functionalities using the Janus-1.3B model:
|
155 |
+
1. **Image to LaTeX**: Upload an image of a mathematical formula to convert it into LaTeX code.
|
156 |
+
2. **Text to Image**: Enter a descriptive text prompt to generate a corresponding image.
|
157 |
+
"""
|
158 |
+
)
|
159 |
+
|
160 |
+
with gr.Tab("Image to LaTeX"):
|
161 |
+
gr.Markdown("### Convert Formula Image to LaTeX Code")
|
162 |
+
with gr.Row():
|
163 |
+
with gr.Column():
|
164 |
+
image_input = gr.Image(
|
165 |
+
type="pil",
|
166 |
+
label="Upload Formula Image",
|
167 |
+
tool="editor",
|
168 |
+
)
|
169 |
+
submit_btn = gr.Button("Convert to LaTeX")
|
170 |
+
with gr.Column():
|
171 |
+
latex_output = gr.Textbox(
|
172 |
+
label="LaTeX Code",
|
173 |
+
lines=10,
|
174 |
+
)
|
175 |
+
submit_btn.click(fn=image_to_latex, inputs=image_input, outputs=latex_output)
|
176 |
+
|
177 |
+
with gr.Tab("Text to Image"):
|
178 |
+
gr.Markdown("### Generate Image from Text Prompt")
|
179 |
+
with gr.Row():
|
180 |
+
with gr.Column():
|
181 |
+
prompt_input = gr.Textbox(
|
182 |
+
lines=2,
|
183 |
+
placeholder="Enter your image description here...",
|
184 |
+
label="Text Prompt",
|
185 |
+
)
|
186 |
+
generate_btn = gr.Button("Generate Image")
|
187 |
+
with gr.Column():
|
188 |
+
image_output = gr.Image(
|
189 |
+
label="Generated Image",
|
190 |
+
)
|
191 |
+
generate_btn.click(fn=text_to_image, inputs=prompt_input, outputs=image_output)
|
192 |
+
)
|
193 |
+
|
194 |
+
# Launch the Gradio app
|
195 |
+
if __name__ == "__main__":
|
196 |
+
demo.launch()
|
197 |
+
|