import os import torch import gradio as gr import numpy as np import spaces from PIL import Image from transformers import AutoModelForCausalLM from janus.models import MultiModalityCausalLM, VLChatProcessor from janus.utils.io import load_pil_images # Specify the path to the model model_path = "deepseek-ai/Janus-1.3B" # Load the VLChatProcessor and tokenizer vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path) tokenizer = vl_chat_processor.tokenizer # Load the MultiModalityCausalLM model vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained( model_path, trust_remote_code=True ) vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval() @spaces.GPU(duration=120) def image_to_latex(image: Image.Image) -> str: """ Convert an uploaded image of a formula into LaTeX code. """ # Define the conversation with the uploaded image conversation = [ { "role": "User", "content": "\nConvert the formula into latex code.", "images": [image], }, {"role": "Assistant", "content": ""}, ] # Load the PIL images from the conversation pil_images = load_pil_images(conversation) # Prepare the inputs for the model prepare_inputs = vl_chat_processor( conversations=conversation, images=pil_images, force_batchify=True ).to(vl_gpt.device) # Prepare input embeddings inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs) # Generate the response from the model outputs = vl_gpt.language_model.generate( inputs_embeds=inputs_embeds, attention_mask=prepare_inputs.attention_mask, pad_token_id=tokenizer.eos_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, max_new_tokens=512, do_sample=False, use_cache=True, ) # Decode the generated tokens to get the answer answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True) return answer @spaces.GPU(duration=120) def text_to_image(prompt: str) -> Image.Image: """ Generate an image based on the input text prompt. """ # Define the conversation with the user prompt conversation = [ { "role": "User", "content": prompt, }, {"role": "Assistant", "content": ""}, ] # Apply the SFT template to format the prompt sft_format = vl_chat_processor.apply_sft_template_for_multi_turn_prompts( conversations=conversation, sft_format=vl_chat_processor.sft_format, system_prompt="", ) prompt_text = sft_format + vl_chat_processor.image_start_tag # Encode the prompt input_ids = vl_chat_processor.tokenizer.encode(prompt_text) input_ids = torch.LongTensor(input_ids) # Prepare tokens for generation tokens = torch.zeros((2, len(input_ids)), dtype=torch.int).cuda() tokens[0, :] = input_ids tokens[1, :] = vl_chat_processor.pad_id # Get input embeddings inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens) # Generation parameters image_token_num_per_image = 576 img_size = 384 patch_size = 16 cfg_weight = 5 temperature = 1 # Initialize tensor to store generated tokens generated_tokens = torch.zeros((1, image_token_num_per_image), dtype=torch.int).cuda() for i in range(image_token_num_per_image): if i == 0: outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True) else: outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=outputs.past_key_values) hidden_states = outputs.last_hidden_state # Get logits and apply classifier-free guidance logits = vl_gpt.gen_head(hidden_states[:, -1, :]) logit_cond = logits[0::2, :] logit_uncond = logits[1::2, :] logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond) # Sample the next token probs = torch.softmax(logits / temperature, dim=-1) next_token = torch.multinomial(probs, num_samples=1) generated_tokens[:, i] = next_token.squeeze(dim=-1) # Prepare for the next step next_token_combined = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1) img_embeds = vl_gpt.prepare_gen_img_embeds(next_token_combined) inputs_embeds = img_embeds.unsqueeze(dim=1) # Decode the generated tokens to get the image dec = vl_gpt.gen_vision_model.decode_code( generated_tokens.to(dtype=torch.int), shape=[1, 8, img_size//patch_size, img_size//patch_size] ) dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1) dec = np.clip((dec + 1) / 2 * 255, 0, 255).astype(np.uint8) # Convert to PIL Image visual_img = dec[0] image = Image.fromarray(visual_img) return image # Create the Gradio interface with gr.Blocks() as demo: gr.Markdown( """ # Janus-1.3B Gradio Demo This demo showcases two functionalities using the Janus-1.3B model: 1. **Image to LaTeX**: Upload an image of a mathematical formula to convert it into LaTeX code. 2. **Text to Image**: Enter a descriptive text prompt to generate a corresponding image. """ ) with gr.Tab("Image to LaTeX"): gr.Markdown("### Convert Formula Image to LaTeX Code") with gr.Row(): with gr.Column(): image_input = gr.Image( type="pil", label="Upload Formula Image", tool="editor", ) submit_btn = gr.Button("Convert to LaTeX") with gr.Column(): latex_output = gr.Textbox( label="LaTeX Code", lines=10, ) submit_btn.click(fn=image_to_latex, inputs=image_input, outputs=latex_output) with gr.Tab("Text to Image"): gr.Markdown("### Generate Image from Text Prompt") with gr.Row(): with gr.Column(): prompt_input = gr.Textbox( lines=2, placeholder="Enter your image description here...", label="Text Prompt", ) generate_btn = gr.Button("Generate Image") with gr.Column(): image_output = gr.Image( label="Generated Image", ) generate_btn.click(fn=text_to_image, inputs=prompt_input, outputs=image_output) ) # Launch the Gradio app if __name__ == "__main__": demo.launch()