open-notebooklm / app.py
gabrielchua's picture
add configurability for tone and length
02376ba
raw
history blame
4.59 kB
"""
main.py
"""
# Standard library imports
import glob
import os
import time
from pathlib import Path
from tempfile import NamedTemporaryFile
from typing import List, Literal, Tuple, Optional
# Third-party imports
import gradio as gr
from loguru import logger
from pydantic import BaseModel
from pypdf import PdfReader
from pydub import AudioSegment
# Local imports
from prompts import SYSTEM_PROMPT
from utils import generate_script, generate_audio
class DialogueItem(BaseModel):
"""A single dialogue item."""
speaker: Literal["Host (Jane)", "Guest"]
text: str
class Dialogue(BaseModel):
"""The dialogue between the host and guest."""
scratchpad: str
name_of_guest: str
dialogue: List[DialogueItem]
def generate_podcast(file: str, tone: Optional[str] = None, length: Optional[str] = None) -> Tuple[str, str]:
"""Generate the audio and transcript from the PDF."""
# Check if the file is a PDF
if not file.lower().endswith('.pdf'):
raise gr.Error("Please upload a PDF file.")
# Read the PDF file and extract text
try:
with Path(file).open("rb") as f:
reader = PdfReader(f)
text = "\n\n".join([page.extract_text() for page in reader.pages])
except Exception as e:
raise gr.Error(f"Error reading the PDF file: {str(e)}")
# Check if the PDF has more than ~150,000 characters
if len(text) > 100000:
raise gr.Error("The PDF is too long. Please upload a PDF with fewer than ~100,000 characters.")
# Modify the system prompt based on the chosen tone and length
modified_system_prompt = SYSTEM_PROMPT
if tone:
modified_system_prompt += f"\n\nTONE: The tone of the podcast should be {tone}."
if length:
length_instructions = {
"Short (1-2 min)": "Keep the podcast brief, around 1-2 minutes long.",
"Medium (3-5 min)": "Aim for a moderate length, about 3-5 minutes.",
}
modified_system_prompt += f"\n\nLENGTH: {length_instructions[length]}"
# Call the LLM
llm_output = generate_script(modified_system_prompt, text, Dialogue)
logger.info(f"Generated dialogue: {llm_output}")
# Process the dialogue
audio_segments = []
transcript = "" # start with an empty transcript
total_characters = 0
for line in llm_output.dialogue:
logger.info(f"Generating audio for {line.speaker}: {line.text}")
if line.speaker == "Host (Jane)":
speaker = f"**Jane**: {line.text}"
else:
speaker = f"**{llm_output.name_of_guest}**: {line.text}"
transcript += speaker + "\n\n"
total_characters += len(line.text)
# Get audio file path
audio_file_path = generate_audio(line.text, line.speaker)
# Read the audio file into an AudioSegment
audio_segment = AudioSegment.from_file(audio_file_path)
audio_segments.append(audio_segment)
# Concatenate all audio segments
combined_audio = sum(audio_segments)
# Export the combined audio to a temporary file
temporary_directory = "./gradio_cached_examples/tmp/"
os.makedirs(temporary_directory, exist_ok=True)
temporary_file = NamedTemporaryFile(
dir=temporary_directory,
delete=False,
suffix=".mp3",
)
combined_audio.export(temporary_file.name, format="mp3")
# Delete any files in the temp directory that end with .mp3 and are over a day old
for file in glob.glob(f"{temporary_directory}*.mp3"):
if os.path.isfile(file) and time.time() - os.path.getmtime(file) > 24 * 60 * 60:
os.remove(file)
logger.info(f"Generated {total_characters} characters of audio")
return temporary_file.name, transcript
demo = gr.Interface(
title="Open NotebookLM",
description="Convert your PDFs into podcasts with open-source AI models (Llama 3.1 405B and MeloTTS).",
fn=generate_podcast,
inputs=[
gr.File(
label="PDF",
file_types=[".pdf", "file/*"],
),
gr.Radio(
choices=["Fun", "Formal"],
label="Tone of the podcast",
value="casual"
),
gr.Radio(
choices=["Short (1-2 min)", "Medium (3-5 min)"],
label="Length of the podcast",
value="Medium (3-5 min)"
),
],
outputs=[
gr.Audio(label="Audio", format="mp3"),
gr.Markdown(label="Transcript"),
],
allow_flagging="never",
api_name=False,
theme=gr.themes.Soft()
)
if __name__ == "__main__":
demo.launch(show_api=False)