File size: 5,799 Bytes
db7f350
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
from email.utils import parseaddr

import gradio as gr
import pandas as pd

from datasets import load_dataset
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi

# InfoStrings
from content import *

BALM_TOKEN = os.environ.get("BALM_TOKEN", None)
owner="clefourrier" # change to balm once possible

api = HfApi()

eval_results = {}
eval_dataframe = {}
for level in range(1, 4):
    eval_results[level] = load_dataset(f"{owner}/BALM_ResultsDev{level}", token=BALM_TOKEN, split="dev")
    eval_dataframe[level] = pd.DataFrame(eval_results[level].remove_column("mail"))

def restart_space():
    api.restart_space(repo_id=f"{owner}/BALM_Leaderboard", token=BALM_TOKEN)


COLS = ["Model", "Organisation", "Reported accuracy ⬆️"]
TYPES = ["str", "str", "number",]

def add_new_eval(
    level_of_dev: str,
    model: str,
    score: float,
    organisation: str,
    mail: str,
):
    level = int(level_of_dev.split(" ")[-1])

    # Very basic email parsing
    _, parsed_mail = parseaddr(mail)
    if not "@" in parsed_mail:
        valid_mail = "Please provide a valid email adress."
        return f"<p style='color: orange; font-size: 20px; text-align: center;'>{valid_mail}</p>"

    print("Adding new eval")

    # Check if the combination model/org already exists and prints a warning message if yes
    if model.lower() in set(eval_results[level]["model"]) and organisation.lower() in set(eval_results[level]["organisation"]):
        duplicate_request_message = "This model has been already submitted."
        return f"<p style='color: orange; font-size: 20px; text-align: center;'>{duplicate_request_message}</p>"

    # Actual submission
    eval_entry = {
        "model": model,
        "score": score,
        "organisation": organisation,
        "mail": mail,
    }
    eval_results[level].add_item(eval_entry)

    success_message = f"Model {model} submitted by {organisation}."
    return f"<p style='color: green; font-size: 20px; text-align: center;'>{success_message}</p>"


def refresh():
    eval_results = {}
    eval_dataframe = {}
    for level in range(1, 4):
        eval_results[level] = load_dataset(f"{owner}/BALM_ResultsDev{level}", token=BALM_TOKEN, split="dev")
        eval_dataframe[level] = pd.DataFrame(eval_results[level].remove_column("mail"))
    return eval_dataframe[1],  eval_dataframe[2],  eval_dataframe[3]


custom_css = """
#changelog-text {
    font-size: 16px !important;
}

#changelog-text h2 {
    font-size: 18px !important;
}

.markdown-text {
    font-size: 16px !important;
}

#citation-button span {
    font-size: 16px !important;
}

#citation-button textarea {
    font-size: 16px !important;
}

#citation-button > label > button {
    margin: 6px;
    transform: scale(1.3);
}
"""

demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Row():
        with gr.Column():
            with gr.Accordion("📙 Citation", open=False):
                citation_button = gr.Textbox(
                    value=CITATION_BUTTON_TEXT,
                    label=CITATION_BUTTON_LABEL,
                    elem_id="citation-button",
                ).style(show_copy_button=True)
        with gr.Column():
            with gr.Accordion("✨ CHANGELOG", open=False):
                changelog = gr.Markdown(CHANGELOG_TEXT, elem_id="changelog-text")

    with gr.Tab("Results: Level 1"):
        with gr.Tab("Results on Dev Set"):
            leaderboard_table_1 = gr.components.Dataframe(
                value=eval_dataframe[1], headers=COLS, datatype=TYPES, max_rows=20
            )
        with gr.Tab("Results on Test Set"):
            gr.Textbox(value="The test set is currently private! Come back when performances on the dev set increased!")
    with gr.Tab("Results: Level 2"):
        with gr.Tab("Results on Dev Set"):
            leaderboard_table_2 = gr.components.Dataframe(
                value=eval_dataframe[2], headers=COLS, datatype=TYPES, max_rows=20
            )
        with gr.Tab("Results on Test Set"):
            gr.Textbox(value="The test set is currently private! Come back when performances on the dev set increased!")
    with gr.Tab("Results: Level 3"):
        with gr.Tab("Results on Dev Set"):
            leaderboard_table_3 = gr.components.Dataframe(
                value=eval_dataframe[3], headers=COLS, datatype=TYPES, max_rows=20
            )
        with gr.Tab("Results on Test Set"):
            gr.Textbox(value="The test set is currently private! Come back when performances on the dev set increased!")

    refresh_button = gr.Button("Refresh")
    refresh_button.click(
        refresh,
        inputs=[],
        outputs=[
            eval_dataframe[1],
            eval_dataframe[2],
            eval_dataframe[3],
        ],
    )

    with gr.Accordion("Submit a new model for evaluation"):
        #with gr.Row():
        with gr.Column():
            level_of_dev = gr.Radio(["Level 1", "Level 2", "Level 3"], value="Level 1", label="Dev set")
            model_name_textbox = gr.Textbox(label="Model name")
            score = gr.Textbox(label="Score")
            organisation = gr.Textbox(label="Organisation")
            mail = gr.Textbox(label="Contact email")

        submit_button = gr.Button("Submit Eval")
        submission_result = gr.Markdown()
        submit_button.click(
            add_new_eval,
            [
                level_of_dev,
                model_name_textbox,
                score,
                organisation,
                mail
            ],
            submission_result,
        )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600)
scheduler.start()
demo.launch()