File size: 10,323 Bytes
3c413eb c9810d9 3c413eb f2214be 3c413eb bf2198c 3c413eb 039cf73 ec6bf8d 3c413eb c9810d9 a893118 c9810d9 f2214be c9810d9 de7fe41 96e21ac f2214be 1f29852 f2214be 97292af f2214be 97292af de7fe41 c9810d9 4d4d353 c9810d9 292a35c c9810d9 3c413eb c9810d9 3c413eb c9810d9 3c413eb c9810d9 3c413eb c9810d9 3c413eb 4725d44 6b71bd2 c9810d9 3c413eb c9810d9 3c413eb bf2198c 3c413eb c6a0d24 5009ca6 c6a0d24 3c413eb bf2198c 3c413eb c6a0d24 3c413eb 039cf73 7e429a8 3c413eb 4048622 3c413eb 4048622 7e429a8 c6a0d24 51fa25e 3bef0e5 3c413eb f86c37f 3fff89b 292a35c 9fceef7 7e429a8 292a35c 7e429a8 3c413eb 039cf73 3c413eb 3d13e8e 16c3b9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import io
import gradio as gr
import matplotlib.pyplot as plt
import requests, validators
import torch
import pathlib
from PIL import Image
from transformers import AutoFeatureExtractor, DetrForObjectDetection, YolosForObjectDetection
from ultralyticsplus import YOLO, render_result
import os
# colors for visualization
COLORS = [
[0.000, 0.447, 0.741],
[0.850, 0.325, 0.098],
[0.929, 0.694, 0.125],
[0.494, 0.184, 0.556],
[0.466, 0.674, 0.188],
[0.301, 0.745, 0.933]
]
YOLOV8_LABELS = ['pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor']
def make_prediction(img, feature_extractor, model):
inputs = feature_extractor(img, return_tensors="pt")
outputs = model(**inputs)
img_size = torch.tensor([tuple(reversed(img.size))])
processed_outputs = feature_extractor.post_process(outputs, img_size)
return processed_outputs
def fig2img(fig):
buf = io.BytesIO()
fig.savefig(buf)
buf.seek(0)
img = Image.open(buf)
return img
def visualize_prediction(pil_img, output_dict, threshold=0.7, id2label=None):
keep = output_dict["scores"] > threshold
boxes = output_dict["boxes"][keep].tolist()
scores = output_dict["scores"][keep].tolist()
labels = output_dict["labels"][keep].tolist()
if id2label is not None:
labels = [id2label[x] for x in labels]
# print("Labels " + str(labels))
plt.figure(figsize=(16, 10))
plt.imshow(pil_img)
ax = plt.gca()
colors = COLORS * 100
for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors):
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=3))
ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5))
plt.axis("off")
return fig2img(plt.gcf())
def detect_objects(model_name,url_input,image_input,threshold):
if 'yolov8' in model_name:
# Working on getting this to work, another approach
# https://docs.ultralytics.com/modes/predict/#key-features-of-predict-mode
model = YOLO(model_name)
# set model parameters
model.overrides['conf'] = 0.15 # NMS confidence threshold
model.overrides['iou'] = 0.05 # NMS IoU threshold https://www.google.com/search?client=firefox-b-1-d&q=intersection+over+union+meaning
model.overrides['agnostic_nms'] = False # NMS class-agnostic
model.overrides['max_det'] = 1000 # maximum number of detections per image
results = model.predict(image_input)
render = render_result(model=model, image=image_input, result=results[0])
final_str = ""
final_str_abv = ""
final_str_else = ""
for result in results:
boxes = result.boxes.cpu().numpy()
for i, box in enumerate(boxes):
# r = box.xyxy[0].astype(int)
coordinates = box.xyxy[0].astype(int)
try:
label = YOLOV8_LABELS[int(box.cls)]
except:
label = "ERROR"
try:
confi = float(box.conf)
except:
confi = 0.0
# final_str_abv += str() + "__" + str(box.cls) + "__" + str(box.conf) + "__" + str(box) + "\n"
if confi >= threshold:
final_str_abv += f"Detected `{label}` with confidence `{confi}` at location `{coordinates}`\n"
else:
final_str_else += f"Detected `{label}` with confidence `{confi}` at location `{coordinates}`\n"
final_str = "{:*^50}\n".format("ABOVE THRESHOLD OR EQUAL") + final_str_abv + "\n{:*^50}\n".format("BELOW THRESHOLD")+final_str_else
return render, final_str
else:
#Extract model and feature extractor
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
if 'detr' in model_name:
model = DetrForObjectDetection.from_pretrained(model_name)
elif 'yolos' in model_name:
model = YolosForObjectDetection.from_pretrained(model_name)
tb_label = ""
if validators.url(url_input):
image = Image.open(requests.get(url_input, stream=True).raw)
tb_label = "Confidence Values URL"
elif image_input:
image = image_input
tb_label = "Confidence Values Upload"
#Make prediction
processed_output_list = make_prediction(image, feature_extractor, model)
print("After make_prediction" + str(processed_output_list))
processed_outputs = processed_output_list[0]
#Visualize prediction
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
# return [viz_img, processed_outputs]
# print(type(viz_img))
final_str_abv = ""
final_str_else = ""
for score, label, box in sorted(zip(processed_outputs["scores"], processed_outputs["labels"], processed_outputs["boxes"]), key = lambda x: x[0].item(), reverse=True):
box = [round(i, 2) for i in box.tolist()]
if score.item() >= threshold:
final_str_abv += f"Detected `{model.config.id2label[label.item()]}` with confidence `{round(score.item(), 3)}` at location `{box}`\n"
else:
final_str_else += f"Detected `{model.config.id2label[label.item()]}` with confidence `{round(score.item(), 3)}` at location `{box}`\n"
# https://docs.python.org/3/library/string.html#format-examples
final_str = "{:*^50}\n".format("ABOVE THRESHOLD OR EQUAL") + final_str_abv + "\n{:*^50}\n".format("BELOW THRESHOLD")+final_str_else
return viz_img, final_str
def set_example_image(example: list) -> dict:
return gr.Image.update(value=example[0])
def set_example_url(example: list) -> dict:
return gr.Textbox.update(value=example[0])
title = """<h1 id="title">Object Detection App with DETR and YOLOS</h1>"""
description = """
Links to HuggingFace Models:
- [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50)
- [facebook/detr-resnet-101](https://huggingface.co/facebook/detr-resnet-101)
- [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small)
- [hustvl/yolos-tiny](https://huggingface.co/hustvl/yolos-tiny)
- [facebook/detr-resnet-101-dc5](https://huggingface.co/facebook/detr-resnet-101-dc5)
- [hustvl/yolos-small-300](https://huggingface.co/hustvl/yolos-small-300)
- [mshamrai/yolov8x-visdrone](https://huggingface.co/mshamrai/yolov8x-visdrone)
"""
models = ["facebook/detr-resnet-50","facebook/detr-resnet-101",'hustvl/yolos-small','hustvl/yolos-tiny','facebook/detr-resnet-101-dc5', 'hustvl/yolos-small-300', 'mshamrai/yolov8x-visdrone']
urls = ["https://c8.alamy.com/comp/J2AB4K/the-new-york-stock-exchange-on-the-wall-street-in-new-york-J2AB4K.jpg"]
# twitter_link = """
# [![](https://img.shields.io/twitter/follow/nickmuchi?label=@nickmuchi&style=social)](https://twitter.com/nickmuchi)
# """
css = '''
h1#title {
text-align: center;
}
'''
demo = gr.Blocks(css=css)
def changing():
# https://discuss.huggingface.co/t/how-to-programmatically-enable-or-disable-components/52350/4
return gr.Button.update(interactive=True), gr.Button.update(interactive=True)
with demo:
gr.Markdown(title)
gr.Markdown(description)
# gr.Markdown(twitter_link)
options = gr.Dropdown(choices=models,label='Select Object Detection Model',show_label=True)
slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.7,label='Prediction Threshold')
with gr.Tabs():
with gr.TabItem('Image URL'):
with gr.Row():
url_input = gr.Textbox(lines=2,label='Enter valid image URL here..')
img_output_from_url = gr.Image(shape=(650,650))
with gr.Row():
example_url = gr.Dataset(components=[url_input],samples=[[str(url)] for url in urls])
url_but = gr.Button('Detect', interactive=False)
with gr.TabItem('Image Upload'):
with gr.Row():
img_input = gr.Image(type='pil')
img_output_from_upload= gr.Image(shape=(650,650))
with gr.Row():
example_images = gr.Dataset(components=[img_input],
samples=[[path.as_posix()]
for path in sorted(pathlib.Path('images').rglob('*.JPG'))])
img_but = gr.Button('Detect', interactive=False)
# output_text1 = gr.outputs.Textbox(label="Confidence Values")
output_text1 = gr.components.Textbox(label="Confidence Values")
# https://huggingface.co/spaces/vishnun/CLIPnCROP/blob/main/app.py -- Got .outputs. from this
options.change(fn=changing, inputs=[], outputs=[img_but, url_but])
url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_url, output_text1],queue=True)
img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_upload, output_text1],queue=True)
# url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_url, _],queue=True)
# img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_upload, _],queue=True)
# url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_url,queue=True)
# img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_upload,queue=True)
example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
example_url.click(fn=set_example_url,inputs=[example_url],outputs=[url_input])
# gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-object-detection-with-detr-and-yolos)")
# demo.launch(enable_queue=True)
demo.launch() #removed (share=True) |