File size: 7,052 Bytes
9434aee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0089c8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import io
import matplotlib.pyplot as plt
import requests, validators
import torch
import pathlib
from PIL import Image
from transformers import AutoFeatureExtractor, DetrForObjectDetection, YolosForObjectDetection
from ultralyticsplus import YOLO, render_result

import os

# colors for visualization
COLORS = [
    [0.000, 0.447, 0.741],
    [0.850, 0.325, 0.098],
    [0.929, 0.694, 0.125],
    [0.494, 0.184, 0.556],
    [0.466, 0.674, 0.188],
    [0.301, 0.745, 0.933]
]

YOLOV8_LABELS = ['pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor']

def make_prediction(img, feature_extractor, model):
    inputs = feature_extractor(img, return_tensors="pt")
    outputs = model(**inputs)
    img_size = torch.tensor([tuple(reversed(img.size))])
    processed_outputs = feature_extractor.post_process(outputs, img_size)
    return processed_outputs

def fig2img(fig):
    buf = io.BytesIO()
    fig.savefig(buf)
    buf.seek(0)
    img = Image.open(buf)
    return img


def visualize_prediction(pil_img, output_dict, threshold=0.7, id2label=None):
    keep = output_dict["scores"] > threshold
    boxes = output_dict["boxes"][keep].tolist()
    scores = output_dict["scores"][keep].tolist()
    labels = output_dict["labels"][keep].tolist()
    if id2label is not None:
        labels = [id2label[x] for x in labels]

    # print("Labels " + str(labels))

    plt.figure(figsize=(16, 10))
    plt.imshow(pil_img)
    ax = plt.gca()
    colors = COLORS * 100
    for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors):
        ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=3))
        ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5))
    plt.axis("off")
    return fig2img(plt.gcf())

def detect_objects(model_name,url_input,image_input,threshold):
    

    if 'yolov8' in model_name:
        # Working on getting this to work, another approach
        # https://docs.ultralytics.com/modes/predict/#key-features-of-predict-mode 

        model = YOLO(model_name)
        # set model parameters
        model.overrides['conf'] = 0.15  # NMS confidence threshold
        model.overrides['iou'] = 0.05  # NMS IoU threshold             https://www.google.com/search?client=firefox-b-1-d&q=intersection+over+union+meaning
        model.overrides['agnostic_nms'] = False  # NMS class-agnostic
        model.overrides['max_det'] = 1000  # maximum number of detections per image

        results = model.predict(image_input)

        render = render_result(model=model, image=image_input, result=results[0])

        final_str = ""
        final_str_abv = ""
        final_str_else = ""

        for result in results:
            boxes = result.boxes.cpu().numpy()
            for i, box in enumerate(boxes):
                # r = box.xyxy[0].astype(int)
                coordinates = box.xyxy[0].astype(int)
                try:
                    label = YOLOV8_LABELS[int(box.cls)]
                except:
                    label = "ERROR"
                try:
                    confi = float(box.conf)
                except:
                    confi = 0.0
                # final_str_abv += str() + "__" + str(box.cls) + "__" + str(box.conf) + "__" + str(box) + "\n"
                if confi >= threshold:
                    final_str_abv += f"Detected `{label}` with confidence `{confi}` at location `{coordinates}`\n"
                else:
                    final_str_else += f"Detected `{label}` with confidence `{confi}` at location `{coordinates}`\n"

        final_str = "{:*^50}\n".format("ABOVE THRESHOLD OR EQUAL") + final_str_abv + "\n{:*^50}\n".format("BELOW THRESHOLD")+final_str_else

        return render, final_str
    else:
        
        #Extract model and feature extractor
        feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
        if 'detr' in model_name:
        
            model = DetrForObjectDetection.from_pretrained(model_name)

        elif 'yolos' in model_name:
        
            model = YolosForObjectDetection.from_pretrained(model_name)
    
        tb_label = ""
        if validators.url(url_input):
            image = Image.open(requests.get(url_input, stream=True).raw)
            tb_label = "Confidence Values URL"
            
        elif image_input:
            image = image_input
            tb_label = "Confidence Values Upload"
        
        #Make prediction
        processed_output_list = make_prediction(image, feature_extractor, model)
        # print("After make_prediction" + str(processed_output_list))
        processed_outputs = processed_output_list[0]
        
        #Visualize prediction
        viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
        
        # return [viz_img, processed_outputs]
        # print(type(viz_img))
    
        final_str_abv = ""
        final_str_else = ""
        for score, label, box in sorted(zip(processed_outputs["scores"], processed_outputs["labels"], processed_outputs["boxes"]), key = lambda x: x[0].item(), reverse=True):
            box = [round(i, 2) for i in box.tolist()]
            if score.item() >= threshold:
                final_str_abv += f"Detected `{model.config.id2label[label.item()]}` with confidence `{round(score.item(), 3)}` at location `{box}`\n"
            else:
                final_str_else += f"Detected `{model.config.id2label[label.item()]}` with confidence `{round(score.item(), 3)}` at location `{box}`\n"
    
        # https://docs.python.org/3/library/string.html#format-examples
        final_str = "{:*^50}\n".format("ABOVE THRESHOLD OR EQUAL") + final_str_abv + "\n{:*^50}\n".format("BELOW THRESHOLD")+final_str_else
            
        return viz_img, final_str


title = """<h1 id="title">Object Detection App with DETR and YOLOS</h1>"""

description = """
Links to HuggingFace Models:

- [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50)  
- [facebook/detr-resnet-101](https://huggingface.co/facebook/detr-resnet-101)  
- [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small)
- [hustvl/yolos-tiny](https://huggingface.co/hustvl/yolos-tiny)
- [facebook/detr-resnet-101-dc5](https://huggingface.co/facebook/detr-resnet-101-dc5)
- [hustvl/yolos-small-300](https://huggingface.co/hustvl/yolos-small-300)
- [mshamrai/yolov8x-visdrone](https://huggingface.co/mshamrai/yolov8x-visdrone)

"""

models = ["facebook/detr-resnet-50","facebook/detr-resnet-101",'hustvl/yolos-small','hustvl/yolos-tiny','facebook/detr-resnet-101-dc5', 'hustvl/yolos-small-300', 'mshamrai/yolov8x-visdrone']
urls = ["https://c8.alamy.com/comp/J2AB4K/the-new-york-stock-exchange-on-the-wall-street-in-new-york-J2AB4K.jpg"]


TEST_IMAGE = Image.open(r"images/Test_Street_VisDrone.JPG")

# Test command line when in python terminal: image_functions.detect_objects('facebook/detr-resnet-50', "", image_functions.TEST_IMAGE, 0.7)