Spaces:
Running
Running
beautify
Browse files
app.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
import json
|
2 |
|
3 |
import gradio as gr
|
|
|
|
|
4 |
import requests
|
5 |
import timm
|
6 |
import torch
|
@@ -27,7 +29,7 @@ def preprocess(x: torch.Tensor):
|
|
27 |
else:
|
28 |
melspec = melspec[:1024]
|
29 |
melspec = (melspec - MEAN) / (STD * 2)
|
30 |
-
return melspec
|
31 |
|
32 |
|
33 |
def predict(audio, start):
|
@@ -43,15 +45,44 @@ def predict(audio, start):
|
|
43 |
x = preprocess(x)
|
44 |
|
45 |
with torch.inference_mode():
|
46 |
-
logits = MODEL(x.
|
47 |
|
48 |
topk_probs, topk_classes = logits.sigmoid().topk(10)
|
49 |
-
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
gr.Interface(
|
|
|
|
|
53 |
fn=predict,
|
54 |
inputs=["audio", "number"],
|
55 |
-
outputs=
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
).launch()
|
|
|
1 |
import json
|
2 |
|
3 |
import gradio as gr
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import numpy as np
|
6 |
import requests
|
7 |
import timm
|
8 |
import torch
|
|
|
29 |
else:
|
30 |
melspec = melspec[:1024]
|
31 |
melspec = (melspec - MEAN) / (STD * 2)
|
32 |
+
return melspec
|
33 |
|
34 |
|
35 |
def predict(audio, start):
|
|
|
45 |
x = preprocess(x)
|
46 |
|
47 |
with torch.inference_mode():
|
48 |
+
logits = MODEL(x.view(1, 1, 1024, 128)).squeeze(0)
|
49 |
|
50 |
topk_probs, topk_classes = logits.sigmoid().topk(10)
|
51 |
+
preds = [[AUDIOSET_LABELS[cls], prob.item() * 100] for cls, prob in zip(topk_classes, topk_probs)]
|
52 |
|
53 |
+
fig = plt.figure()
|
54 |
+
plt.imshow(x.T, origin="lower")
|
55 |
+
plt.title("Log mel-spectrogram")
|
56 |
+
plt.xlabel("Time (s)")
|
57 |
+
plt.xticks(np.arange(11) * 100, np.arange(11))
|
58 |
+
plt.yticks([0, 64, 128])
|
59 |
+
plt.tight_layout()
|
60 |
+
|
61 |
+
return preds, fig
|
62 |
+
|
63 |
+
|
64 |
+
DESCRIPTION = """
|
65 |
+
Classify audio into AudioSet classes with ViT-B/16 pre-trained using AudioMAE objective.
|
66 |
+
|
67 |
+
- For more information about AudioMAE, visit https://github.com/facebookresearch/AudioMAE.
|
68 |
+
- For how to use AudioMAE model in timm, visit https://huggingface.co/gaunernst/vit_base_patch16_1024_128.audiomae_as2m_ft_as20k.
|
69 |
+
|
70 |
+
Input audio is converted to log Mel-spectrogram and treated as a grayscale image. The model is a vanilla ViT-B/16.
|
71 |
+
|
72 |
+
NOTE: AudioMAE model only accepts 10s audio (10.24 to be exact). Longer audio will be cropped. Shorted audio will be zero-padded.
|
73 |
+
"""
|
74 |
|
75 |
gr.Interface(
|
76 |
+
title="AudioSet classification with AudioMAE (ViT-B/16)",
|
77 |
+
description=DESCRIPTION,
|
78 |
fn=predict,
|
79 |
inputs=["audio", "number"],
|
80 |
+
outputs=[
|
81 |
+
gr.Dataframe(headers=["class", "score"], row_count=10, label="prediction"),
|
82 |
+
gr.Plot(label="spectrogram"),
|
83 |
+
],
|
84 |
+
examples=[
|
85 |
+
["LS_female_1462-170138-0008.flac", 0],
|
86 |
+
["LS_male_3170-137482-0005.flac", 0],
|
87 |
+
],
|
88 |
).launch()
|