import json import gradio as gr import matplotlib.pyplot as plt import numpy as np import requests import timm import torch import torch.nn.functional as F from torchaudio.compliance import kaldi from torchaudio.functional import resample TAG = "gaunernst/vit_base_patch16_1024_128.audiomae_as2m_ft_as20k" MODEL = timm.create_model(f"hf_hub:{TAG}", pretrained=True).eval() LABEL_URL = "https://huggingface.co/datasets/huggingface/label-files/raw/main/audioset-id2label.json" AUDIOSET_LABELS = list(json.loads(requests.get(LABEL_URL).content).values()) SAMPLING_RATE = 16_000 MEAN = -4.2677393 STD = 4.5689974 def preprocess(x: torch.Tensor): x = x - x.mean() melspec = kaldi.fbank(x.unsqueeze(0), htk_compat=True, window_type="hanning", num_mel_bins=128) if melspec.shape[0] < 1024: melspec = F.pad(melspec, (0, 0, 0, 1024 - melspec.shape[0])) else: melspec = melspec[:1024] melspec = (melspec - MEAN) / (STD * 2) return melspec def predict(audio, start): sr, x = audio if x.shape[0] < start * sr: raise gr.Error(f"`start` ({start}) must be smaller than audio duration ({x.shape[0] / sr:.0f}s)") x = torch.from_numpy(x) / (1 << 15) if x.ndim > 1: x = x.mean(-1) assert x.ndim == 1 x = resample(x[int(start * sr) :], sr, SAMPLING_RATE) x = preprocess(x) with torch.inference_mode(): logits = MODEL(x.view(1, 1, 1024, 128)).squeeze(0) topk_probs, topk_classes = logits.sigmoid().topk(10) preds = [[AUDIOSET_LABELS[cls], prob.item() * 100] for cls, prob in zip(topk_classes, topk_probs)] fig = plt.figure() plt.imshow(x.T, origin="lower") plt.title("Log mel-spectrogram") plt.xlabel("Time (s)") plt.xticks(np.arange(11) * 100, np.arange(11)) plt.yticks([0, 64, 128]) plt.tight_layout() return preds, fig DESCRIPTION = """ Classify audio into AudioSet classes with ViT-B/16 pre-trained using AudioMAE objective. - For more information about AudioMAE, visit https://github.com/facebookresearch/AudioMAE. - For how to use AudioMAE model in timm, visit https://huggingface.co/gaunernst/vit_base_patch16_1024_128.audiomae_as2m_ft_as20k. Input audio is converted to log Mel-spectrogram and treated as a grayscale image. The model is a vanilla ViT-B/16. NOTE: AudioMAE model only accepts 10s audio (10.24 to be exact). Longer audio will be cropped. Shorted audio will be zero-padded. """ gr.Interface( title="AudioSet classification with AudioMAE (ViT-B/16)", description=DESCRIPTION, fn=predict, inputs=["audio", "number"], outputs=[ gr.Dataframe(headers=["class", "score"], row_count=10, label="prediction"), gr.Plot(label="spectrogram"), ], examples=[ ["LS_female_1462-170138-0008.flac", 0], ["LS_male_3170-137482-0005.flac", 0], ], ).launch()