from diffusers import StableDiffusionPipeline import torch import requests from PIL import Image from io import BytesIO from diffusers import StableDiffusionImg2ImgPipeline device = "cuda" model_id = "rikdas/madras_weights" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to(device) pipe2 = StableDiffusionImg2ImgPipeline(**pipe.components).to(device) import gradio as gr def generate_txt2img(inp_txt, inp_neg, num_inf_steps, width, height, g_scale, num_imgs): return pipe(prompt=inp_txt, negative_prompt=inp_neg, num_inference_steps=num_inf_steps, width=width, height=height, guidance_scale=g_scale, num_images_per_prompt=num_imgs).images def generate_img2img(inp_img, inp_txt, inp_neg, num_inf_steps, g_scale, num_imgs, strength): image = Image.fromarray(inp_img) image = image.resize((512, 512)) return pipe2(prompt=inp_txt, negative_prompt=inp_neg, num_inference_steps=num_inf_steps, image=image, strength=strength, guidance_scale=g_scale, num_images_per_prompt=num_imgs).images with gr.Blocks() as demo: with gr.Tab("Text2Image"): with gr.Group(): with gr.Row(): with gr.Column(): inp_txt = gr.Text(show_label=False, placeholder="Enter your prompt here...") inp_neg = gr.Text(show_label=False, placeholder="Enter your negative prompt here...") with gr.Column(): out_img = gr.Gallery(preview=True) with gr.Accordion("Extra parameters", open=False): num_inf_steps = gr.Slider(label="Number of inference steps", minimum=20, maximum=100, value=50, step=1) with gr.Row(): with gr.Column(): width = gr.Slider(label="Width(pixels)", minimum=256, maximum=1024, value=512, step=1) with gr.Column(): height = gr.Slider(label="Height(pixels)", minimum=256, maximum=1024, value=512, step=1) g_scale = gr.Slider(label="Guidance scale", minimum=1, maximum=10, value=7.5, step=0.5) num_imgs = gr.Slider(label="Number of images", minimum=1, maximum=10, value=1, step=1) btn = gr.Button("Generate") btn.click(fn=generate_txt2img, inputs=[inp_txt, inp_neg, num_inf_steps, width, height, g_scale, num_imgs], outputs=[out_img]) with gr.Tab("Image2Image"): with gr.Group(): with gr.Row(): with gr.Column(): inp_img = gr.Image() with gr.Column(): out_img2 = gr.Gallery(preview=True) inp_txt2 = gr.Text(show_label=False, placeholder="Enter your prompt here...") inp_neg2 = gr.Text(show_label=False, placeholder="Enter your negative prompt here...") with gr.Accordion("Extra parameters", open=False): num_inf_steps2 = gr.Slider(label="Number of inference steps", minimum=20, maximum=100, value=50, step=1) g_scale2 = gr.Slider(label="Guidance scale", minimum=1, maximum=10, value=7.5, step=0.5) num_imgs2 = gr.Slider(label="Number of images", minimum=1, maximum=10, value=1, step=1) strength = gr.Slider(label="Strength", minimum=0, maximum=1, value=0.8, step=0.1) btn2 = gr.Button("Generate") btn2.click(fn=generate_img2img, inputs=[inp_img, inp_txt2, inp_neg2, num_inf_steps2, g_scale2, num_imgs2, strength], outputs=[out_img2]) demo.launch(debug=True)