AudioToken / modules /beats /backbone.py
guyyariv
AudioTokenDemo
1b92e8f
raw
history blame
30.9 kB
# --------------------------------------------------------
# beats: Audio Pre-Training with Acoustic Tokenizers (https://arxiv.org/abs/2212.09058)
# Github source: https://github.com/microsoft/unilm/tree/master/beats
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on fairseq code bases
# https://github.com/pytorch/fairseq
# --------------------------------------------------------
import math
import numpy as np
from typing import Dict, Optional, Tuple
import torch
from torch import Tensor, nn
import torch.nn.functional as F
from torch.nn import LayerNorm, Parameter
from modules.beats.modules import (
GradMultiply,
SamePad,
get_activation_fn,
GLU_Linear,
quant_noise,
)
class TransformerEncoder(nn.Module):
def __init__(self, args):
super().__init__()
self.dropout = args.dropout
self.embedding_dim = args.encoder_embed_dim
self.pos_conv = nn.Conv1d(
self.embedding_dim,
self.embedding_dim,
kernel_size=args.conv_pos,
padding=args.conv_pos // 2,
groups=args.conv_pos_groups,
)
dropout = 0
std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * self.embedding_dim))
nn.init.normal_(self.pos_conv.weight, mean=0, std=std)
nn.init.constant_(self.pos_conv.bias, 0)
self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2)
self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU())
if hasattr(args, "relative_position_embedding"):
self.relative_position_embedding = args.relative_position_embedding
self.num_buckets = args.num_buckets
self.max_distance = args.max_distance
else:
self.relative_position_embedding = False
self.num_buckets = 0
self.max_distance = 0
self.layers = nn.ModuleList(
[
TransformerSentenceEncoderLayer(
embedding_dim=self.embedding_dim,
ffn_embedding_dim=args.encoder_ffn_embed_dim,
num_attention_heads=args.encoder_attention_heads,
dropout=self.dropout,
attention_dropout=args.attention_dropout,
activation_dropout=args.activation_dropout,
activation_fn=args.activation_fn,
layer_norm_first=args.layer_norm_first,
deep_norm=args.deep_norm,
has_relative_attention_bias=self.relative_position_embedding,
num_buckets=self.num_buckets,
max_distance=self.max_distance,
gru_rel_pos=args.gru_rel_pos,
encoder_layers=args.encoder_layers,
)
for i in range(args.encoder_layers)
]
)
if self.relative_position_embedding:
for i in range(1, args.encoder_layers):
del self.layers[i].self_attn.relative_attention_bias
self.layers[i].self_attn.relative_attention_bias = self.layers[0].self_attn.relative_attention_bias
self.layer_norm_first = args.layer_norm_first
self.layer_norm = LayerNorm(self.embedding_dim)
self.layerdrop = args.encoder_layerdrop
self.apply(init_bert_params)
if args.deep_norm:
deep_norm_beta = math.pow(8 * args.encoder_layers, -1 / 4)
for i in range(args.encoder_layers):
nn.init.xavier_normal_(self.layers[i].self_attn.k_proj.weight, gain=1)
nn.init.xavier_normal_(self.layers[i].self_attn.v_proj.weight, gain=deep_norm_beta)
nn.init.xavier_normal_(self.layers[i].self_attn.q_proj.weight, gain=1)
nn.init.xavier_normal_(self.layers[i].self_attn.out_proj.weight, gain=deep_norm_beta)
nn.init.xavier_normal_(self.layers[i].fc1.weight, gain=deep_norm_beta)
nn.init.xavier_normal_(self.layers[i].fc2.weight, gain=deep_norm_beta)
self.layer_wise_gradient_decay_ratio = getattr(args, "layer_wise_gradient_decay_ratio", 1)
def forward(self, x, padding_mask=None, layer=None):
x, layers_sum, layers = self.extract_features(x, padding_mask, layer)
if self.layer_norm_first and layer is None:
x = self.layer_norm(x)
return x, layers_sum, layers
def extract_features(self, x, padding_mask=None, tgt_layer=None):
if padding_mask is not None:
x[padding_mask] = 0
x_conv = self.pos_conv(x.transpose(1, 2))
x_conv = x_conv.transpose(1, 2)
x += x_conv
if not self.layer_norm_first:
x = self.layer_norm(x)
x = F.dropout(x, p=self.dropout, training=self.training)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
layers = []
layer_results = []
z = None
if tgt_layer is not None:
layer_results.append((x, z))
r = None
pos_bias = None
for i, layer in enumerate(self.layers):
if self.layer_wise_gradient_decay_ratio != 1.0:
x = GradMultiply.apply(x, self.layer_wise_gradient_decay_ratio)
dropout_probability = np.random.random()
if not self.training or (dropout_probability > self.layerdrop):
x, z, pos_bias = layer(x, self_attn_padding_mask=padding_mask, need_weights=False, pos_bias=pos_bias)
if tgt_layer is not None:
layer_results.append((x, z))
if i == tgt_layer:
r = x
break
if i in [3, 7, 11]:
layers.append(x.transpose(0, 1))
if r is not None:
x = r
# T x B x C -> B x T x C
x = x.transpose(0, 1)
layers_cat = torch.cat(layers, dim=2)
return x, layers_cat, layers
class TransformerSentenceEncoderLayer(nn.Module):
def __init__(
self,
embedding_dim: float = 768,
ffn_embedding_dim: float = 3072,
num_attention_heads: float = 8,
dropout: float = 0.1,
attention_dropout: float = 0.1,
activation_dropout: float = 0.1,
activation_fn: str = "relu",
layer_norm_first: bool = False,
deep_norm: bool = False,
has_relative_attention_bias: bool = False,
num_buckets: int = 0,
max_distance: int = 0,
rescale_init: bool = False,
gru_rel_pos: bool = False,
encoder_layers: int = 0,
) -> None:
super().__init__()
self.embedding_dim = embedding_dim
self.dropout = dropout
self.activation_dropout = activation_dropout
self.activation_name = activation_fn
self.activation_fn = get_activation_fn(activation_fn)
self.self_attn = MultiheadAttention(
self.embedding_dim,
num_attention_heads,
dropout=attention_dropout,
self_attention=True,
has_relative_attention_bias=has_relative_attention_bias,
num_buckets=num_buckets,
max_distance=max_distance,
rescale_init=rescale_init,
gru_rel_pos=gru_rel_pos,
)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(self.activation_dropout)
self.dropout3 = nn.Dropout(dropout)
self.layer_norm_first = layer_norm_first
self.self_attn_layer_norm = LayerNorm(self.embedding_dim)
if self.activation_name == "glu":
self.fc1 = GLU_Linear(self.embedding_dim, ffn_embedding_dim, "swish")
else:
self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim)
self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim)
self.final_layer_norm = LayerNorm(self.embedding_dim)
self.deep_norm = deep_norm
if self.deep_norm:
self.deep_norm_alpha = math.pow(2 * encoder_layers, 1 / 4)
else:
self.deep_norm_alpha = 1
def forward(
self,
x: torch.Tensor,
self_attn_mask: torch.Tensor = None,
self_attn_padding_mask: torch.Tensor = None,
need_weights: bool = False,
pos_bias=None
):
residual = x
if self.layer_norm_first:
x = self.self_attn_layer_norm(x)
x, attn, pos_bias = self.self_attn(
query=x,
key=x,
value=x,
key_padding_mask=self_attn_padding_mask,
need_weights=False,
attn_mask=self_attn_mask,
position_bias=pos_bias
)
x = self.dropout1(x)
x = residual + x
residual = x
x = self.final_layer_norm(x)
if self.activation_name == "glu":
x = self.fc1(x)
else:
x = self.activation_fn(self.fc1(x))
x = self.dropout2(x)
x = self.fc2(x)
x = self.dropout3(x)
x = residual + x
else:
x, attn, pos_bias = self.self_attn(
query=x,
key=x,
value=x,
key_padding_mask=self_attn_padding_mask,
need_weights=need_weights,
attn_mask=self_attn_mask,
position_bias=pos_bias
)
x = self.dropout1(x)
x = residual * self.deep_norm_alpha + x
x = self.self_attn_layer_norm(x)
residual = x
if self.activation_name == "glu":
x = self.fc1(x)
else:
x = self.activation_fn(self.fc1(x))
x = self.dropout2(x)
x = self.fc2(x)
x = self.dropout3(x)
x = residual * self.deep_norm_alpha + x
x = self.final_layer_norm(x)
return x, attn, pos_bias
class MultiheadAttention(nn.Module):
"""Multi-headed attention.
See "Attention Is All You Need" for more details.
"""
def __init__(
self,
embed_dim,
num_heads,
kdim=None,
vdim=None,
dropout=0.0,
bias=True,
add_bias_kv=False,
add_zero_attn=False,
self_attention=False,
encoder_decoder_attention=False,
q_noise=0.0,
qn_block_size=8,
has_relative_attention_bias=False,
num_buckets=32,
max_distance=128,
gru_rel_pos=False,
rescale_init=False,
):
super().__init__()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
self.num_heads = num_heads
self.dropout_module = nn.Dropout(dropout)
self.has_relative_attention_bias = has_relative_attention_bias
self.num_buckets = num_buckets
self.max_distance = max_distance
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(num_buckets, num_heads)
self.head_dim = embed_dim // num_heads
self.q_head_dim = self.head_dim
self.k_head_dim = self.head_dim
assert (
self.head_dim * num_heads == self.embed_dim
), "embed_dim must be divisible by num_heads"
self.scaling = self.head_dim ** -0.5
self.self_attention = self_attention
self.encoder_decoder_attention = encoder_decoder_attention
assert not self.self_attention or self.qkv_same_dim, (
"Self-attention requires query, key and " "value to be of the same size"
)
k_bias = True
if rescale_init:
k_bias = False
k_embed_dim = embed_dim
q_embed_dim = embed_dim
self.k_proj = quant_noise(
nn.Linear(self.kdim, k_embed_dim, bias=k_bias), q_noise, qn_block_size
)
self.v_proj = quant_noise(
nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size
)
self.q_proj = quant_noise(
nn.Linear(embed_dim, q_embed_dim, bias=bias), q_noise, qn_block_size
)
self.out_proj = quant_noise(
nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size
)
if add_bias_kv:
self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim))
self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim))
else:
self.bias_k = self.bias_v = None
self.add_zero_attn = add_zero_attn
self.gru_rel_pos = gru_rel_pos
if self.gru_rel_pos:
self.grep_linear = nn.Linear(self.q_head_dim, 8)
self.grep_a = nn.Parameter(torch.ones(1, num_heads, 1, 1))
self.reset_parameters()
def reset_parameters(self):
if self.qkv_same_dim:
# Empirically observed the convergence to be much better with
# the scaled initialization
nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
else:
nn.init.xavier_uniform_(self.k_proj.weight)
nn.init.xavier_uniform_(self.v_proj.weight)
nn.init.xavier_uniform_(self.q_proj.weight)
nn.init.xavier_uniform_(self.out_proj.weight)
if self.out_proj.bias is not None:
nn.init.constant_(self.out_proj.bias, 0.0)
if self.bias_k is not None:
nn.init.xavier_normal_(self.bias_k)
if self.bias_v is not None:
nn.init.xavier_normal_(self.bias_v)
if self.has_relative_attention_bias:
nn.init.xavier_normal_(self.relative_attention_bias.weight)
def _relative_positions_bucket(self, relative_positions, bidirectional=True):
num_buckets = self.num_buckets
max_distance = self.max_distance
relative_buckets = 0
if bidirectional:
num_buckets = num_buckets // 2
relative_buckets += (relative_positions > 0).to(torch.long) * num_buckets
relative_positions = torch.abs(relative_positions)
else:
relative_positions = -torch.min(relative_positions, torch.zeros_like(relative_positions))
max_exact = num_buckets // 2
is_small = relative_positions < max_exact
relative_postion_if_large = max_exact + (
torch.log(relative_positions.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_postion_if_large = torch.min(
relative_postion_if_large, torch.full_like(relative_postion_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_positions, relative_postion_if_large)
return relative_buckets
def compute_bias(self, query_length, key_length):
context_position = torch.arange(query_length, dtype=torch.long)[:, None]
memory_position = torch.arange(key_length, dtype=torch.long)[None, :]
relative_position = memory_position - context_position
relative_position_bucket = self._relative_positions_bucket(
relative_position,
bidirectional=True
)
relative_position_bucket = relative_position_bucket.to(self.relative_attention_bias.weight.device)
values = self.relative_attention_bias(relative_position_bucket)
values = values.permute([2, 0, 1])
return values
def forward(
self,
query,
key: Optional[Tensor],
value: Optional[Tensor],
key_padding_mask: Optional[Tensor] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
need_weights: bool = True,
static_kv: bool = False,
attn_mask: Optional[Tensor] = None,
before_softmax: bool = False,
need_head_weights: bool = False,
position_bias: Optional[Tensor] = None
) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]:
"""Input shape: Time x Batch x Channel
Args:
key_padding_mask (ByteTensor, optional): mask to exclude
keys that are pads, of shape `(batch, src_len)`, where
padding elements are indicated by 1s.
need_weights (bool, optional): return the attention weights,
averaged over heads (default: False).
attn_mask (ByteTensor, optional): typically used to
implement causal attention, where the mask prevents the
attention from looking forward in time (default: None).
before_softmax (bool, optional): return the raw attention
weights and values before the attention softmax.
need_head_weights (bool, optional): return the attention
weights for each head. Implies *need_weights*. Default:
return the average attention weights over all heads.
"""
if need_head_weights:
need_weights = True
is_tpu = query.device.type == "xla"
tgt_len, bsz, embed_dim = query.size()
src_len = tgt_len
assert embed_dim == self.embed_dim
assert list(query.size()) == [tgt_len, bsz, embed_dim]
if key is not None:
src_len, key_bsz, _ = key.size()
if not torch.jit.is_scripting():
assert key_bsz == bsz
assert value is not None
assert src_len, bsz == value.shape[:2]
if self.has_relative_attention_bias and position_bias is None:
position_bias = self.compute_bias(tgt_len, src_len)
position_bias = position_bias.unsqueeze(0).repeat(bsz, 1, 1, 1).view(bsz * self.num_heads, tgt_len, src_len)
if incremental_state is not None:
saved_state = self._get_input_buffer(incremental_state)
if saved_state is not None and "prev_key" in saved_state:
# previous time steps are cached - no need to recompute
# key and value if they are static
if static_kv:
assert self.encoder_decoder_attention and not self.self_attention
key = value = None
else:
saved_state = None
if self.self_attention:
q = self.q_proj(query)
k = self.k_proj(query)
v = self.v_proj(query)
elif self.encoder_decoder_attention:
# encoder-decoder attention
q = self.q_proj(query)
if key is None:
assert value is None
k = v = None
else:
k = self.k_proj(key)
v = self.v_proj(key)
else:
assert key is not None and value is not None
q = self.q_proj(query)
k = self.k_proj(key)
v = self.v_proj(value)
q *= self.scaling
alpha = 32
q *= 1 / alpha
if self.bias_k is not None:
assert self.bias_v is not None
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
if attn_mask is not None:
attn_mask = torch.cat(
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
)
if key_padding_mask is not None:
key_padding_mask = torch.cat(
[
key_padding_mask,
key_padding_mask.new_zeros(key_padding_mask.size(0), 1),
],
dim=1,
)
q = (
q.contiguous()
.view(tgt_len, bsz * self.num_heads, self.q_head_dim)
.transpose(0, 1)
)
if k is not None:
k = (
k.contiguous()
.view(-1, bsz * self.num_heads, self.k_head_dim)
.transpose(0, 1)
)
if v is not None:
v = (
v.contiguous()
.view(-1, bsz * self.num_heads, self.head_dim)
.transpose(0, 1)
)
if saved_state is not None:
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
if "prev_key" in saved_state:
_prev_key = saved_state["prev_key"]
assert _prev_key is not None
prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
k = prev_key
else:
assert k is not None
k = torch.cat([prev_key, k], dim=1)
src_len = k.size(1)
if "prev_value" in saved_state:
_prev_value = saved_state["prev_value"]
assert _prev_value is not None
prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
v = prev_value
else:
assert v is not None
v = torch.cat([prev_value, v], dim=1)
prev_key_padding_mask: Optional[Tensor] = None
if "prev_key_padding_mask" in saved_state:
prev_key_padding_mask = saved_state["prev_key_padding_mask"]
assert k is not None and v is not None
key_padding_mask = MultiheadAttention._append_prev_key_padding_mask(
key_padding_mask=key_padding_mask,
prev_key_padding_mask=prev_key_padding_mask,
batch_size=bsz,
src_len=k.size(1),
static_kv=static_kv,
)
saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim)
saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim)
saved_state["prev_key_padding_mask"] = key_padding_mask
# In this branch incremental_state is never None
assert incremental_state is not None
incremental_state = self._set_input_buffer(incremental_state, saved_state)
assert k is not None
assert k.size(1) == src_len
# This is part of a workaround to get around fork/join parallelism
# not supporting Optional types.
if key_padding_mask is not None and key_padding_mask.dim() == 0:
key_padding_mask = None
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == src_len
if self.add_zero_attn:
assert v is not None
src_len += 1
k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1)
v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1)
if attn_mask is not None:
attn_mask = torch.cat(
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
)
if key_padding_mask is not None:
key_padding_mask = torch.cat(
[
key_padding_mask,
torch.zeros(key_padding_mask.size(0), 1).type_as(
key_padding_mask
),
],
dim=1,
)
attn_weights = torch.bmm(q, k.transpose(1, 2))
attn_weights = (attn_weights - attn_weights.max(dim=-1, keepdim=True)[0]) * alpha
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
if attn_mask is not None:
attn_mask = attn_mask.unsqueeze(0)
attn_weights += attn_mask
if key_padding_mask is not None:
# don't attend to padding symbols
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
if not is_tpu:
attn_weights = attn_weights.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
float("-inf"),
)
else:
attn_weights = attn_weights.transpose(0, 2)
attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf"))
attn_weights = attn_weights.transpose(0, 2)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if before_softmax:
return attn_weights, v, position_bias
if position_bias is not None:
attn_mask_rel_pos = position_bias
if self.gru_rel_pos == 1:
query_layer = q.view(bsz, self.num_heads, tgt_len, self.q_head_dim) * alpha / self.scaling
_B, _H, _L, __ = query_layer.size()
gate_a, gate_b = torch.sigmoid(self.grep_linear(query_layer).view(
_B, _H, _L, 2, 4).sum(-1, keepdim=False)).chunk(2, dim=-1)
gate_a_1 = gate_a * (gate_b * self.grep_a - 1.0) + 2.0
attn_mask_rel_pos = gate_a_1.view(bsz * self.num_heads, tgt_len, 1) * position_bias
attn_mask_rel_pos = attn_mask_rel_pos.view(attn_weights.size())
attn_weights = attn_weights + attn_mask_rel_pos
attn_weights_float = F.softmax(
attn_weights, dim=-1
)
attn_weights = attn_weights_float.type_as(attn_weights)
attn_probs = self.dropout_module(attn_weights)
assert v is not None
attn = torch.bmm(attn_probs, v)
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn = self.out_proj(attn)
attn_weights: Optional[Tensor] = None
if need_weights:
attn_weights = attn_weights_float.view(
bsz, self.num_heads, tgt_len, src_len
).transpose(1, 0)
if not need_head_weights:
# average attention weights over heads
attn_weights = attn_weights.mean(dim=0)
return attn, attn_weights, position_bias
@staticmethod
def _append_prev_key_padding_mask(
key_padding_mask: Optional[Tensor],
prev_key_padding_mask: Optional[Tensor],
batch_size: int,
src_len: int,
static_kv: bool,
) -> Optional[Tensor]:
# saved key padding masks have shape (bsz, seq_len)
if prev_key_padding_mask is not None and static_kv:
new_key_padding_mask = prev_key_padding_mask
elif prev_key_padding_mask is not None and key_padding_mask is not None:
new_key_padding_mask = torch.cat(
[prev_key_padding_mask.float(), key_padding_mask.float()], dim=1
)
# During incremental decoding, as the padding token enters and
# leaves the frame, there will be a time when prev or current
# is None
elif prev_key_padding_mask is not None:
if src_len > prev_key_padding_mask.size(1):
filler = torch.zeros(
(batch_size, src_len - prev_key_padding_mask.size(1)),
device=prev_key_padding_mask.device,
)
new_key_padding_mask = torch.cat(
[prev_key_padding_mask.float(), filler.float()], dim=1
)
else:
new_key_padding_mask = prev_key_padding_mask.float()
elif key_padding_mask is not None:
if src_len > key_padding_mask.size(1):
filler = torch.zeros(
(batch_size, src_len - key_padding_mask.size(1)),
device=key_padding_mask.device,
)
new_key_padding_mask = torch.cat(
[filler.float(), key_padding_mask.float()], dim=1
)
else:
new_key_padding_mask = key_padding_mask.float()
else:
new_key_padding_mask = prev_key_padding_mask
return new_key_padding_mask
def _get_input_buffer(
self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]
) -> Dict[str, Optional[Tensor]]:
result = self.get_incremental_state(incremental_state, "attn_state")
if result is not None:
return result
else:
empty_result: Dict[str, Optional[Tensor]] = {}
return empty_result
def _set_input_buffer(
self,
incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
buffer: Dict[str, Optional[Tensor]],
):
return self.set_incremental_state(incremental_state, "attn_state", buffer)
def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int):
return attn_weights
def init_bert_params(module):
"""
Initialize the weights specific to the BERT Model.
This overrides the default initializations depending on the specified arguments.
1. If normal_init_linear_weights is set then weights of linear
layer will be initialized using the normal distribution and
bais will be set to the specified value.
2. If normal_init_embed_weights is set then weights of embedding
layer will be initialized using the normal distribution.
3. If normal_init_proj_weights is set then weights of
in_project_weight for MultiHeadAttention initialized using
the normal distribution (to be validated).
"""
def normal_(data):
# with FSDP, module params will be on CUDA, so we cast them back to CPU
# so that the RNG is consistent with and without FSDP
data.copy_(
data.cpu().normal_(mean=0.0, std=0.02).to(data.device)
)
if isinstance(module, nn.Linear):
normal_(module.weight.data)
if module.bias is not None:
module.bias.data.zero_()
if isinstance(module, nn.Embedding):
normal_(module.weight.data)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if isinstance(module, MultiheadAttention):
normal_(module.q_proj.weight.data)
normal_(module.k_proj.weight.data)
normal_(module.v_proj.weight.data)