File size: 1,566 Bytes
fe41391 5c1306e 6091007 5c1306e fe41391 aba9e8d 5c1306e fe41391 5c1306e fe41391 5c1306e fe41391 0a06673 fe41391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import gradio as gr
from transformers import pipeline
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the model and tokenizer
# model_name = "AdaptLLM/law-LLM"
model_name = "google/gemma-2b"
# model_name = "mistralai/Mistral-7B-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Load the llama2 LLM model
# model = pipeline("text-generation", model="llamalanguage/llama2", tokenizer="llamalanguage/llama2")
# model = pipeline("text-generation", model="mistralai/Mistral-7B-v0.1", tokenizer="meta-llama/Llama-2-7b-chat-hf")
# Define the chat function that uses the LLM model
# def chat_interface(input_text):
# response = model(input_text, max_length=100, return_full_text=True)[0]["generated_text"]
# response_words = response.split()
# return response_words
# Define the chat function that uses the Mistral-7B-v0.1 model
def chat_interface(input_text):
inputs = tokenizer.encode(input_text, return_tensors="pt")
outputs = model.generate(inputs, max_length=100)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Create the Gradio interface
iface = gr.Interface(
fn=chat_interface,
inputs=gr.inputs.Textbox(lines=2, label="Input Text"),
outputs=gr.outputs.Textbox(label="Output Text"),
title="Chat Interface",
description="Enter text and get a response using the LLM model",
# live=True # Enable live updates
)
# Launch the interface using Hugging Face Spaces
iface.launch(share=True) |