File size: 13,848 Bytes
fe41391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
from __future__ import annotations
import io
from typing import TYPE_CHECKING, Any
from bokeh.io import export_png, export_svg, show
from bokeh.io.export import get_screenshot_as_png
from bokeh.layouts import gridplot
from bokeh.models.annotations.labels import Label
from bokeh.palettes import Category10
from bokeh.plotting import figure
import numpy as np
from contourpy import FillType, LineType
from contourpy.enum_util import as_fill_type, as_line_type
from contourpy.util.bokeh_util import filled_to_bokeh, lines_to_bokeh
from contourpy.util.renderer import Renderer
if TYPE_CHECKING:
from bokeh.models import GridPlot
from bokeh.palettes import Palette
from numpy.typing import ArrayLike
from selenium.webdriver.remote.webdriver import WebDriver
from contourpy._contourpy import FillReturn, LineReturn
class BokehRenderer(Renderer):
"""Utility renderer using Bokeh to render a grid of plots over the same (x, y) range.
Args:
nrows (int, optional): Number of rows of plots, default ``1``.
ncols (int, optional): Number of columns of plots, default ``1``.
figsize (tuple(float, float), optional): Figure size in inches (assuming 100 dpi), default
``(9, 9)``.
show_frame (bool, optional): Whether to show frame and axes ticks, default ``True``.
want_svg (bool, optional): Whether output is required in SVG format or not, default
``False``.
Warning:
:class:`~contourpy.util.bokeh_renderer.BokehRenderer`, unlike
:class:`~contourpy.util.mpl_renderer.MplRenderer`, needs to be told in advance if output to
SVG format will be required later, otherwise it will assume PNG output.
"""
_figures: list[figure]
_layout: GridPlot
_palette: Palette
_want_svg: bool
def __init__(
self,
nrows: int = 1,
ncols: int = 1,
figsize: tuple[float, float] = (9, 9),
show_frame: bool = True,
want_svg: bool = False,
) -> None:
self._want_svg = want_svg
self._palette = Category10[10]
total_size = 100*np.asarray(figsize, dtype=int) # Assuming 100 dpi.
nfigures = nrows*ncols
self._figures = []
backend = "svg" if self._want_svg else "canvas"
for _ in range(nfigures):
fig = figure(output_backend=backend)
fig.xgrid.visible = False
fig.ygrid.visible = False
self._figures.append(fig)
if not show_frame:
fig.outline_line_color = None # type: ignore[assignment]
fig.axis.visible = False
self._layout = gridplot(
self._figures, ncols=ncols, toolbar_location=None, # type: ignore[arg-type]
width=total_size[0] // ncols, height=total_size[1] // nrows)
def _convert_color(self, color: str) -> str:
if isinstance(color, str) and color[0] == "C":
index = int(color[1:])
color = self._palette[index]
return color
def _get_figure(self, ax: figure | int) -> figure:
if isinstance(ax, int):
ax = self._figures[ax]
return ax
def filled(
self,
filled: FillReturn,
fill_type: FillType | str,
ax: figure | int = 0,
color: str = "C0",
alpha: float = 0.7,
) -> None:
"""Plot filled contours on a single plot.
Args:
filled (sequence of arrays): Filled contour data as returned by
:func:`~contourpy.ContourGenerator.filled`.
fill_type (FillType or str): Type of ``filled`` data as returned by
:attr:`~contourpy.ContourGenerator.fill_type`, or a string equivalent.
ax (int or Bokeh Figure, optional): Which plot to use, default ``0``.
color (str, optional): Color to plot with. May be a string color or the letter ``"C"``
followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the
``Category10`` palette. Default ``"C0"``.
alpha (float, optional): Opacity to plot with, default ``0.7``.
"""
fill_type = as_fill_type(fill_type)
fig = self._get_figure(ax)
color = self._convert_color(color)
xs, ys = filled_to_bokeh(filled, fill_type)
if len(xs) > 0:
fig.multi_polygons(xs=[xs], ys=[ys], color=color, fill_alpha=alpha, line_width=0)
def grid(
self,
x: ArrayLike,
y: ArrayLike,
ax: figure | int = 0,
color: str = "black",
alpha: float = 0.1,
point_color: str | None = None,
quad_as_tri_alpha: float = 0,
) -> None:
"""Plot quad grid lines on a single plot.
Args:
x (array-like of shape (ny, nx) or (nx,)): The x-coordinates of the grid points.
y (array-like of shape (ny, nx) or (ny,)): The y-coordinates of the grid points.
ax (int or Bokeh Figure, optional): Which plot to use, default ``0``.
color (str, optional): Color to plot grid lines, default ``"black"``.
alpha (float, optional): Opacity to plot lines with, default ``0.1``.
point_color (str, optional): Color to plot grid points or ``None`` if grid points
should not be plotted, default ``None``.
quad_as_tri_alpha (float, optional): Opacity to plot ``quad_as_tri`` grid, default
``0``.
Colors may be a string color or the letter ``"C"`` followed by an integer in the range
``"C0"`` to ``"C9"`` to use a color from the ``Category10`` palette.
Warning:
``quad_as_tri_alpha > 0`` plots all quads as though they are unmasked.
"""
fig = self._get_figure(ax)
x, y = self._grid_as_2d(x, y)
xs = [row for row in x] + [row for row in x.T]
ys = [row for row in y] + [row for row in y.T]
kwargs = dict(line_color=color, alpha=alpha)
fig.multi_line(xs, ys, **kwargs)
if quad_as_tri_alpha > 0:
# Assumes no quad mask.
xmid = (0.25*(x[:-1, :-1] + x[1:, :-1] + x[:-1, 1:] + x[1:, 1:])).ravel()
ymid = (0.25*(y[:-1, :-1] + y[1:, :-1] + y[:-1, 1:] + y[1:, 1:])).ravel()
fig.multi_line(
[row for row in np.stack((x[:-1, :-1].ravel(), xmid, x[1:, 1:].ravel()), axis=1)],
[row for row in np.stack((y[:-1, :-1].ravel(), ymid, y[1:, 1:].ravel()), axis=1)],
**kwargs)
fig.multi_line(
[row for row in np.stack((x[:-1, 1:].ravel(), xmid, x[1:, :-1].ravel()), axis=1)],
[row for row in np.stack((y[:-1, 1:].ravel(), ymid, y[1:, :-1].ravel()), axis=1)],
**kwargs)
if point_color is not None:
fig.circle(
x=x.ravel(), y=y.ravel(), fill_color=color, line_color=None, alpha=alpha, size=8)
def lines(
self,
lines: LineReturn,
line_type: LineType | str,
ax: figure | int = 0,
color: str = "C0",
alpha: float = 1.0,
linewidth: float = 1,
) -> None:
"""Plot contour lines on a single plot.
Args:
lines (sequence of arrays): Contour line data as returned by
:func:`~contourpy.ContourGenerator.lines`.
line_type (LineType or str): Type of ``lines`` data as returned by
:attr:`~contourpy.ContourGenerator.line_type`, or a string equivalent.
ax (int or Bokeh Figure, optional): Which plot to use, default ``0``.
color (str, optional): Color to plot lines. May be a string color or the letter ``"C"``
followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the
``Category10`` palette. Default ``"C0"``.
alpha (float, optional): Opacity to plot lines with, default ``1.0``.
linewidth (float, optional): Width of lines, default ``1``.
Note:
Assumes all lines are open line strips not closed line loops.
"""
line_type = as_line_type(line_type)
fig = self._get_figure(ax)
color = self._convert_color(color)
xs, ys = lines_to_bokeh(lines, line_type)
if xs is not None:
fig.line(xs, ys, line_color=color, line_alpha=alpha, line_width=linewidth)
def mask(
self,
x: ArrayLike,
y: ArrayLike,
z: ArrayLike | np.ma.MaskedArray[Any, Any],
ax: figure | int = 0,
color: str = "black",
) -> None:
"""Plot masked out grid points as circles on a single plot.
Args:
x (array-like of shape (ny, nx) or (nx,)): The x-coordinates of the grid points.
y (array-like of shape (ny, nx) or (ny,)): The y-coordinates of the grid points.
z (masked array of shape (ny, nx): z-values.
ax (int or Bokeh Figure, optional): Which plot to use, default ``0``.
color (str, optional): Circle color, default ``"black"``.
"""
mask = np.ma.getmask(z) # type: ignore[no-untyped-call]
if mask is np.ma.nomask:
return
fig = self._get_figure(ax)
color = self._convert_color(color)
x, y = self._grid_as_2d(x, y)
fig.circle(x[mask], y[mask], fill_color=color, size=10)
def save(
self,
filename: str,
transparent: bool = False,
*,
webdriver: WebDriver | None = None,
) -> None:
"""Save plots to SVG or PNG file.
Args:
filename (str): Filename to save to.
transparent (bool, optional): Whether background should be transparent, default
``False``.
webdriver (WebDriver, optional): Selenium WebDriver instance to use to create the image.
.. versionadded:: 1.1.1
Warning:
To output to SVG file, ``want_svg=True`` must have been passed to the constructor.
"""
if transparent:
for fig in self._figures:
fig.background_fill_color = None # type: ignore[assignment]
fig.border_fill_color = None # type: ignore[assignment]
if self._want_svg:
export_svg(self._layout, filename=filename, webdriver=webdriver)
else:
export_png(self._layout, filename=filename, webdriver=webdriver)
def save_to_buffer(self, *, webdriver: WebDriver | None = None) -> io.BytesIO:
"""Save plots to an ``io.BytesIO`` buffer.
Args:
webdriver (WebDriver, optional): Selenium WebDriver instance to use to create the image.
.. versionadded:: 1.1.1
Return:
BytesIO: PNG image buffer.
"""
image = get_screenshot_as_png(self._layout, driver=webdriver)
buffer = io.BytesIO()
image.save(buffer, "png")
return buffer
def show(self) -> None:
"""Show plots in web browser, in usual Bokeh manner.
"""
show(self._layout)
def title(self, title: str, ax: figure | int = 0, color: str | None = None) -> None:
"""Set the title of a single plot.
Args:
title (str): Title text.
ax (int or Bokeh Figure, optional): Which plot to set the title of, default ``0``.
color (str, optional): Color to set title. May be a string color or the letter ``"C"``
followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the
``Category10`` palette. Default ``None`` which is ``black``.
"""
fig = self._get_figure(ax)
fig.title = title # type: ignore[assignment]
fig.title.align = "center" # type: ignore[attr-defined]
if color is not None:
fig.title.text_color = self._convert_color(color) # type: ignore[attr-defined]
def z_values(
self,
x: ArrayLike,
y: ArrayLike,
z: ArrayLike,
ax: figure | int = 0,
color: str = "green",
fmt: str = ".1f",
quad_as_tri: bool = False,
) -> None:
"""Show ``z`` values on a single plot.
Args:
x (array-like of shape (ny, nx) or (nx,)): The x-coordinates of the grid points.
y (array-like of shape (ny, nx) or (ny,)): The y-coordinates of the grid points.
z (array-like of shape (ny, nx): z-values.
ax (int or Bokeh Figure, optional): Which plot to use, default ``0``.
color (str, optional): Color of added text. May be a string color or the letter ``"C"``
followed by an integer in the range ``"C0"`` to ``"C9"`` to use a color from the
``Category10`` palette. Default ``"green"``.
fmt (str, optional): Format to display z-values, default ``".1f"``.
quad_as_tri (bool, optional): Whether to show z-values at the ``quad_as_tri`` centres
of quads.
Warning:
``quad_as_tri=True`` shows z-values for all quads, even if masked.
"""
fig = self._get_figure(ax)
color = self._convert_color(color)
x, y = self._grid_as_2d(x, y)
z = np.asarray(z)
ny, nx = z.shape
kwargs = dict(text_color=color, text_align="center", text_baseline="middle")
for j in range(ny):
for i in range(nx):
fig.add_layout(Label(x=x[j, i], y=y[j, i], text=f"{z[j, i]:{fmt}}", **kwargs))
if quad_as_tri:
for j in range(ny-1):
for i in range(nx-1):
xx = np.mean(x[j:j+2, i:i+2])
yy = np.mean(y[j:j+2, i:i+2])
zz = np.mean(z[j:j+2, i:i+2])
fig.add_layout(Label(x=xx, y=yy, text=f"{zz:{fmt}}", **kwargs))
|