geored commited on
Commit
949994c
1 Parent(s): 6e173e3

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +42 -10
app.py CHANGED
@@ -2,10 +2,12 @@ import gradio as gr
2
  from transformers import pipeline
3
  from transformers import AutoModelForCausalLM, AutoTokenizer
4
 
5
- # Load the model and tokenizer
6
  model_name = "AdaptLLM/law-LLM"
7
  # model_name = "google/gemma-2b"
8
  # model_name = "mistralai/Mistral-7B-v0.1"
 
 
9
  tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
10
  model = AutoModelForCausalLM.from_pretrained(model_name)
11
 
@@ -33,16 +35,46 @@ def chat_interface(input_text):
33
  response = tokenizer.decode(outputs[answer_start:], skip_special_tokens=True)
34
  return response
35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
- # Create the Gradio interface
38
- iface = gr.Interface(
39
- fn=chat_interface,
40
- inputs=gr.inputs.Textbox(lines=2, label="Input Text"),
41
- outputs=gr.outputs.Textbox(label="Output Text"),
42
- title="Chat Interface",
43
- description="Enter text and get a response using the LLM model",
44
  # live=True # Enable live updates
45
- )
46
 
47
  # Launch the interface using Hugging Face Spaces
48
- iface.launch(share=True)
 
2
  from transformers import pipeline
3
  from transformers import AutoModelForCausalLM, AutoTokenizer
4
 
5
+ # Load the model
6
  model_name = "AdaptLLM/law-LLM"
7
  # model_name = "google/gemma-2b"
8
  # model_name = "mistralai/Mistral-7B-v0.1"
9
+
10
+ # Tokenizers usage
11
  tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
12
  model = AutoModelForCausalLM.from_pretrained(model_name)
13
 
 
35
  response = tokenizer.decode(outputs[answer_start:], skip_special_tokens=True)
36
  return response
37
 
38
+ # Load the Gemma 2B model using the pipeline
39
+ gemma_2b_chatbot = pipeline("text2text-generation", model="google/gemma-2b")
40
+
41
+ # Load the law-LLM model using the pipeline
42
+ law_llm_chatbot = pipeline("text2text-generation", model="AdaptLLM/law-LLM")
43
+
44
+ # Define the chat function for Gemma 2B
45
+ def gemma_2b_chat(input_text):
46
+ response = gemma_2b_chatbot(input_text)[0]["generated_text"]
47
+ return response
48
+
49
+ # Define the chat function for law-LLM
50
+ def law_llm_chat(input_text):
51
+ response = law_llm_chatbot(input_text)[0]["generated_text"]
52
+ return response
53
+
54
+
55
+ # Create the Gradio interface for Gemma 2B
56
+ # gemma_2b_inputs = gr.inputs.Textbox(lines=2, label="User Input")
57
+ # gemma_2b_outputs = gr.outputs.Textbox(label="Chatbot Response")
58
+ # gemma_2b_interface = gr.Interface(fn=gemma_2b_chat, inputs=gemma_2b_inputs, outputs=gemma_2b_outputs)
59
+
60
+ # Create the Gradio interface for law-LLM
61
+ law_llm_inputs = gr.inputs.Textbox(lines=2, label="User Input")
62
+ law_llm_outputs = gr.outputs.Textbox(label="Chatbot Response")
63
+ law_llm_interface = gr.Interface(fn=law_llm_chat, inputs=law_llm_inputs, outputs=law_llm_outputs)
64
+
65
+ # Run the Gradio interfaces
66
+ # gemma_2b_interface.launch(share=True)
67
+ law_llm_interface.launch(share=True)
68
 
69
+ # Create the Gradio interface with tokenizers
70
+ # iface = gr.Interface(
71
+ # fn=chat_interface,
72
+ # inputs=gr.inputs.Textbox(lines=2, label="Input Text"),
73
+ # outputs=gr.outputs.Textbox(label="Output Text"),
74
+ # title="Chat Interface",
75
+ # description="Enter text and get a response using the LLM model",
76
  # live=True # Enable live updates
77
+ # )
78
 
79
  # Launch the interface using Hugging Face Spaces
80
+ # iface.launch(share=True)